Ultra-high temperature ceramics(UHTCs)exhibit a unique combination of excellent properties,including ultra-high melting point,excellent chemical stability,and good oxidation resistance,which make them promising candid...Ultra-high temperature ceramics(UHTCs)exhibit a unique combination of excellent properties,including ultra-high melting point,excellent chemical stability,and good oxidation resistance,which make them promising candidates for aerospace and nuclear applications.However,the degradation of hightemperature strength is one of the main limitations for their ultra-high temperature applications.Thus,searching for mechanisms that can help to develop high-performance UHTCs with good high-temperature mechanical properties is urgently needed.To achieve this goal,grain boundary segregation of a series of carbides,including conventional,medium entropy,and high entropy transition metal carbides,i.e.,Zr_(0.95)W_(0.05)C,TiZrHfC_(3),ZrHfNbTaC_(4),TiZrHfNbTaC_(5),were studied by atomistic simulations with a fitted Deep Potential(DP),and the effects of segregation on grain boundary strength were emphasized.For all the studied carbides,grain boundary segregations are realized,which are dominated by the atomic size effect.In addition,tensile simulations indicate that grain boundaries(GBs)will usually be strengthened due to segregation.Our simulation results reveal that grain boundary segregation may be a universal mechanism in enhancing the high-temperature strength of both conventional UHTCs and medium/high entropy UHTCs,since GBs play a key role in controlling the fracture of UHTCs at elevated temperatures.展开更多
In materials science,a significant correlation often exists between material input parameters and their corresponding performance attributes.Nevertheless,the inherent challenges associated with small data obscure thes...In materials science,a significant correlation often exists between material input parameters and their corresponding performance attributes.Nevertheless,the inherent challenges associated with small data obscure these statistical correlations,impeding machine learning models from effectively capturing the underlying patterns,thereby hampering efficient optimization of material properties.This work presents a novel active learning framework that integrates generative adversarial networks(GAN)with a directionally constrained expected absolute improvement(EAI)acquisition function to accelerate the discovery of ultra-high temperature ceramics(UHTCs)using small data.The framework employs GAN for data augmentation,symbolic regression for feature weight derivation,and a self-developed EAI function that incorporates input feature importance weighting to quantify bidirectional deviations from zero ablation rate.Through only two iterations,this framework successfully identified the optimal composition of HfB_(2)-3.52SiC-5.23TaSi_(2),which exhibits robust near-zero ablation rates under plasma ablation at 2500℃ for 200 s,demonstrating superior sampling efficiency compared to conventional active learning approaches.Microstructural analysis reveals that the exceptional performance stems from the formation of a highly viscous HfO_(2)-SiO_(2)-Ta_(2)O_(5)-HfSiO_(4)-Hf_(3)(BO_(3))_(4) oxide layer,which provides effective oxygen barrier protection.This work demonstrates an efficient and universal approach for rapid materials discovery using small data.展开更多
Multifunctional carbon fibers(C_(f))/ZrB_(2) based composites were synthesized through a series of processes termed as IVI including sequential slurry injection,vacuum impregnation,pyrolysis and reimpregnation cycles,...Multifunctional carbon fibers(C_(f))/ZrB_(2) based composites were synthesized through a series of processes termed as IVI including sequential slurry injection,vacuum impregnation,pyrolysis and reimpregnation cycles,which facilitated the effective incorporation of ZrB_(2) powder into the carbon fiber preform.A single IVI cycle reduced the porosity of the preform from∼77%to∼40%.Microstructural analysis revealed a preferential distribution of ZrB2 powders within random layers and pyrolytic carbon effectively bridging the ceramic particles and fibers.Due to the hierarchical 0°/90°carbon fiber architecture,as fabricated Cf/ZrB_(2) composites exhibited anisotropy in mechanical and physical properties.Vertically oriented com-posites demonstrated higher compressive strain and low thermal conductivity(1.00-2.59 W m^(−1) K^(−1) from 298 to 1173 K).In contrast,horizontally oriented specimens exhibited higher compressive strength(60.77±20.30 MPa)and thermal conductivity(1.6-4.5 W m^(−1) K^(−1) from 298 to 1173 K).Furthermore,the continuous Cf endowed the composites with a positive temperature-dependent electrical conductiv-ity characteristic,not only contributed to their higher electrical conductivity values,but also was helpful for maintaining the excellent EMI shielding effectiveness(19.80-22.51 dB)of Cf/ZrB_(2) up to 800℃without obvious degradation.Considering the low-density characteristics of as-prepared composites,their specific performance metrics demonstrate good competitiveness compared to those fabricated via alternative processes.展开更多
Porous ultra-high temperature ceramics(UHTCs)are promising for ultrahigh-temperature thermal insulation applications.However,the main limitations for their applications are the high thermal conductivity and densificat...Porous ultra-high temperature ceramics(UHTCs)are promising for ultrahigh-temperature thermal insulation applications.However,the main limitations for their applications are the high thermal conductivity and densification of porous structure at high temperatures.In order to overcome these obstacles,herein,porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C was prepared by a simple method combing in-situ reaction and partial sintering.Porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C possesses homogeneous microstructure with grain size in the range of 100–500 nm and pore size in the range of 0.2–1μm,which exhibits high porosity of 80.99%,high compressive strength of 3.45 MPa,low room temperature thermal conductivity of 0.39 W·m^-1K^-1,low thermal diffusivity of 0.74 mm^2·s^-1and good high temperature stability.The combination of these properties renders porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))Cpromising as light-weight ultrahigh temperature thermal insulation materials.展开更多
Transpiration cooling technique is a reusable and high-efficiency thermal protection system(TPS),which is potential to improve the reusability and security of re-entry space vehicle.Relatively low density,high permeab...Transpiration cooling technique is a reusable and high-efficiency thermal protection system(TPS),which is potential to improve the reusability and security of re-entry space vehicle.Relatively low density,high permeability and high porosity are general requirements for porous media of transpiration cooling systems.In this work,a new porous high entropy metal hexaboride(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 is designed and prepared by the in-situ reaction/partial sintering method.Two reaction routes are designed to synthesize(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6,including boron thermal reduction and borocarbon thermal reduction.The as-prepared porous HE(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 ceramics possess homogeneous microstructure and exhibit low density,high porosity,high compressive strength and high permeability.The combination of these properties makes porous HE(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 promising as a candidate porous media for various transpiration cooling applications.展开更多
Due to advancements of hypersonic vehicles,ultra-high temperature thermal insulation materials are urgently requested to shield harsh environment with superhigh heat flux.Toward this target,ultra-high temperature cera...Due to advancements of hypersonic vehicles,ultra-high temperature thermal insulation materials are urgently requested to shield harsh environment with superhigh heat flux.Toward this target,ultra-high temperature ceramics(UHTCs)are the only choice due to their excellent capability at ultra-high temperatures.We herein report a novel highly porous high entropy(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C fabricated by foam-gelcasting-freeze drying technology combined with in-situ pressureless reaction sintering.The porous(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C exhibited ultra-high porosity of 86.4%-95.9%,as well as high strength and low thermal conductivity of 0.70–11.77 MPa and 0.164–0.239 W/(m·K),respectively.Specifically,Si C sintering additive only locates at the pit of the surface of sintering neck between UHTC grains,and there is no secondary phase or intergranular film at the grain boundary.Besides,the oxidation resistance of high entropy carbide powders is greatly improved compared with that of the mixed five carbide powders.This work clearly highlights the merits of highly porous high entropy(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C as an ultra-high temperature thermal insulation material.展开更多
Porous ultra-high temperature ceramics(UHTCs) are potential candidates as high-temperature thermal insulation materials. However, high thermal conductivity is the main obstacle to the application of porous UHTCs. In o...Porous ultra-high temperature ceramics(UHTCs) are potential candidates as high-temperature thermal insulation materials. However, high thermal conductivity is the main obstacle to the application of porous UHTCs. In order to address this problem, herein, a new method combining in-situ reaction and partial sintering has been developed for preparing porous Zr C and Hf C with low conductivity. In this process, porous Zr C and Hf C are directly obtained from ZrO2/C and HfO2/C green bodies without adding any pore-forming agents. The release of reaction gas can not only increase the porosity but also block the shrinkage. The asprepared porous Zr C and Hf C exhibit homogeneous porous microstructure with grain sizes in the range of 300–600 nm and 200–500 nm, high porosity of 68.74% and 77.82%, low room temperature thermal conductivity of 1.12 and 1.01 W·m-1 K-1, and compressive strength of 8.28 and 5.51 MPa, respectively.These features render porous Zr C and Hf C promising as light-weight thermal insulation materials for ultrahigh temperature applications. Furthermore, the feasibility of this method has been demonstrated and porous Nb C, Ta C as well as Ti C have been prepared by this method.展开更多
As for the air plasma sprayed ZrB_(2)-based coatings,B content change caused by inevitable oxidation is predictable but commonly ignored.Affected by air plasma flame,the B element loss and residual B_(2) O_(3) in the ...As for the air plasma sprayed ZrB_(2)-based coatings,B content change caused by inevitable oxidation is predictable but commonly ignored.Affected by air plasma flame,the B element loss and residual B_(2) O_(3) in the sprayed ZrB_(2) coating were observed.Moreover,how the B content change affects the microstructure,phase evolution,and ablation resistance(2.4 MW/m^(2),60 s)of ZrB_(2)-based coatings with different sec-ondary phases(SiC,MoSi_(2),and TaC)was investigated.The B element loss contributed to the increase in surface temperature and the decline in the sintering degree of the ZrO_(2) layer.The evaporation of residual B_(2)O_(3) caused damage to the coating structure in the form of pores,whose negative effect was enhanced and reduced by MoSi_(2) and TaC secondary phases,respectively.This work will provide some insight into thermally sprayed non-oxide ceramic coatings in the atmosphere.展开更多
C/C composites were prepared by chemical vapor infiltration(CVI),and then were subjected to Si,Zr,and MoSi_(2) reactive melt infiltration(RMI)to obtain C/C-SiC,C/C-SiC-ZrC,and C/C-SiC-ZrC-MoSi_(2) com-posites.The abla...C/C composites were prepared by chemical vapor infiltration(CVI),and then were subjected to Si,Zr,and MoSi_(2) reactive melt infiltration(RMI)to obtain C/C-SiC,C/C-SiC-ZrC,and C/C-SiC-ZrC-MoSi_(2) com-posites.The ablation behavior of these three composites was evaluated by high-energy CO 2 laser irra-diation.The surface temperature distribution of composite materials was simulated by finite element analysis.The results show that the ablation resistance mechanisms of the three materials are entirely different.The C/C-SiC-ZrC-MoSi_(2) com posite showed the best ablation performance among them.It is at-tributed to the lower oxygen permeability and richer heat dissipation mechanism of the C/C-SiC-ZrC-MoSi_(2) composite within the total temperature threshold.展开更多
Porous ultrahigh temperature ceramics(UHTCs) are potential candidates as reusable thermal protection materials of transpiration cooling system in scramjet engine. However, low strength and low porosity are the main li...Porous ultrahigh temperature ceramics(UHTCs) are potential candidates as reusable thermal protection materials of transpiration cooling system in scramjet engine. However, low strength and low porosity are the main limitations of porous UHTCs. To overcome these problems, herein, a new and simple in-situ reaction/partial sintering process has been developed for preparing high strength and high porosity porous YB2C2. In this process, a simple gas-releasing in-situ reaction has been designed, and the formation and escape of gases can block the shrinkage during sintering process, which is favorable to increase the porosity of porous YB2C2. In order to demonstrate the advantages of the new method, porous YB2C2 ceramics have been fabricated from Y2O3, BN and graphite powders for the first time. The as-prepared porous YB2C2 ceramics possess high porosity of 57.17%–75.26% and high compressive strength of 9.32–34.78 MPa.The porosity, sintered density, radical shrinkage and compressive strength of porous YB2C2 ceramics can be controlled simply by changing the green density. Due to utilization of graphite as the carbon source, the porous YB2C2 ceramics show anisotropy in microstructure and mechanical behavior. These features render the porous YB2C2 ceramics promising as a thermal-insulating light-weight component for transpiration cooling system.展开更多
A novelty technique,namely,pre-oxidation,has been proposed to improve the strength and thermal shock behavior of ZrB2-SiC-graphite ceramic composites,which is a promising candidate for ultra-high temperature ceramics ...A novelty technique,namely,pre-oxidation,has been proposed to improve the strength and thermal shock behavior of ZrB2-SiC-graphite ceramic composites,which is a promising candidate for ultra-high temperature ceramics (UHTCs) in aerospace engineering. The composite is pre-oxidized at temperatures of 900 ℃ and 1100 ℃ for 1 h and 3 h in air. A theoretical model considering surface heat transfer has been given and analyzed. A water-quenching technique is adopted at different temperatures from 300 ℃ to 600 ℃ in order to investigate the thermal shock behavior of pre-oxidized composites. The critical thermal shock temperature improves more than 40% after pre-oxidizing at 1100 ℃ for 3 h. However,the composites strength is not improved as a result of the insensitivity to surface defects.展开更多
Hf-based carbides are highly desirable candidate materials for oxidizing environments above 2000℃.However,the static oxidation behavior at their potential service temperatures remains unclear.To fill this gap,the sta...Hf-based carbides are highly desirable candidate materials for oxidizing environments above 2000℃.However,the static oxidation behavior at their potential service temperatures remains unclear.To fill this gap,the static oxidation behavior of(Hf,Ti)C and the effect of Ti substitutions were investigated in air at 2500℃ under an oxygen partial pressure of 4.2 kPa.After oxidation for 2000 s,the thickness of the oxide layer on the surface of(Hf,Ti)C bulk ceramic is reduced by 62.29%compared with that on the HfC monocarbide surface.The dramatic improvement in oxidation resistance is attributed to the unique oxide layer structure consisting of various crystalline oxycarbides,HfO_(2),and carbon.The Ti-rich oxycarbide((Ti,Hf)C_(x)O_(y))dispersed within HfO_(2) formed the major structure of the oxide layer.A coherent boundary with lattice distortion existed at the HfO2/(Ti,Hf)C_(x)O_(y) interface along the(111)crystal plane direction,which served as an effective oxygen diffusion barrier.The Hfrich oxycarbide((Hf,Ti)CxOy)together with(Ti,Hf)C_(x)O_(y),HfO_(2),and precipitated carbon constituted a dense transition layer,ensuring favorable bonding between the oxide layer and the matrix.The Ti content affects the oxidation resistance of(Hf,Ti)C by determining the oxide layer's phase distribution and integrity.展开更多
Multiphase design is a promising approach to achieve superior ablation resistance of multicomponent ultra-high temperature ceramic,while understanding the ablation mechanism is the foundation.Here,through investigatin...Multiphase design is a promising approach to achieve superior ablation resistance of multicomponent ultra-high temperature ceramic,while understanding the ablation mechanism is the foundation.Here,through investigating a three-phase multicomponent ceramic consisting of Hf-rich carbide,Nb-rich carbide,and Zr-rich silicide phases,we report a newly discovered solid-state reaction process among multiphase multicomponent ceramic during ablation.It was found that this solid-state reaction occurred in the matrix/oxide scale interface region.In this process,metal cations are counter-diffused between the multicomponent phases,thereby resulting in their composition evolution,which allows the multicomponent phases to exist stably under a higher oxygen partial pressure,leading to the improvement of thermodynamic stability of three-phase multicomponent ceramic.Additionally,this solid-state reaction process appears synergistic with the preferential oxidation behavior among the oxide scale in enhancing the ablation performance.展开更多
Porous ultra-high temperature ceramics(UHTCs)are recognized as novel candidates for fulfilling the requirements of thermal protection systems of hypersonic aircrafts,as they possess excellent high-temperature resistan...Porous ultra-high temperature ceramics(UHTCs)are recognized as novel candidates for fulfilling the requirements of thermal protection systems of hypersonic aircrafts,as they possess excellent high-temperature resistance and low thermal conductivity.Currently,the reported porous UHTCs predominantly exhibit an open pore structure.By contrast,closed-cell UHTCs,formed by employing ceramic hollow microspheres(HMs)as pore-forming agents,hold great potential for achieving superior thermal insulation performance.Unfortunately,the implementation of this strategy has been hindered by the scarcity of raw materials and preparation techniques.In this paper,ZrC-SiC closed-cell ceramics were first successfully prepared through a combination of tape casting and chemical vapor infiltration(CVI)techniques,utilizing the self-developed ZrC HMs as the primary raw material.The morphology,microstructure,and thermal insulation properties of the obtained ZrC-SiC closed-cell ceramics were investigated.The results indicate that when the content of ZrC HMs is 30 vol.%,the density of the prepared porous ceramics is 2.09 g cm^(-3),with a closed porosity of 14.05%and a thermal conductivity of 1.69 W(m K)^(-1).The results clearly prove that the CVI process can successfully convert ZrC HMs into closed pore structures within porous ceramics.The introduction of ZrC HMs suppresses the contribution of free electrons to thermal conductivity and brings about a large number of solid-gas interfaces,which increases the interfacial thermal resistance and significantly reduces the phonon thermal conductivity.Consequently,the as-prepared ZrC-SiC closed-cell ceramics show excellent thermal insulation properties.This study provides a new idea and method for the development of porous UHTCs and offers a more reliable material choice for thermal protection systems.展开更多
The strong covalent bonding characters of zirconium diboride( Zr B2) and hafnium diboride( Hf B2) with natural hexagonal Al B2-type crystal structure give them high melting points( 〉 3 200 ℃), high bending str...The strong covalent bonding characters of zirconium diboride( Zr B2) and hafnium diboride( Hf B2) with natural hexagonal Al B2-type crystal structure give them high melting points( 〉 3 200 ℃), high bending strength, high elastic modulus and high hardness.Zr B2- and Hf B2-based ceramics are promising candidates for the thermal protection components of propulsion systems,rocket nozzles,sharp leading edges and nose cones. This paper introduces the recent research progress on Zr B2- and Hf B2-based ceramics,including the synthesis methods of the boride powders,the sintering methods of the boride-based ceramics and their properties.The advantages of different synthesis methods and sintering methods are compared. The influence factors on the mechanical properties,oxidation resistance and thermal shock resistance are summarized.展开更多
基金supported by the National Natural Science Foundation of China(No.51672064)。
文摘Ultra-high temperature ceramics(UHTCs)exhibit a unique combination of excellent properties,including ultra-high melting point,excellent chemical stability,and good oxidation resistance,which make them promising candidates for aerospace and nuclear applications.However,the degradation of hightemperature strength is one of the main limitations for their ultra-high temperature applications.Thus,searching for mechanisms that can help to develop high-performance UHTCs with good high-temperature mechanical properties is urgently needed.To achieve this goal,grain boundary segregation of a series of carbides,including conventional,medium entropy,and high entropy transition metal carbides,i.e.,Zr_(0.95)W_(0.05)C,TiZrHfC_(3),ZrHfNbTaC_(4),TiZrHfNbTaC_(5),were studied by atomistic simulations with a fitted Deep Potential(DP),and the effects of segregation on grain boundary strength were emphasized.For all the studied carbides,grain boundary segregations are realized,which are dominated by the atomic size effect.In addition,tensile simulations indicate that grain boundaries(GBs)will usually be strengthened due to segregation.Our simulation results reveal that grain boundary segregation may be a universal mechanism in enhancing the high-temperature strength of both conventional UHTCs and medium/high entropy UHTCs,since GBs play a key role in controlling the fracture of UHTCs at elevated temperatures.
基金supported by the Natural Science Foundation of China[grant numbers 52302093]Natural Science Foundation of Jiangxi Province[grant numbers 20224BAB204021].
文摘In materials science,a significant correlation often exists between material input parameters and their corresponding performance attributes.Nevertheless,the inherent challenges associated with small data obscure these statistical correlations,impeding machine learning models from effectively capturing the underlying patterns,thereby hampering efficient optimization of material properties.This work presents a novel active learning framework that integrates generative adversarial networks(GAN)with a directionally constrained expected absolute improvement(EAI)acquisition function to accelerate the discovery of ultra-high temperature ceramics(UHTCs)using small data.The framework employs GAN for data augmentation,symbolic regression for feature weight derivation,and a self-developed EAI function that incorporates input feature importance weighting to quantify bidirectional deviations from zero ablation rate.Through only two iterations,this framework successfully identified the optimal composition of HfB_(2)-3.52SiC-5.23TaSi_(2),which exhibits robust near-zero ablation rates under plasma ablation at 2500℃ for 200 s,demonstrating superior sampling efficiency compared to conventional active learning approaches.Microstructural analysis reveals that the exceptional performance stems from the formation of a highly viscous HfO_(2)-SiO_(2)-Ta_(2)O_(5)-HfSiO_(4)-Hf_(3)(BO_(3))_(4) oxide layer,which provides effective oxygen barrier protection.This work demonstrates an efficient and universal approach for rapid materials discovery using small data.
基金financially supported by the National Natural Science Foundation of China(Nos.52332003,52293373,52022072 and 52202067)the Hubei Provincial Natural Science Foundation of China(Distinguished Young Scholars No.2022CFA042)Independent Innovation Projects of Hubei Longzhong Laboratory(No.2022ZZ-10).
文摘Multifunctional carbon fibers(C_(f))/ZrB_(2) based composites were synthesized through a series of processes termed as IVI including sequential slurry injection,vacuum impregnation,pyrolysis and reimpregnation cycles,which facilitated the effective incorporation of ZrB_(2) powder into the carbon fiber preform.A single IVI cycle reduced the porosity of the preform from∼77%to∼40%.Microstructural analysis revealed a preferential distribution of ZrB2 powders within random layers and pyrolytic carbon effectively bridging the ceramic particles and fibers.Due to the hierarchical 0°/90°carbon fiber architecture,as fabricated Cf/ZrB_(2) composites exhibited anisotropy in mechanical and physical properties.Vertically oriented com-posites demonstrated higher compressive strain and low thermal conductivity(1.00-2.59 W m^(−1) K^(−1) from 298 to 1173 K).In contrast,horizontally oriented specimens exhibited higher compressive strength(60.77±20.30 MPa)and thermal conductivity(1.6-4.5 W m^(−1) K^(−1) from 298 to 1173 K).Furthermore,the continuous Cf endowed the composites with a positive temperature-dependent electrical conductiv-ity characteristic,not only contributed to their higher electrical conductivity values,but also was helpful for maintaining the excellent EMI shielding effectiveness(19.80-22.51 dB)of Cf/ZrB_(2) up to 800℃without obvious degradation.Considering the low-density characteristics of as-prepared composites,their specific performance metrics demonstrate good competitiveness compared to those fabricated via alternative processes.
基金supported by the National Natural Science Foundation of China under Grant Nos. U1435206 and 51672064Beijing Municipal Science & Technology Commission under Grant No. D161100002416001
文摘Porous ultra-high temperature ceramics(UHTCs)are promising for ultrahigh-temperature thermal insulation applications.However,the main limitations for their applications are the high thermal conductivity and densification of porous structure at high temperatures.In order to overcome these obstacles,herein,porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C was prepared by a simple method combing in-situ reaction and partial sintering.Porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))C possesses homogeneous microstructure with grain size in the range of 100–500 nm and pore size in the range of 0.2–1μm,which exhibits high porosity of 80.99%,high compressive strength of 3.45 MPa,low room temperature thermal conductivity of 0.39 W·m^-1K^-1,low thermal diffusivity of 0.74 mm^2·s^-1and good high temperature stability.The combination of these properties renders porous high entropy(Zr(0.2)Hf(0.2)Ti(0.2)Nb(0.2)Ta(0.2))Cpromising as light-weight ultrahigh temperature thermal insulation materials.
基金financial supported by the National Natural Science Foundation of China(Nos.51672064 and U1435206).
文摘Transpiration cooling technique is a reusable and high-efficiency thermal protection system(TPS),which is potential to improve the reusability and security of re-entry space vehicle.Relatively low density,high permeability and high porosity are general requirements for porous media of transpiration cooling systems.In this work,a new porous high entropy metal hexaboride(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 is designed and prepared by the in-situ reaction/partial sintering method.Two reaction routes are designed to synthesize(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6,including boron thermal reduction and borocarbon thermal reduction.The as-prepared porous HE(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 ceramics possess homogeneous microstructure and exhibit low density,high porosity,high compressive strength and high permeability.The combination of these properties makes porous HE(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 promising as a candidate porous media for various transpiration cooling applications.
基金financial support from the National Key R&D Program of China(No.2017YFB0703201)Liao Ning Revitalization Talents Program(No.XLYC2002018)。
文摘Due to advancements of hypersonic vehicles,ultra-high temperature thermal insulation materials are urgently requested to shield harsh environment with superhigh heat flux.Toward this target,ultra-high temperature ceramics(UHTCs)are the only choice due to their excellent capability at ultra-high temperatures.We herein report a novel highly porous high entropy(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C fabricated by foam-gelcasting-freeze drying technology combined with in-situ pressureless reaction sintering.The porous(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C exhibited ultra-high porosity of 86.4%-95.9%,as well as high strength and low thermal conductivity of 0.70–11.77 MPa and 0.164–0.239 W/(m·K),respectively.Specifically,Si C sintering additive only locates at the pit of the surface of sintering neck between UHTC grains,and there is no secondary phase or intergranular film at the grain boundary.Besides,the oxidation resistance of high entropy carbide powders is greatly improved compared with that of the mixed five carbide powders.This work clearly highlights the merits of highly porous high entropy(Zr_(1/5)Hf_(1/5)Nb_(1/5)Ta_(1/5)Ti_(1/5))C as an ultra-high temperature thermal insulation material.
基金financially supported by the National Natural Science Foundation of China under Grant Nos. 51672064 and U1435206the Beijing Municipal Science & Technology Commission under Grant No. D161100002416001
文摘Porous ultra-high temperature ceramics(UHTCs) are potential candidates as high-temperature thermal insulation materials. However, high thermal conductivity is the main obstacle to the application of porous UHTCs. In order to address this problem, herein, a new method combining in-situ reaction and partial sintering has been developed for preparing porous Zr C and Hf C with low conductivity. In this process, porous Zr C and Hf C are directly obtained from ZrO2/C and HfO2/C green bodies without adding any pore-forming agents. The release of reaction gas can not only increase the porosity but also block the shrinkage. The asprepared porous Zr C and Hf C exhibit homogeneous porous microstructure with grain sizes in the range of 300–600 nm and 200–500 nm, high porosity of 68.74% and 77.82%, low room temperature thermal conductivity of 1.12 and 1.01 W·m-1 K-1, and compressive strength of 8.28 and 5.51 MPa, respectively.These features render porous Zr C and Hf C promising as light-weight thermal insulation materials for ultrahigh temperature applications. Furthermore, the feasibility of this method has been demonstrated and porous Nb C, Ta C as well as Ti C have been prepared by this method.
基金supported by the National Key R&D Program of China(No.2021YFA0715800)the Science Center for Gas Turbine Project(No.P2021-A-IV-003-001)+1 种基金the National Nat-ural Science Foundation of China(No.52125203)the Innova-tion Foundation for Doctor Dissertation of Northwestern Polytech-nical University(No.CX2021007)。
文摘As for the air plasma sprayed ZrB_(2)-based coatings,B content change caused by inevitable oxidation is predictable but commonly ignored.Affected by air plasma flame,the B element loss and residual B_(2) O_(3) in the sprayed ZrB_(2) coating were observed.Moreover,how the B content change affects the microstructure,phase evolution,and ablation resistance(2.4 MW/m^(2),60 s)of ZrB_(2)-based coatings with different sec-ondary phases(SiC,MoSi_(2),and TaC)was investigated.The B element loss contributed to the increase in surface temperature and the decline in the sintering degree of the ZrO_(2) layer.The evaporation of residual B_(2)O_(3) caused damage to the coating structure in the form of pores,whose negative effect was enhanced and reduced by MoSi_(2) and TaC secondary phases,respectively.This work will provide some insight into thermally sprayed non-oxide ceramic coatings in the atmosphere.
文摘C/C composites were prepared by chemical vapor infiltration(CVI),and then were subjected to Si,Zr,and MoSi_(2) reactive melt infiltration(RMI)to obtain C/C-SiC,C/C-SiC-ZrC,and C/C-SiC-ZrC-MoSi_(2) com-posites.The ablation behavior of these three composites was evaluated by high-energy CO 2 laser irra-diation.The surface temperature distribution of composite materials was simulated by finite element analysis.The results show that the ablation resistance mechanisms of the three materials are entirely different.The C/C-SiC-ZrC-MoSi_(2) com posite showed the best ablation performance among them.It is at-tributed to the lower oxygen permeability and richer heat dissipation mechanism of the C/C-SiC-ZrC-MoSi_(2) composite within the total temperature threshold.
基金supported by the National Natural Science Foundation of China under Grant Nos. U1435206 and 51672064by the Beijing Municipal Science & Technology Commission under Grant No. D161100002416001
文摘Porous ultrahigh temperature ceramics(UHTCs) are potential candidates as reusable thermal protection materials of transpiration cooling system in scramjet engine. However, low strength and low porosity are the main limitations of porous UHTCs. To overcome these problems, herein, a new and simple in-situ reaction/partial sintering process has been developed for preparing high strength and high porosity porous YB2C2. In this process, a simple gas-releasing in-situ reaction has been designed, and the formation and escape of gases can block the shrinkage during sintering process, which is favorable to increase the porosity of porous YB2C2. In order to demonstrate the advantages of the new method, porous YB2C2 ceramics have been fabricated from Y2O3, BN and graphite powders for the first time. The as-prepared porous YB2C2 ceramics possess high porosity of 57.17%–75.26% and high compressive strength of 9.32–34.78 MPa.The porosity, sintered density, radical shrinkage and compressive strength of porous YB2C2 ceramics can be controlled simply by changing the green density. Due to utilization of graphite as the carbon source, the porous YB2C2 ceramics show anisotropy in microstructure and mechanical behavior. These features render the porous YB2C2 ceramics promising as a thermal-insulating light-weight component for transpiration cooling system.
基金Sponsored by the National Natural Science Foundation of China ( Grant No.10572044,90505015)the Program for New Century Excellent Talents in University (Grant No.NCET-05-0346)
文摘A novelty technique,namely,pre-oxidation,has been proposed to improve the strength and thermal shock behavior of ZrB2-SiC-graphite ceramic composites,which is a promising candidate for ultra-high temperature ceramics (UHTCs) in aerospace engineering. The composite is pre-oxidized at temperatures of 900 ℃ and 1100 ℃ for 1 h and 3 h in air. A theoretical model considering surface heat transfer has been given and analyzed. A water-quenching technique is adopted at different temperatures from 300 ℃ to 600 ℃ in order to investigate the thermal shock behavior of pre-oxidized composites. The critical thermal shock temperature improves more than 40% after pre-oxidizing at 1100 ℃ for 3 h. However,the composites strength is not improved as a result of the insensitivity to surface defects.
基金This work was supported by the National Natural Science Foundation of China grant numbers[52072410].
文摘Hf-based carbides are highly desirable candidate materials for oxidizing environments above 2000℃.However,the static oxidation behavior at their potential service temperatures remains unclear.To fill this gap,the static oxidation behavior of(Hf,Ti)C and the effect of Ti substitutions were investigated in air at 2500℃ under an oxygen partial pressure of 4.2 kPa.After oxidation for 2000 s,the thickness of the oxide layer on the surface of(Hf,Ti)C bulk ceramic is reduced by 62.29%compared with that on the HfC monocarbide surface.The dramatic improvement in oxidation resistance is attributed to the unique oxide layer structure consisting of various crystalline oxycarbides,HfO_(2),and carbon.The Ti-rich oxycarbide((Ti,Hf)C_(x)O_(y))dispersed within HfO_(2) formed the major structure of the oxide layer.A coherent boundary with lattice distortion existed at the HfO2/(Ti,Hf)C_(x)O_(y) interface along the(111)crystal plane direction,which served as an effective oxygen diffusion barrier.The Hfrich oxycarbide((Hf,Ti)CxOy)together with(Ti,Hf)C_(x)O_(y),HfO_(2),and precipitated carbon constituted a dense transition layer,ensuring favorable bonding between the oxide layer and the matrix.The Ti content affects the oxidation resistance of(Hf,Ti)C by determining the oxide layer's phase distribution and integrity.
基金supported by the National Natural Science Foundation of China(52072410 and 51602349).
文摘Multiphase design is a promising approach to achieve superior ablation resistance of multicomponent ultra-high temperature ceramic,while understanding the ablation mechanism is the foundation.Here,through investigating a three-phase multicomponent ceramic consisting of Hf-rich carbide,Nb-rich carbide,and Zr-rich silicide phases,we report a newly discovered solid-state reaction process among multiphase multicomponent ceramic during ablation.It was found that this solid-state reaction occurred in the matrix/oxide scale interface region.In this process,metal cations are counter-diffused between the multicomponent phases,thereby resulting in their composition evolution,which allows the multicomponent phases to exist stably under a higher oxygen partial pressure,leading to the improvement of thermodynamic stability of three-phase multicomponent ceramic.Additionally,this solid-state reaction process appears synergistic with the preferential oxidation behavior among the oxide scale in enhancing the ablation performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072304,51872229,and 52172100)the 111 Project of China(No.B08040)Science Center for Gas Turbine Project(No.P2022-B-IV-002-001).
文摘Porous ultra-high temperature ceramics(UHTCs)are recognized as novel candidates for fulfilling the requirements of thermal protection systems of hypersonic aircrafts,as they possess excellent high-temperature resistance and low thermal conductivity.Currently,the reported porous UHTCs predominantly exhibit an open pore structure.By contrast,closed-cell UHTCs,formed by employing ceramic hollow microspheres(HMs)as pore-forming agents,hold great potential for achieving superior thermal insulation performance.Unfortunately,the implementation of this strategy has been hindered by the scarcity of raw materials and preparation techniques.In this paper,ZrC-SiC closed-cell ceramics were first successfully prepared through a combination of tape casting and chemical vapor infiltration(CVI)techniques,utilizing the self-developed ZrC HMs as the primary raw material.The morphology,microstructure,and thermal insulation properties of the obtained ZrC-SiC closed-cell ceramics were investigated.The results indicate that when the content of ZrC HMs is 30 vol.%,the density of the prepared porous ceramics is 2.09 g cm^(-3),with a closed porosity of 14.05%and a thermal conductivity of 1.69 W(m K)^(-1).The results clearly prove that the CVI process can successfully convert ZrC HMs into closed pore structures within porous ceramics.The introduction of ZrC HMs suppresses the contribution of free electrons to thermal conductivity and brings about a large number of solid-gas interfaces,which increases the interfacial thermal resistance and significantly reduces the phonon thermal conductivity.Consequently,the as-prepared ZrC-SiC closed-cell ceramics show excellent thermal insulation properties.This study provides a new idea and method for the development of porous UHTCs and offers a more reliable material choice for thermal protection systems.
基金Financial supports from the National Natural Science Foundation of China ( No. 51272266 )the Science and Technology Commission of Shanghai ( No. 15ZR1445200 )the State Key Laboratory of High Performance Ceramics and Superfine Microstructure
文摘The strong covalent bonding characters of zirconium diboride( Zr B2) and hafnium diboride( Hf B2) with natural hexagonal Al B2-type crystal structure give them high melting points( 〉 3 200 ℃), high bending strength, high elastic modulus and high hardness.Zr B2- and Hf B2-based ceramics are promising candidates for the thermal protection components of propulsion systems,rocket nozzles,sharp leading edges and nose cones. This paper introduces the recent research progress on Zr B2- and Hf B2-based ceramics,including the synthesis methods of the boride powders,the sintering methods of the boride-based ceramics and their properties.The advantages of different synthesis methods and sintering methods are compared. The influence factors on the mechanical properties,oxidation resistance and thermal shock resistance are summarized.