期刊文献+
共找到21,329篇文章
< 1 2 250 >
每页显示 20 50 100
An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities
1
作者 Vi Hoai Nam Chu Thi Minh Hue Dang Van Anh 《Computers, Materials & Continua》 2026年第1期2030-2044,共15页
Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic top... Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments. 展开更多
关键词 uav FANET smart cities reinforcement learning Q-LEARNING
在线阅读 下载PDF
Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks
2
作者 Zheyuan Jia Fenglin Jin +1 位作者 Jun Xie Yuan He 《Computers, Materials & Continua》 2026年第1期447-461,共15页
This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g... This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs. 展开更多
关键词 Space-air-ground integrated networks uav traffic offloading reinforcement learning
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
3
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 uav imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
分层池化:带宏观引导收益的UAV集群区域覆盖搜索方法
4
作者 王宁 梁晓龙 +2 位作者 李哲 孙贇 郑傲宇 《控制与决策》 北大核心 2025年第12期3763-3776,共14页
针对UAV集群在未知环境中的区域覆盖搜索问题,提出一种基于分层池化地图模型的UAV集群区域覆盖搜索算法.首先,构建环境地图对待搜索任务区域进行表征;其次,将图像处理领域的池化技术与区域栅格地图结合,构建分辨率不同的多层次池化地图... 针对UAV集群在未知环境中的区域覆盖搜索问题,提出一种基于分层池化地图模型的UAV集群区域覆盖搜索算法.首先,构建环境地图对待搜索任务区域进行表征;其次,将图像处理领域的池化技术与区域栅格地图结合,构建分辨率不同的多层次池化地图模型;然后,设计包含覆盖率、边界约束和宏观收益等在内的决策目标函数,提出适用于强对抗环境的UAV集群分布式信息交互机制;最后,采用数值仿真对所提方法的有效性进行验证.仿真结果表明,所提算法能够在不同信道质量的条件下有效引导UAV集群对未知任务区域展开覆盖搜索,在给定覆盖搜索场景中,算法决策时间和覆盖率均优于现有其他方法. 展开更多
关键词 uav集群 区域搜索 航迹规划 分层池化 信息交互
原文传递
考虑空中碰撞风险的UAV运行风险评估
5
作者 李楠 闫博芸 +3 位作者 孙廪实 韩鹏 郑志刚 焦庆宇 《中国安全科学学报》 北大核心 2025年第10期91-97,共7页
为提高无人机(UAV)空中交通管理效率、保障飞行安全以及推动UAV在复杂空域环境中的安全应用,聚焦于UAV运行风险评估。首先,针对非结构化空域环境下具有自主感知与决策能力的UAV,基于机载通信导航监视能力、机动特性及系统响应时间等关... 为提高无人机(UAV)空中交通管理效率、保障飞行安全以及推动UAV在复杂空域环境中的安全应用,聚焦于UAV运行风险评估。首先,针对非结构化空域环境下具有自主感知与决策能力的UAV,基于机载通信导航监视能力、机动特性及系统响应时间等关键参数,构建冲突概率模型和考虑避让机动策略的碰撞概率模型,量化评估空域碰撞风险;然后,鉴于UAV相撞事故不会直接导致人员伤亡,构建综合考虑UAV空中相撞事件与系统失效引发坠机的地面风险评估模型;最后,以1×10^(-6)死亡人数/飞行小时作为安全目标水平,确定空中飞行所需保持的的安全间隔。结果表明:同时考虑冲突概率和冲突升级为碰撞的概率,可解决自由飞行阶段风险被低估的问题;不同运行场景可容许的碰撞风险最大值有较大差异。 展开更多
关键词 无人机(uav) 运行风险 碰撞风险 地面风险 安全间隔
原文传递
Multi-UAV path planning for multiple emergency payloads delivery in natural disaster scenarios 被引量:1
6
作者 Zarina Kutpanova Mustafa Kadhim +1 位作者 Xu Zheng Nurkhat Zhakiyev 《Journal of Electronic Science and Technology》 2025年第2期1-18,共18页
Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as... Unmanned aerial vehicles(UAVs)are widely used in situations with uncertain and risky areas lacking network coverage.In natural disasters,timely delivery of first aid supplies is crucial.Current UAVs face risks such as crashing into birds or unexpected structures.Airdrop systems with parachutes risk dispersing payloads away from target locations.The objective here is to use multiple UAVs to distribute payloads cooperatively to assigned locations.The civil defense department must balance coverage,accurate landing,and flight safety while considering battery power and capability.Deep Q-network(DQN)models are commonly used in multi-UAV path planning to effectively represent the surroundings and action spaces.Earlier strategies focused on advanced DQNs for UAV path planning in different configurations,but rarely addressed non-cooperative scenarios and disaster environments.This paper introduces a new DQN framework to tackle challenges in disaster environments.It considers unforeseen structures and birds that could cause UAV crashes and assumes urgent landing zones and winch-based airdrop systems for precise delivery and return.A new DQN model is developed,which incorporates the battery life,safe flying distance between UAVs,and remaining delivery points to encode surrounding hazards into the state space and Q-networks.Additionally,a unique reward system is created to improve UAV action sequences for better delivery coverage and safe landings.The experimental results demonstrate that multi-UAV first aid delivery in disaster environments can achieve advanced performance. 展开更多
关键词 Deep Q-network First aid delivery Multi-uav path planning Reinforcement learning Unmanned aerial vehicle(uav)
在线阅读 下载PDF
A novel trajectory prediction method for UAV air combat based on QCNet-3D
7
作者 Jiahui Zhang Zhijun Meng +2 位作者 Siyuan Liu Jiachi Ji Jiazheng He 《Defence Technology(防务技术)》 2025年第12期151-165,共15页
Unmanned Aerial Vehicle(UAV) trajectory prediction is an important research topic in the field of UAV air combat. In order to address the problem of single-feature extraction scale and scene adaptability in UAV air co... Unmanned Aerial Vehicle(UAV) trajectory prediction is an important research topic in the field of UAV air combat. In order to address the problem of single-feature extraction scale and scene adaptability in UAV air combat trajectory prediction algorithms, this paper proposes an innovative UAV trajectory prediction method QCNet-3D, which can predict the future trajectory of the target UAV and provide the corresponding possibility. Firstly, the UAV trajectory prediction is modeled based on the mixture of Laplace distributions, and the UAV's kinetic equations are employed to construct the UAV trajectory prediction dataset(UAVTP dataset), ensuring high reliability. Secondly, two improvement methods are proposed on the basis of QCNet: multi-scale Fourier mapping and three-dimensional adaptation. The ablation study shows that the improvement methods have reduced the minimum average displacement error, minimum final displacement error, and missing rate by 55.4%, 54.3%, and 68.1% respectively. Finally, QCNet-3D is proposed based on the two improvement methods, and the simulation experiment confirm the proposed algorithm's capability to predict both simple and complex UAV maneuvers, offering the possibility for each predicted trajectory under various prediction future steps and output modes. 展开更多
关键词 Unmanned aerial vehicle(uav) uav air combat Trajectory prediction Deep learning Fourier mapping
在线阅读 下载PDF
Behavior-based cooperative control method for fixed-wing UAV swarm through a virtual tube considering safety constraints
8
作者 Siyi YUE Duo ZHENG +2 位作者 Mingjun WEI Zhichen CHU Defu LIN 《Chinese Journal of Aeronautics》 2025年第11期365-383,共19页
Unmanned Aerial Vehicle(UAV)swarm collaboration enhances mission effectiveness.However,fixed-wing UAV swarm flights face collaborative safety control problems within a limited airspace in complex environments.Aimed at... Unmanned Aerial Vehicle(UAV)swarm collaboration enhances mission effectiveness.However,fixed-wing UAV swarm flights face collaborative safety control problems within a limited airspace in complex environments.Aimed at the cooperative control problem of fixed-wing UAV swarm flights under the airspace constraints of a virtual tube in a complex environment,this paper proposes a behavior-based distributed control method for fixed-wing UAV swarm considering flight safety constraints.Considering the fixed-wing UAV swarm flight problem in complex environment,a virtual tube model based on generator curve is established.The tube keeping,centerline tracking and flight safety behavioral control strategies of the UAV swarm are designed to ensure that the UAV swarm flies along the inside of the virtual tube safety and does not go beyond its boundary.On this basis,a maneuvering decision-making method based on behavioral fusion is proposed to ensure the safe flight of UAV swarm in the restricted airspace.This cooperative control method eliminates the need for respective pre-planned trajectories,reduces communication requirements,and achieves a high level of intelligence.Simulation results show that the proposed behaviorbased UAV swarm cooperative control method is able to make the fixed-wing UAV swarm,which is faster and unable to hover,fly along the virtual tube airspace under various virtual tube shapes and different swarm sizes,and the spacing between the UAVs is larger than the minimum safe distance during the flight. 展开更多
关键词 Unmanned aerial vehicles(uav) uav swarm Distributed cooperative control Swarm flight safety Behavior-based method Virtual tube airspace
原文传递
Aerial-ground collaborative delivery route planning with UAV energy function and multi-delivery
9
作者 GUO Jingfeng SONG Rui HE Shiwei 《Journal of Systems Engineering and Electronics》 2025年第2期446-461,共16页
With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the ve... With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the vehicle and its onboard UAVs are utilized efficiently. Vehicles not only provide delivery services to customers but also function as mobile ware-houses and launch/recovery platforms for UAVs. This paper addresses the vehicle routing problem with UAVs considering time window and UAV multi-delivery (VRPU-TW&MD). A mixed integer linear programming (MILP) model is developed to mini-mize delivery costs while incorporating constraints related to UAV energy consumption. Subsequently, a micro-evolution aug-mented large neighborhood search (MEALNS) algorithm incor-porating adaptive large neighborhood search (ALNS) and micro-evolution mechanism is proposed. Numerical experiments demonstrate the effectiveness of both the model and algorithm in solving the VRPU-TW&MD. The impact of key parameters on delivery performance is explored by sensitivity analysis. 展开更多
关键词 aerial-ground collaborative delivery(AGCD) route planning unmanned aerial vehicle(uav)energy function uav multi-delivery micro-evolution adaptive large neighborhood search.
在线阅读 下载PDF
High dynamic mobile topology-based clustering algorithm for UAV swarm networks
10
作者 CHEN Siji JIANG Bo +2 位作者 XU Hong PANG Tao GAO Mingke 《Journal of Systems Engineering and Electronics》 2025年第4期1103-1112,共10页
Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication lin... Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks. 展开更多
关键词 unmanned aerial vehichle(uav)swarm network uav clustering MOBILITY virtual tube.
在线阅读 下载PDF
Intelligent Energy-Efficient Resource Allocation for Multi-UAV-Assisted Mobile Edge Computing Networks
11
作者 Hu Han Shen Le +2 位作者 Zhou Fuhui Wang Qun Zhu Hongbo 《China Communications》 2025年第4期339-355,共17页
The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive require... The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive requirements,especially in some infrastructure-limited areas or some emergency scenarios.However,the multi-UAVassisted MEC network remains largely unexplored.In this paper,the dynamic trajectory optimization and computation offloading are studied in a multi-UAVassisted MEC system where multiple UAVs fly over a target area with different trajectories to serve ground users.By considering the dynamic channel condition and random task arrival and jointly optimizing UAVs'trajectories,user association,and subchannel assignment,the average long-term sum of the user energy consumption minimization problem is formulated.To address the problem involving both discrete and continuous variables,a hybrid decision deep reinforcement learning(DRL)-based intelligent energyefficient resource allocation and trajectory optimization algorithm is proposed,named HDRT algorithm,where deep Q network(DQN)and deep deterministic policy gradient(DDPG)are invoked to process discrete and continuous variables,respectively.Simulation results show that the proposed HDRT algorithm converges fast and outperforms other benchmarks in the aspect of user energy consumption and latency. 展开更多
关键词 dynamic trajectory optimization intelligent resource allocation unmanned aerial vehicle uav assisted uav assisted mec energy efficiency smart applications mobile edge computing mec deep reinforcement learning
在线阅读 下载PDF
Distributed Byzantine-Resilient Learning of Multi-UAV Systems via Filter-Based Centerpoint Aggregation Rules
12
作者 Yukang Cui Linzhen Cheng +1 位作者 Michael Basin Zongze Wu 《IEEE/CAA Journal of Automatica Sinica》 2025年第5期1056-1058,共3页
Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication w... Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication with neighbors.In this work,we implement the stochastic gradient descent algorithm(SGD)distributedly to optimize tracking errors based on local state and aggregation of the neighbors'estimation.However,Byzantine agents can mislead neighbors,causing deviations from optimal tracking.We prove that the swarm achieves resilient convergence if aggregated results lie within the normal neighbors'convex hull,which can be guaranteed by the introduced centerpoint-based aggregation rule.In the given simulated scenarios,distributed learning using average,geometric median(GM),and coordinate-wise median(CM)based aggregation rules fail to track the target.Compared to solely using the centerpoint aggregation method,our approach,which combines a pre-filter with the centroid aggregation rule,significantly enhances resilience against Byzantine attacks,achieving faster convergence and smaller tracking errors. 展开更多
关键词 global optimization goals multi uav systems filter based centerpoint aggregation distributed learning optimal target trackingby stochastic gradient descent algorithm sgd distributedly optimize tracking distributed machine learningmulti uav
在线阅读 下载PDF
Joint optimization via deep reinforcement learning for secure-driven NOMA-UAV networks
13
作者 Danhao DENG Chaowei WANG +1 位作者 Lexi XU Fan JIANG 《Chinese Journal of Aeronautics》 2025年第10期134-143,共10页
Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challe... Non-Orthogonal Multiple Access(NOMA)assisted Unmanned Aerial Vehicle(UAV)communication is becoming a promising technique for future B5G/6G networks.However,the security of the NOMA-UAV networks remains critical challenges due to the shared wireless spectrum and Line-of-Sight(LoS)channel.This paper formulates a joint UAV trajectory design and power allocation problem with the aid of the ground jammer to maximize the sum secrecy rate.First,the joint optimization problem is modeled as a Markov Decision Process(MDP).Then,the Deep Reinforcement Learning(DRL)method is utilized to search the optimal policy from the continuous action space.In order to accelerate the sample accumulation,the Asynchronous Advantage Actor-Critic(A3C)scheme with multiple workers is proposed,which reformulates the action and reward to acquire complete update duration.Simulation results demonstrate that the A3C-based scheme outperforms the baseline schemes in term of the secrecy rate and stability. 展开更多
关键词 Asynchronous advantage actor-critic(A3C) NOMA-uav networks Power allocation Secure transmission uav trajectory design
原文传递
基于改进SIFT和多约束的UAV影像匹配方法 被引量:1
14
作者 何明磊 王中元 +2 位作者 戚铭心 杨振宇 袁芳 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期212-219,共8页
针对尺度不变特征转换(scale invariant feature transform,SIFT)算法在无人机(unmanned aerial vehicle,UAV)影像的匹配过程中存在特征点稳定性差和误匹配多的问题,文章提出一种基于改进SIFT和多约束的UAV影像匹配方法。首先,在对影像... 针对尺度不变特征转换(scale invariant feature transform,SIFT)算法在无人机(unmanned aerial vehicle,UAV)影像的匹配过程中存在特征点稳定性差和误匹配多的问题,文章提出一种基于改进SIFT和多约束的UAV影像匹配方法。首先,在对影像降采样后,综合采用SIFT算法和Scharr-ORB(oriented brief)算法共同进行特征点检测和描述;然后,使用最近邻距离比值法(nearest neighbor distance ratio,NNDR)、双向约束匹配和余弦相似度约束匹配的多约束方法进行特征点的粗匹配;最后,使用最小中值(least median of squares,LMedS)算法计算基础矩阵和随机抽样一致性(random sample consensus,RANSAC)算法计算单应矩阵的多约束方法进行特征点的精匹配,进一步提高匹配精度。结果表明,该方法在获得更多特征点和匹配对数的同时,能够剔除较多的误匹配,使其具有较高的匹配正确率和匹配精度。 展开更多
关键词 无人机(uav)影像 影像匹配 边缘检测 多约束方法 基础矩阵
在线阅读 下载PDF
无人机视角多源目标检测数据集UAV-RGBT及算法基准
15
作者 汪进中 戴顺 +5 位作者 张秀伟 田雪涛 邢颖慧 汪芳 尹翰林 张艳宁 《电子学报》 北大核心 2025年第3期686-704,共19页
基于无人机(Unmanned Aerial Vehicle,UAV)平台的可见光(Red Green Blue,RGB)和热红外(Thermal infrared,T)多源目标检测,可实现全天时、全天候的目标侦察,在军用和民用领域有着重要的应用价值.受限于数据拍摄获取和处理的复杂性,当前... 基于无人机(Unmanned Aerial Vehicle,UAV)平台的可见光(Red Green Blue,RGB)和热红外(Thermal infrared,T)多源目标检测,可实现全天时、全天候的目标侦察,在军用和民用领域有着重要的应用价值.受限于数据拍摄获取和处理的复杂性,当前少有公开的UAV视角RGB-T多源目标检测数据集,一定程度上限制了UAV视角RGB-T多源目标检测算法的研究和应用.与此同时,UAV应用场景复杂多变,其飞行高度、速度、焦距和背景等快速变化,所拍摄目标在图像上呈现出尺度多样、稠密/稀疏分布不均衡、类别不平衡等特点,具有一定的挑战性.此外,在诸如目标侦察、交通监控等高时效性应用场景中,算法需在保证高精度的同时实现实时目标检测,因此,算法的设计必须充分考虑精度与速度之间的平衡.针对上述问题,本文构建了一个跨季节、跨昼夜、多类别、多尺度的大规模UAV视角RGB-T多源图像数据集UAV-RGBT,包含20个类别、5117对RGB-T图像和超11万个标注,有助于推进UAV视角多源目标检测算法的研究.同时,基于YOLOv8n模型,本文提出了一种UAV视角多源目标检测(UAV-based Dualbranch Multispectral object Detection,UAV-DMDet)模型,其通过多源交叉注意力融合和多源特征分解组合方法有效促进了多源特征的深度融合,较好地实现了模型参数量、检测速度和检测精度的均衡.实验结果表明:在UAVRGBT数据集上,UAV-DMDet模型较单源YOLOv8n模型,在RGB和T模态方面,mAP@0.5分别提高了3.61%、11.03%,mAP@0.5:0.95分别提高了0.84%、6.76%;在DroneVehicle数据集上,mAP@0.5和mAP@0.5:0.95较主流算法I2MDet提高了2.66%和12.36%;在检测速度方面,以640×640分辨率图像为例,UAV-DMDet模型在单张GeForce RTX 3090显卡上FP32精度推理速度可达31帧/s,在华为昇腾710处理器上FP16精度推理速度可达58帧/s,可有效应用于UAV视角RGB-T多源实时目标检测任务. 展开更多
关键词 无人机(uav) 可见光-热红外(RGB-T)多源目标检测 数据集 多源特征融合 YOLOv8
在线阅读 下载PDF
基于UAV影像点云密度的植被稀疏区DEM精度分析 被引量:1
16
作者 戴志林 郭辉 包勤跃 《北京测绘》 2025年第3期316-321,共6页
本文以无人机(UAV)倾斜摄影影像点云为数据源,通过对构建植被稀疏区数字高程模型(DEM)的最佳点云密度进行分析研究,从中选取出最佳点云密度,以实现高效、快速获取DEM数据。使用随机采样算法将原始点云以10%~90%密度进行抽稀,同时采用中... 本文以无人机(UAV)倾斜摄影影像点云为数据源,通过对构建植被稀疏区数字高程模型(DEM)的最佳点云密度进行分析研究,从中选取出最佳点云密度,以实现高效、快速获取DEM数据。使用随机采样算法将原始点云以10%~90%密度进行抽稀,同时采用中误差对生成的DEM进行精度评价分析。结果显示:①在点云抽稀10%~40%时,中误差随着点云密度的减小而增大,同时在点云抽稀30%时中误差与原始点云几乎相似;②在点云抽稀40%~60%时,中误差变化较为平缓,但总体呈上升趋势;③在点云抽稀60%~90%时,随着点云密度的进一步减小,中误差随着点云密度的减小而迅速增大。得出结论,点云密度与DEM精度呈正相关,抽稀30%的点云成为在同类型条件植被稀疏区UAV倾斜摄影点云生成DEM的最佳点云密度。 展开更多
关键词 无人机(uav)倾斜摄影 影像点云 点云密度 抽稀 数字高程模型(DEM)
在线阅读 下载PDF
基于UAV遥感技术的高标准农田耕种状况监测与时空分析 被引量:3
17
作者 苏秀永 杨杰 +1 位作者 李星华 杨磊 《江西农业学报》 2025年第6期68-72,共5页
阐述了UAV遥感技术在高标准农田耕种状况监测中的应用,探讨了基于UAV遥感技术的农田耕种状况监测方法,并对高标准农田耕种状况进行了时空分析。大量数据表明,UAV遥感技术能够快速、准确地获取农田耕种状况信息,为高标准农田的管理和决... 阐述了UAV遥感技术在高标准农田耕种状况监测中的应用,探讨了基于UAV遥感技术的农田耕种状况监测方法,并对高标准农田耕种状况进行了时空分析。大量数据表明,UAV遥感技术能够快速、准确地获取农田耕种状况信息,为高标准农田的管理和决策提供重要的数据支持,对提高农业生产效率和促进农业可持续发展具有重要意义。 展开更多
关键词 高标准农田 uav遥感技术 耕种状况 监测 时空分析
在线阅读 下载PDF
联合UAV-LiDAR点云和SSAFormer的红树林群落精细分类
18
作者 张书嵘 付波霖 +4 位作者 高二涛 贾明明 孙伟伟 武炎 周国清 《遥感学报》 北大核心 2025年第5期1140-1163,共24页
红树林是最富有生物多样性、生产力最高的海洋生态系统之一,整合高分辨率遥感影像和深度学习的红树林群落精细分类已成为当前研究的热点和难点。本文提出一种新颖的深度学习分类网络模型一种基于窗口注意力机制和空洞空间的视觉转换器SS... 红树林是最富有生物多样性、生产力最高的海洋生态系统之一,整合高分辨率遥感影像和深度学习的红树林群落精细分类已成为当前研究的热点和难点。本文提出一种新颖的深度学习分类网络模型一种基于窗口注意力机制和空洞空间的视觉转换器SSAFormer (Swin-Segmentation-Atrous-Transformer)进行红树林群落精细分类。该模型以视觉变压器的变体Swin Transformer为主干网络,在主干网络中加入了卷积神经网络CNN(Convolutional Neural Network)以及空洞空间卷积池化金字塔ASPP (Atrous Spatial Pyramid Pooling)提取更多尺度特征信息,在轻量级解码器中嵌入了特征金字塔FPN (Feature Pyramid Network)结构来融合低层和高层丰富的语义特征信息。本文利用高分七号(Gaofen-7,GF-7)卫星多光谱影像和UAV-LiDAR点云构建了3种主被动遥感数据集,并对比分析SegFormer和本研究改进的Swin Transformer算法的分类结果,进一步论证SSAFormer算法对红树林群落的分类性能。结果表明:(1)与SegFormer相比,SSAFormer实现了红树林的精细分类,总体精度OA (Overall Accuracy)提高了1.77%-5.30%,Kappa系数最高为0.8952,平均用户交并比MIo U (Mean Intersection over Union)最大提升了7.68%;(2)在GF-7多光谱数据集上,SSAFormer算法实现了91%最高总体精度(OA),在UAV-LiDAR数据集上,SSAFormer算法的MIoU提升至57.68%,在加入光谱特征的UAV-LiDAR数据集上,SSAFormer算法MIoU的均值提高了1.48%;(3)UAV-LiDAR数据相比于GF-7多光谱数据的平均用户交并比(MIoU)最大提高了5.35%,总体精度(OA)的均值提升了1.81%,加入光谱特征的UAV-LiDAR数据分类精度(F1-score)提高了2.6%;(4)本研究提出的SSAFormer算法实现了海榄雌的分类精度(F1-score)最高为97.07%,桐花树分类精度(F1-score)达到91.99%,互花米草的F1-score达到93.64%,桐花树的F1-score的平均值在SSAFormer模型上达到了86.91%最高。本研究所提出的SSAFormer算法能够有效提高红树林群落分类精度。 展开更多
关键词 遥感 红树林 GF-7多光谱 uav-LiDAR点云 SSAFormer 深度学习 主被动影像整合 特征选 群落精细分类
原文传递
基于UAV高密度点云的结构面粗糙度分形特征与各向异性 被引量:1
19
作者 宋盛渊 刘殿泽 +4 位作者 李保天 赵明宇 杨泽 黄迪 王思骢 《地球科学》 北大核心 2025年第4期1599-1611,共13页
为研究岩体结构面各向异性对粗糙度评价的影响,以藏东南某铁路察达工点高陡斜坡为研究对象,运用无人机综合摄影测量技术,提取研究区结构面高密度点云并剪裁结构面轮廓线,采用修正直边法与盒维数法求算粗糙度系数JRC与分形维数D,拟合JRC... 为研究岩体结构面各向异性对粗糙度评价的影响,以藏东南某铁路察达工点高陡斜坡为研究对象,运用无人机综合摄影测量技术,提取研究区结构面高密度点云并剪裁结构面轮廓线,采用修正直边法与盒维数法求算粗糙度系数JRC与分形维数D,拟合JRC与D的新公式并利用数字化Barton标准线验证.选取压剪性和拉张性结构面各15个,运用新公式计算各采样方向的JRC.结果表明:压剪性结构面粗糙度各向异性规律显著,整体上JRC由剪切滑动方向至垂直剪切滑动方向递增,呈椭圆状分布;拉张性结构面粗糙度存在各向异性但无明显规律,JRC随采样角度变化波动较大,呈刺状分布.证明不同力学成因的结构面JRC各向异性存在差异,在评价粗糙度时应遵循不同采样规则. 展开更多
关键词 无人机 综合摄影测量 高密度点云 结构面粗糙度 分形维数 各向异性 工程地质学
原文传递
YOLO-S3DT:A Small Target Detection Model for UAV Images Based on YOLOv8 被引量:2
20
作者 Pengcheng Gao Zhenjiang Li 《Computers, Materials & Continua》 2025年第3期4555-4572,共18页
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp... The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks. 展开更多
关键词 Target detection uav images detection small target detection YOLO
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部