In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Exis...In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Existing solutions have primarily focused on intrinsic features within consumer reviews and achieved significant progress through deep feature extraction models. However, they still face these two key limitations: (1) neglecting the influence of fundamental tobacco information on analyzing the sentiment inclination of consumer reviews, resulting in a lack of consistent sentiment assessment criteria across thousands of tobacco brands;(2) overlooking the syntactic dependencies between Chinese word phrases and the underlying impact of sentiment scores between word phrases on sentiment inclination determination. To tackle these challenges, we propose the External Knowledge-enhanced Cross-Attention Fusion model, CITSA. Specifically, in the Cross Infusion Layer, we fuse consumer comment information and tobacco fundamental information through interactive attention mechanisms. In the Textual Attention Enhancement Layer, we introduce an emotion-oriented syntactic dependency graph and incorporate sentiment-syntactic relationships into consumer comments through a graph convolution network module. Subsequently, the Textual Attention Layer is introduced to combine these two feature representations. Additionally, we compile a Chinese-oriented tobacco sentiment analysis dataset, comprising 55,096 consumer reviews and 2074 tobacco fundamental information entries. Experimental results on our self-constructed datasets consistently demonstrate that our proposed model outperforms state-of-the-art methods in terms of accuracy, precision, recall, and F1-score.展开更多
As a complex engineering problem,the satellite module layout design (SMLD) is difficult to resolve by using conventional computation-based approaches. The challenges stem from three aspects:computational complexity,en...As a complex engineering problem,the satellite module layout design (SMLD) is difficult to resolve by using conventional computation-based approaches. The challenges stem from three aspects:computational complexity,engineering complexity,and engineering practicability. Engineers often finish successful satellite designs by way of their plenty of experience and wisdom,lessons learnt from the past practices,as well as the assistance of the advanced computational techniques. Enlightened by the ripe patterns,th...展开更多
To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different featur...To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV).展开更多
Currently, knowledge-based sharing and service system has been a hot issue and knowledge fusion, especially for implicit knowledge discovery, becomes the core of knowledge processing and optimization in the system. In...Currently, knowledge-based sharing and service system has been a hot issue and knowledge fusion, especially for implicit knowledge discovery, becomes the core of knowledge processing and optimization in the system. In the research, a knowledge fusion framework based on agricultural ontology and fusion rules was pro- posed, including knowledge extraction, clearing and annotation modules based on a- gricultural ontology, fusion rule construction, choosing and evaluation modules based on agricultural ontology and knowledge fusion module for users' demands. Finally, the significance of the framework to system of agricultural knowledge services was proved with the help of a case.展开更多
Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power system...Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.展开更多
The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. F...The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods.展开更多
With the rapid development and popularization of web services, the available information types and structure are becoming more and more complex and challenging. Actually web services involve the need for dynamic integ...With the rapid development and popularization of web services, the available information types and structure are becoming more and more complex and challenging. Actually web services involve the need for dynamic integration and transparent knowledge integration, in light of the urgent information changing track. Under this situation, the traditional search engine and information integration cannot finish this challenge, thereby bringing the opportunity for knowledge fusion and synchronization. This paper proposes a multi-matching strategy ontology mapping method for web information, i.e., ubiquitous ontology mapping method (U-Mapping), which can be viewed as a base collection of information on multiple ontologies made to appear anytime and everywhere. This approach is usually built independently by different information providers, avoiding the grammatical and semantic conflict. Finally, the ontology case information can be utilized under the consolidation of the U-Mapping, concerning language technology and machine learning methods.展开更多
Using sarcasm on social media platforms to express negative opinions towards a person or object has become increasingly common.However,detecting sarcasm in various forms of communication can be difficult due to confli...Using sarcasm on social media platforms to express negative opinions towards a person or object has become increasingly common.However,detecting sarcasm in various forms of communication can be difficult due to conflicting sentiments.In this paper,we introduce a contrasting sentiment-based model for multimodal sarcasm detection(CS4MSD),which identifies inconsistent emotions by leveraging the CLIP knowledge module to produce sentiment features in both text and image.Then,five external sentiments are introduced to prompt the model learning sentimental preferences among modalities.Furthermore,we highlight the importance of verbal descriptions embedded in illustrations and incorporate additional knowledge-sharing modules to fuse such imagelike features.Experimental results demonstrate that our model achieves state-of-the-art performance on the public multimodal sarcasm dataset.展开更多
Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and ...Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and knowledge and the limitations of data sources,the visual knowledge within the knowledge graphs is generally of low quality,and some entities suffer from the issue of missing visual modality.Nevertheless,previous studies of MMKGC have primarily focused on how to facilitate modality interaction and fusion while neglecting the problems of low modality quality and modality missing.In this case,mainstream MMKGC models only use pre-trained visual encoders to extract features and transfer the semantic information to the joint embeddings through modal fusion,which inevitably suffers from problems such as error propagation and increased uncertainty.To address these problems,we propose a Multi-modal knowledge graph Completion model based on Super-resolution and Detailed Description Generation(MMCSD).Specifically,we leverage a pre-trained residual network to enhance the resolution and improve the quality of the visual modality.Moreover,we design multi-level visual semantic extraction and entity description generation,thereby further extracting entity semantics from structural triples and visual images.Meanwhile,we train a variational multi-modal auto-encoder and utilize a pre-trained multi-modal language model to complement the missing visual features.We conducted experiments on FB15K-237 and DB13K,and the results showed that MMCSD can effectively perform MMKGC and achieve state-of-the-art performance.展开更多
Within the realm of multimodal neural machine translation(MNMT),addressing the challenge of seamlessly integrating textual data with corresponding image data to enhance translation accuracy has become a pressing issue...Within the realm of multimodal neural machine translation(MNMT),addressing the challenge of seamlessly integrating textual data with corresponding image data to enhance translation accuracy has become a pressing issue.We saw that discrepancies between textual content and associated images can lead to visual noise,potentially diverting the model’s focus away from the textual data and so affecting the translation’s comprehensive effectiveness.To solve this visual noise problem,we propose an innovative KDNR-MNMT model.Themodel combines the knowledge distillation technique with an anti-noise interaction mechanism,which makes full use of the synthesized graphic knowledge and local image interaction masks,aiming to extract more effective visual features.Meanwhile,the KDNR-MNMT model adopts a multimodal adaptive gating fusion strategy to enhance the constructive interaction of different modal information.By integrating a perceptual attention mechanism,which uses cross-modal interaction cues within the Transformer framework,our approach notably enhances the quality of machine translation outputs.To confirmthemodel’s performance,we carried out extensive testing and assessment on the extensively utilized Multi30K dataset.The outcomes of our experiments prove substantial enhancements in our model’s BLEU and METEOR scores,with respective increases of 0.78 and 0.99 points over prevailing methods.This accomplishment affirms the potency of our strategy for mitigating visual interference and heralds groundbreaking advancements within themultimodal NMT domain,further propelling the evolution of this scholarly pursuit.展开更多
Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event eleme...Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.展开更多
Learning from the Internet is becoming more and more convenient and attracting more and more people. How to obtain knowledge from massive data and construct high quality knowledge graph has become a research hot topic...Learning from the Internet is becoming more and more convenient and attracting more and more people. How to obtain knowledge from massive data and construct high quality knowledge graph has become a research hot topic. This paper proposes a new method of knowledge graph construction based on crowd-sourcing. Firstly, learners build the subgraphs to acquire knowledge through the crowd-sourcing task; secondly, we put forward the fusion strategy of knowledge subgraph, in which knowledge graph is converted into the adjacency matrix, and the weight of the knowledge relation is calculated by matrix operations, thus knowledge graph is constructed. Finally, experiments conducted on an open platform show that the accuracy and integrity of proposed method of constructing knowledge graph are higher and our new method exists potential value for online learning and self-regulated learning.展开更多
Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foun...Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foundation for later knowledge reasoning and its application.Methods Under the guidance of experts in the classical formula of traditional Chinese medicine(TCM),the method of“top-down as the main,bottom-up as the auxiliary”was adopted to carry out knowledge extraction,knowledge fusion,and knowledge storage from the five aspects of the disease,syndrome,symptom,method,and formula for the original text of Treatise on Febrile Diseases,and so the knowledge graph of Treatise on Febrile Diseases was constructed.On this basis,the knowledge structure query and the knowledge relevance query were realized in a visual manner.Results The knowledge graph of“disease-syndrome-symptom-method-formula”in the Treatise on Febrile Diseases was constructed,containing 6469 entities and 10911 relational triples,on which the query of entities and their relationships can be carried out and the query result can be visualized.Conclusion The knowledge graph of Treatise on Febrile Diseases systematically realizes its digitization of the knowledge system,and improves the completeness and accuracy of the knowledge representation,and the connection between“disease-syndrome-symptom-treatment-formula”,which is conducive to the sharing and reuse of knowledge can be obtained in a clear and efficient way.展开更多
With the development of information fusion,knowledge graph completion tasks have received a lot of attention.some studies investigate the broader underlying problems of linguistics,while embedding learning has a narro...With the development of information fusion,knowledge graph completion tasks have received a lot of attention.some studies investigate the broader underlying problems of linguistics,while embedding learning has a narrow focus.This poses significant challenges due to the heterogeneity of coarse-graining patterns.Then,to settle the whole matter,a framework for completion is designed,named Triple Encoder-Scoring Module(TEsm).The model employs an alternating two-branch structure that fuses local features into the interaction pattern of the triplet itself by perfectly combining distance and structure models.Moreover,it is mapped to a uniform shared space.Upon completion,an ensemble inference method is proposed to query multiple predictions from different graphs using a weight classifier.Experiments show that the experimental dataset used for the completion task is DBpedia,which contains five different linguistic subsets..Our extensive experimental results demonstrate that TEsm can efficiently and smoothly solve the optimal completion task,validating the performance of the proposed model.展开更多
Generally,knowledge extraction technology is used to obtain nodes and relationships of unstructured data and structured data,and then the data fuse with the original knowledge graph to achieve the extension of the kno...Generally,knowledge extraction technology is used to obtain nodes and relationships of unstructured data and structured data,and then the data fuse with the original knowledge graph to achieve the extension of the knowledge graph.Because the concepts and knowledge structures expressed on the Internet have problems of multi-source heterogeneity and low accuracy,it is usually difficult to achieve a good effect simply by using knowledge extraction technology.Considering that domain knowledge is highly dependent on the relevant expert knowledge,the method of this paper try to expand the domain knowledge through the crowdsourcing method.The method split the domain knowledge system into subgraph of knowledge according to corresponding concept,form subtasks with moderate granularity,and use the crowdsourcing technology for the acquisition and integration of knowledge subgraph to improve the knowledge system.展开更多
Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without an...Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without any explicit emotional keywords,which appears more frequently in application scenarios.The lack of explicit emotion information makes it extremely hard to extract emotion causes only with the local context.Moreover,an entire event is usually across multiple clauses,while existing work merely extracts cause events at clause level and cannot effectively capture complete cause event information.To address these issues,the events are first redefined at the tuple level and a span-based tuple-level algorithm is proposed to extract events from different clauses.Based on it,a corpus for implicit emotion cause extraction that tries to extract causes of implicit emotions is constructed.The authors propose a knowledge-enriched jointlearning model of implicit emotion recognition and implicit emotion cause extraction tasks(KJ-IECE),which leverages commonsense knowledge from ConceptNet and NRC_VAD to better capture connections between emotion and corresponding cause events.Experiments on both implicit and explicit emotion cause extraction datasets demonstrate the effectiveness of the proposed model.展开更多
Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to u...Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.展开更多
In order to provide high-quality learning services,various online systems should possess the fundamental ability to predict the knowledge points and units to which a given test question belongs.The existing methods ty...In order to provide high-quality learning services,various online systems should possess the fundamental ability to predict the knowledge points and units to which a given test question belongs.The existing methods typically rely on manual labeling or traditional machine learning methods.Manual labeling methods have high time costs and high demands for human resources,while traditional machine learning methods only focus on the shallow features of the topics,ignoring the deep semantic relationship between the topic text and the knowledge point units.These two methods have relatively large limitations in practical applications.This paper proposes a convolutional neural network method combined with multiple features to predict the knowledge point units.We construct a binary classification dataset in the three grades of primary mathematics.Considering the supplementary role of Pinyin to Chinese text and the unique identification characteristics of Unicode encoding for characters,we obtain the Pinyin representation and the Unicode encoding representation of the original Chinese text.Then,we put the three representation methods into the convolutional neural network for training,obtain three kinds of semantic vectors,fuse them,and finally obtain higher-dimensional fusion features.Our experimental results demonstrate that our approach achieves good performance in predicting the knowledge units of test questions.展开更多
To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities...To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model.展开更多
基金supported by the Global Research and Innovation Platform Fund for Scientific Big Data Transmission(Grant No.241711KYSB20180002)National Key Research and Development Project of China(Grant No.2019YFB1405801).
文摘In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Existing solutions have primarily focused on intrinsic features within consumer reviews and achieved significant progress through deep feature extraction models. However, they still face these two key limitations: (1) neglecting the influence of fundamental tobacco information on analyzing the sentiment inclination of consumer reviews, resulting in a lack of consistent sentiment assessment criteria across thousands of tobacco brands;(2) overlooking the syntactic dependencies between Chinese word phrases and the underlying impact of sentiment scores between word phrases on sentiment inclination determination. To tackle these challenges, we propose the External Knowledge-enhanced Cross-Attention Fusion model, CITSA. Specifically, in the Cross Infusion Layer, we fuse consumer comment information and tobacco fundamental information through interactive attention mechanisms. In the Textual Attention Enhancement Layer, we introduce an emotion-oriented syntactic dependency graph and incorporate sentiment-syntactic relationships into consumer comments through a graph convolution network module. Subsequently, the Textual Attention Layer is introduced to combine these two feature representations. Additionally, we compile a Chinese-oriented tobacco sentiment analysis dataset, comprising 55,096 consumer reviews and 2074 tobacco fundamental information entries. Experimental results on our self-constructed datasets consistently demonstrate that our proposed model outperforms state-of-the-art methods in terms of accuracy, precision, recall, and F1-score.
基金National Natural Science Foundation of China (50575031, 50275019)National High-tech Research and Development Program (2006AA04Z109)
文摘As a complex engineering problem,the satellite module layout design (SMLD) is difficult to resolve by using conventional computation-based approaches. The challenges stem from three aspects:computational complexity,engineering complexity,and engineering practicability. Engineers often finish successful satellite designs by way of their plenty of experience and wisdom,lessons learnt from the past practices,as well as the assistance of the advanced computational techniques. Enlightened by the ripe patterns,th...
文摘To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV).
基金Supported by Specialized Funds of CASIndividual Service System of Agricultural Information in Tibet(2012-J-08)+1 种基金Science and Technology Funds of CASMultimedia Information Service in Rural Area based on 3G Information Terminal(201219)~~
文摘Currently, knowledge-based sharing and service system has been a hot issue and knowledge fusion, especially for implicit knowledge discovery, becomes the core of knowledge processing and optimization in the system. In the research, a knowledge fusion framework based on agricultural ontology and fusion rules was pro- posed, including knowledge extraction, clearing and annotation modules based on a- gricultural ontology, fusion rule construction, choosing and evaluation modules based on agricultural ontology and knowledge fusion module for users' demands. Finally, the significance of the framework to system of agricultural knowledge services was proved with the help of a case.
基金supported by the National Key R&D Program of China(2018AAA0101502)the Science and Technology Project of SGCC(State Grid Corporation of China):Fundamental Theory of Human-in-the-Loop Hybrid-Augmented Intelligence for Power Grid Dispatch and Control。
文摘Knowledge graphs(KGs)have been widely accepted as powerful tools for modeling the complex relationships between concepts and developing knowledge-based services.In recent years,researchers in the field of power systems have explored KGs to develop intelligent dispatching systems for increasingly large power grids.With multiple power grid dispatching knowledge graphs(PDKGs)constructed by different agencies,the knowledge fusion of different PDKGs is useful for providing more accurate decision supports.To achieve this,entity alignment that aims at connecting different KGs by identifying equivalent entities is a critical step.Existing entity alignment methods cannot integrate useful structural,attribute,and relational information while calculating entities’similarities and are prone to making many-to-one alignments,thus can hardly achieve the best performance.To address these issues,this paper proposes a collective entity alignment model that integrates three kinds of available information and makes collective counterpart assignments.This model proposes a novel knowledge graph attention network(KGAT)to learn the embeddings of entities and relations explicitly and calculates entities’similarities by adaptively incorporating the structural,attribute,and relational similarities.Then,we formulate the counterpart assignment task as an integer programming(IP)problem to obtain one-to-one alignments.We not only conduct experiments on a pair of PDKGs but also evaluate o ur model on three commonly used cross-lingual KGs.Experimental comparisons indicate that our model outperforms other methods and provides an effective tool for the knowledge fusion of PDKGs.
基金funded by State Grid Shandong Electric Power Company Science and Technology Project Funding under Grant no.520613200001,520613180002,62061318C002Weihai Scientific Research and Innovation Fund(2020).
文摘The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods.
文摘With the rapid development and popularization of web services, the available information types and structure are becoming more and more complex and challenging. Actually web services involve the need for dynamic integration and transparent knowledge integration, in light of the urgent information changing track. Under this situation, the traditional search engine and information integration cannot finish this challenge, thereby bringing the opportunity for knowledge fusion and synchronization. This paper proposes a multi-matching strategy ontology mapping method for web information, i.e., ubiquitous ontology mapping method (U-Mapping), which can be viewed as a base collection of information on multiple ontologies made to appear anytime and everywhere. This approach is usually built independently by different information providers, avoiding the grammatical and semantic conflict. Finally, the ontology case information can be utilized under the consolidation of the U-Mapping, concerning language technology and machine learning methods.
基金National Natural Science Foundation of China,Grant/Award Numbers:61671064,61732005National Key Research and Development Program of China,Grant/Award Number:2018YFC0831700。
文摘Using sarcasm on social media platforms to express negative opinions towards a person or object has become increasingly common.However,detecting sarcasm in various forms of communication can be difficult due to conflicting sentiments.In this paper,we introduce a contrasting sentiment-based model for multimodal sarcasm detection(CS4MSD),which identifies inconsistent emotions by leveraging the CLIP knowledge module to produce sentiment features in both text and image.Then,five external sentiments are introduced to prompt the model learning sentimental preferences among modalities.Furthermore,we highlight the importance of verbal descriptions embedded in illustrations and incorporate additional knowledge-sharing modules to fuse such imagelike features.Experimental results demonstrate that our model achieves state-of-the-art performance on the public multimodal sarcasm dataset.
基金funded by Research Project,grant number BHQ090003000X03。
文摘Multi-modal knowledge graph completion(MMKGC)aims to complete missing entities or relations in multi-modal knowledge graphs,thereby discovering more previously unknown triples.Due to the continuous growth of data and knowledge and the limitations of data sources,the visual knowledge within the knowledge graphs is generally of low quality,and some entities suffer from the issue of missing visual modality.Nevertheless,previous studies of MMKGC have primarily focused on how to facilitate modality interaction and fusion while neglecting the problems of low modality quality and modality missing.In this case,mainstream MMKGC models only use pre-trained visual encoders to extract features and transfer the semantic information to the joint embeddings through modal fusion,which inevitably suffers from problems such as error propagation and increased uncertainty.To address these problems,we propose a Multi-modal knowledge graph Completion model based on Super-resolution and Detailed Description Generation(MMCSD).Specifically,we leverage a pre-trained residual network to enhance the resolution and improve the quality of the visual modality.Moreover,we design multi-level visual semantic extraction and entity description generation,thereby further extracting entity semantics from structural triples and visual images.Meanwhile,we train a variational multi-modal auto-encoder and utilize a pre-trained multi-modal language model to complement the missing visual features.We conducted experiments on FB15K-237 and DB13K,and the results showed that MMCSD can effectively perform MMKGC and achieve state-of-the-art performance.
基金supported by the Henan Provincial Science and Technology Research Project:232102211017,232102211006,232102210044,242102211020 and 242102211007the ZhengzhouUniversity of Light Industry Science and Technology Innovation Team Program Project:23XNKJTD0205.
文摘Within the realm of multimodal neural machine translation(MNMT),addressing the challenge of seamlessly integrating textual data with corresponding image data to enhance translation accuracy has become a pressing issue.We saw that discrepancies between textual content and associated images can lead to visual noise,potentially diverting the model’s focus away from the textual data and so affecting the translation’s comprehensive effectiveness.To solve this visual noise problem,we propose an innovative KDNR-MNMT model.Themodel combines the knowledge distillation technique with an anti-noise interaction mechanism,which makes full use of the synthesized graphic knowledge and local image interaction masks,aiming to extract more effective visual features.Meanwhile,the KDNR-MNMT model adopts a multimodal adaptive gating fusion strategy to enhance the constructive interaction of different modal information.By integrating a perceptual attention mechanism,which uses cross-modal interaction cues within the Transformer framework,our approach notably enhances the quality of machine translation outputs.To confirmthemodel’s performance,we carried out extensive testing and assessment on the extensively utilized Multi30K dataset.The outcomes of our experiments prove substantial enhancements in our model’s BLEU and METEOR scores,with respective increases of 0.78 and 0.99 points over prevailing methods.This accomplishment affirms the potency of our strategy for mitigating visual interference and heralds groundbreaking advancements within themultimodal NMT domain,further propelling the evolution of this scholarly pursuit.
基金supported by the National Natural Science Foundation of China(Grant No.81973695)Discipline with Strong Characteristics of Liaocheng University-Intelligent Science and Technology(Grant No.319462208).
文摘Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.
基金supported by National Social Science Foundation project (17BXW065)Science and Technology Research project of Henan (14430051007)+1 种基金Reform Research Project of Higher Education of Henan (2014SJGLX007)Science and Technology Research project of Zhengzhou(141PPTGG368)
文摘Learning from the Internet is becoming more and more convenient and attracting more and more people. How to obtain knowledge from massive data and construct high quality knowledge graph has become a research hot topic. This paper proposes a new method of knowledge graph construction based on crowd-sourcing. Firstly, learners build the subgraphs to acquire knowledge through the crowd-sourcing task; secondly, we put forward the fusion strategy of knowledge subgraph, in which knowledge graph is converted into the adjacency matrix, and the weight of the knowledge relation is calculated by matrix operations, thus knowledge graph is constructed. Finally, experiments conducted on an open platform show that the accuracy and integrity of proposed method of constructing knowledge graph are higher and our new method exists potential value for online learning and self-regulated learning.
基金The Open Fund of Hunan University of Traditional Chinese Medicine for the First-Class Discipline of Traditional Chinese Medicine(2018ZYX66)the Science Research Project of Hunan Provincial Department of Education(20C1391)the Natural Science Foundation of Hunan Province(2020JJ4461)。
文摘Objective To establish the knowledge graph of“disease-syndrome-symptom-method-formula”in Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)for reducing the fuzziness and uncertainty of data,and for laying a foundation for later knowledge reasoning and its application.Methods Under the guidance of experts in the classical formula of traditional Chinese medicine(TCM),the method of“top-down as the main,bottom-up as the auxiliary”was adopted to carry out knowledge extraction,knowledge fusion,and knowledge storage from the five aspects of the disease,syndrome,symptom,method,and formula for the original text of Treatise on Febrile Diseases,and so the knowledge graph of Treatise on Febrile Diseases was constructed.On this basis,the knowledge structure query and the knowledge relevance query were realized in a visual manner.Results The knowledge graph of“disease-syndrome-symptom-method-formula”in the Treatise on Febrile Diseases was constructed,containing 6469 entities and 10911 relational triples,on which the query of entities and their relationships can be carried out and the query result can be visualized.Conclusion The knowledge graph of Treatise on Febrile Diseases systematically realizes its digitization of the knowledge system,and improves the completeness and accuracy of the knowledge representation,and the connection between“disease-syndrome-symptom-treatment-formula”,which is conducive to the sharing and reuse of knowledge can be obtained in a clear and efficient way.
基金Supported by Science and Technology Innovation Action Plan"of Shanghai Science and Technology Commission for Social Development Project(21DZ1204900)。
文摘With the development of information fusion,knowledge graph completion tasks have received a lot of attention.some studies investigate the broader underlying problems of linguistics,while embedding learning has a narrow focus.This poses significant challenges due to the heterogeneity of coarse-graining patterns.Then,to settle the whole matter,a framework for completion is designed,named Triple Encoder-Scoring Module(TEsm).The model employs an alternating two-branch structure that fuses local features into the interaction pattern of the triplet itself by perfectly combining distance and structure models.Moreover,it is mapped to a uniform shared space.Upon completion,an ensemble inference method is proposed to query multiple predictions from different graphs using a weight classifier.Experiments show that the experimental dataset used for the completion task is DBpedia,which contains five different linguistic subsets..Our extensive experimental results demonstrate that TEsm can efficiently and smoothly solve the optimal completion task,validating the performance of the proposed model.
文摘Generally,knowledge extraction technology is used to obtain nodes and relationships of unstructured data and structured data,and then the data fuse with the original knowledge graph to achieve the extension of the knowledge graph.Because the concepts and knowledge structures expressed on the Internet have problems of multi-source heterogeneity and low accuracy,it is usually difficult to achieve a good effect simply by using knowledge extraction technology.Considering that domain knowledge is highly dependent on the relevant expert knowledge,the method of this paper try to expand the domain knowledge through the crowdsourcing method.The method split the domain knowledge system into subgraph of knowledge according to corresponding concept,form subtasks with moderate granularity,and use the crowdsourcing technology for the acquisition and integration of knowledge subgraph to improve the knowledge system.
基金National Natural Science Foundation of China,Grant/Award Numbers:61671064,61732005National Key Research&Development Program,Grant/Award Number:2018YFC0831700。
文摘Emotion cause extraction(ECE)task that aims at extracting potential trigger events of certain emotions has attracted extensive attention recently.However,current work neglects the implicit emotion expressed without any explicit emotional keywords,which appears more frequently in application scenarios.The lack of explicit emotion information makes it extremely hard to extract emotion causes only with the local context.Moreover,an entire event is usually across multiple clauses,while existing work merely extracts cause events at clause level and cannot effectively capture complete cause event information.To address these issues,the events are first redefined at the tuple level and a span-based tuple-level algorithm is proposed to extract events from different clauses.Based on it,a corpus for implicit emotion cause extraction that tries to extract causes of implicit emotions is constructed.The authors propose a knowledge-enriched jointlearning model of implicit emotion recognition and implicit emotion cause extraction tasks(KJ-IECE),which leverages commonsense knowledge from ConceptNet and NRC_VAD to better capture connections between emotion and corresponding cause events.Experiments on both implicit and explicit emotion cause extraction datasets demonstrate the effectiveness of the proposed model.
文摘Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.
基金supported by the National Natural Science Foundation of China(Nos.62377009,62102136,61902114,61977021)the Key R&D projects in Hubei Province(Nos.2021BAA188,2021BAA184,2022BAA044)the Ministry of Education’s Youth Fund for Humanities and Social Sciences Project(No.19YJC880036)。
文摘In order to provide high-quality learning services,various online systems should possess the fundamental ability to predict the knowledge points and units to which a given test question belongs.The existing methods typically rely on manual labeling or traditional machine learning methods.Manual labeling methods have high time costs and high demands for human resources,while traditional machine learning methods only focus on the shallow features of the topics,ignoring the deep semantic relationship between the topic text and the knowledge point units.These two methods have relatively large limitations in practical applications.This paper proposes a convolutional neural network method combined with multiple features to predict the knowledge point units.We construct a binary classification dataset in the three grades of primary mathematics.Considering the supplementary role of Pinyin to Chinese text and the unique identification characteristics of Unicode encoding for characters,we obtain the Pinyin representation and the Unicode encoding representation of the original Chinese text.Then,we put the three representation methods into the convolutional neural network for training,obtain three kinds of semantic vectors,fuse them,and finally obtain higher-dimensional fusion features.Our experimental results demonstrate that our approach achieves good performance in predicting the knowledge units of test questions.
基金partially supported by the National Natural Science Foundation of China under Grants 62471493 and 62402257(for conceptualization and investigation)partially supported by the Natural Science Foundation of Shandong Province,China under Grants ZR2023LZH017,ZR2024MF066,and 2023QF025(for formal analysis and validation)+1 种基金partially supported by the Open Foundation of Key Laboratory of Computing Power Network and Information Security,Ministry of Education,Qilu University of Technology(Shandong Academy of Sciences)under Grant 2023ZD010(for methodology and model design)partially supported by the Russian Science Foundation(RSF)Project under Grant 22-71-10095-P(for validation and results verification).
文摘To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model.