期刊文献+
共找到1,936篇文章
< 1 2 97 >
每页显示 20 50 100
基于多尺度特征提取的U-Net网络微地震定位方法
1
作者 黄建平 王秋阳 +6 位作者 李媛媛 黎国龙 苏来源 路依霖 李三福 段文胜 雷刚林 《中国石油大学学报(自然科学版)》 北大核心 2026年第1期1-11,共11页
微地震定位是微地震监测的核心任务,面对当前海量的地震数据,传统的定位方法已无法满足实时定位的需求。为此,利用深度学习技术,提出一种基于U-Net网络为主要架构的微地震震源定位方法,通过融合双交叉注意力模块和空间空洞金字塔池化模... 微地震定位是微地震监测的核心任务,面对当前海量的地震数据,传统的定位方法已无法满足实时定位的需求。为此,利用深度学习技术,提出一种基于U-Net网络为主要架构的微地震震源定位方法,通过融合双交叉注意力模块和空间空洞金字塔池化模块,增强网络对微震数据中波形特征的提取能力,提升震源位置预测精度。最后,利用简单层状和复杂速度模型生成合成数据进行实验测试,并与U-Net和Att-Unet网络对震源位置预测误差精度进行对比分析。结果表明,所构建的网络模型在震源预测精度以及网络性能上均优于其他网络模型,并且对低信噪比的微地震数据也有较好的预测效果。 展开更多
关键词 微震定位 水力压裂 多尺度特征提取 u-net网络 注意力机制
在线阅读 下载PDF
基于改进U-Net网络和知识蒸馏的三维断层识别方法
2
作者 王莉利 梁云虎 高新成 《石油物探》 北大核心 2026年第1期21-30,共10页
深度学习方法在三维地震资料断层识别中得到了广泛应用,但方法的应用面临数据集质量欠佳、资源消耗过高以及训练周期长等问题。为此,提出了一种融合改进U-Net网络和知识蒸馏的三维断层识别方法。该方法先将改进的U-Net网络模型作为教师... 深度学习方法在三维地震资料断层识别中得到了广泛应用,但方法的应用面临数据集质量欠佳、资源消耗过高以及训练周期长等问题。为此,提出了一种融合改进U-Net网络和知识蒸馏的三维断层识别方法。该方法先将改进的U-Net网络模型作为教师模型,将空洞空间金字塔池化(ASPP)结构与U-Net网络模型相融合,构建轻量级学生模型,然后引入知识蒸馏技术对学生模型进行优化,并调整网络训练超参数和知识蒸馏损失参数,使学生模型获取更丰富的断层信息,提升学生模型的网络性能。该方法通过将复杂的教师模型的知识迁移到轻量级学生模型,显著降低了模型的计算复杂度,同时保持了较高的识别精度。测试结果表明,在合成测试集和实际地震数据的断层识别中,经过知识蒸馏训练的学生模型在识别精度和连续性上均优于未经过蒸馏的学生模型和单独训练的教师模型,充分验证了方法的可行性和有效性。 展开更多
关键词 断层识别 知识蒸馏 u-net 教师模型 学生模型
在线阅读 下载PDF
基于改进U-Net与RGB-D图像的青花椒枝条“下桩”剪切点定位
3
作者 蒲应俊 张文州 +3 位作者 李金广 赵立军 陈子文 杨明金 《农业工程学报》 北大核心 2026年第1期160-170,共11页
青花椒枝条“下桩”是通过剪下带鲜果的枝条并保留一定长度短桩的采摘收获方法。为实现青花椒采摘机器人精准识别枝条并确定最佳剪切点以达到高效“下桩”作业,该研究提出了一种基于U-Net深度学习网络和RGB-D相机相结合的青花椒主枝“... 青花椒枝条“下桩”是通过剪下带鲜果的枝条并保留一定长度短桩的采摘收获方法。为实现青花椒采摘机器人精准识别枝条并确定最佳剪切点以达到高效“下桩”作业,该研究提出了一种基于U-Net深度学习网络和RGB-D相机相结合的青花椒主枝“下桩”剪切点定位方法。首先,通过改进传统U-Net模型,将其主干网络替换为嵌入CA注意力机制的ResNet50网络,同时在U-Net模型的特征拼接阶段中增加SE注意力机制,从而构建针对青花椒主枝和树干的分割模型。然后,将分割后的图像利用二值化与骨架线提取方法得到主枝中心线,结合RGB-D相机的深度信息与OpenCV图像处理算法,完成世界坐标系与像素坐标系间长度的映射。随后,将短桩预设的40 mm长度从世界坐标系映射至RGB图像中的像素长度,最终确定每根主枝的“下桩”剪切点位置。试验结果表明,改进后的U-Net模型在分割性能上优于DeeplabV3+和PSPNet,平均交并比(MIoU)、平均像素准确率(mPA)和召回率(recall)分别达到87.58%、93.76%和96.24%。在晴天顺光、逆光及阴天条件下,“下桩”剪切点识别定位的成功率分别达到90.81%、84.88%、80.52%。采摘点定位试验中,定位成功率为90%,单根花椒枝平均识别过程耗时1.93 s。该研究结果可为青花椒采摘机器人“下桩”采收提供技术支撑。 展开更多
关键词 图像处理 青花椒 采摘 u-net网络模型 下桩采摘法 剪切点定位
在线阅读 下载PDF
基于级联YOLO和U-Net的腰椎图像分割模型YOLOMACR-Net
4
作者 何致远 汪灿华 《现代信息科技》 2026年第2期91-97,共7页
针对腰椎MRI图像中椎体目标形态多变、背景解剖结构复杂及组织间对比度低,导致现有方法出现关键结构漏检、边缘分割粗糙及参数冗余等问题,提出一种融合多尺度特征增强与级联架构的轻量化腰椎分割模型YOLOMACR-Net。首先,在YOLOv5n框架... 针对腰椎MRI图像中椎体目标形态多变、背景解剖结构复杂及组织间对比度低,导致现有方法出现关键结构漏检、边缘分割粗糙及参数冗余等问题,提出一种融合多尺度特征增强与级联架构的轻量化腰椎分割模型YOLOMACR-Net。首先,在YOLOv5n框架中设计多尺度非对称空洞残差模块(MACR),利用非对称卷积适配椎体几何特征,扩大感受野以解决单阶段检测的漏检问题;其次,构建“定位-分割”级联架构,利用定位结果剔除背景噪声,引导U-Net进行精细化分割。在公开数据集上的实验结果表明,YOLOMACR-Net的结构捕获率(SCR)达到100%,mIoU、Dice系数和HD95分别达到88.17%、93.71%和3.37 mm,且参数量仅为1.65M。结果证明该模型能有效整合多尺度信息,在保持轻量化的同时显著提升了复杂场景下的分割精度。 展开更多
关键词 医学图像分割 深度学习 YOLO MACR u-net
在线阅读 下载PDF
基于改进的U-Net网络的肺癌数字病理图像分割算法
5
作者 黄毓珍 林长方 《兰州文理学院学报(自然科学版)》 2026年第1期67-72,共6页
针对经典的医学图像语义分割模型U-Net的局限和肺癌数字病理图像的特点,提出了一种结合残差学习模块和混合注意力机制的图像分割算法.算法以U-Net网络为基础框架,分别在卷积层和编码器-解码器间引入残差学习模块和通道、空间注意力机制... 针对经典的医学图像语义分割模型U-Net的局限和肺癌数字病理图像的特点,提出了一种结合残差学习模块和混合注意力机制的图像分割算法.算法以U-Net网络为基础框架,分别在卷积层和编码器-解码器间引入残差学习模块和通道、空间注意力机制模块,来提高特征提取能力和分割精度;同时改进损失函数以解决分割过程中类不平衡问题.实验结果显示改进算法在ACC、SEN、MioU和Dice等评价指标上均优于其他对比算法,表明其在肺癌数字病理图像分割中具有较强的优越性和竞争力. 展开更多
关键词 u-net 数字病理 图像分割 注意力机制 残差结构
在线阅读 下载PDF
融合部分卷积和ECA机制的轴承滚子外观缺陷U-Net分割模型
6
作者 顾云鹏 马超 +2 位作者 臧绍飞 于朋洋 马建伟 《轴承》 北大核心 2026年第1期91-99,共9页
针对传统图像处理和人工检测方法在复杂、多样的滚子外观缺陷检测中效率低下和精度不高的问题,提出一种融合部分卷积和高效通道注意力机制(ECA)的U-Net模型。首先,针对原始U-Net解码阶段不同尺度特征的融合与重复使用产生冗余特征的问题... 针对传统图像处理和人工检测方法在复杂、多样的滚子外观缺陷检测中效率低下和精度不高的问题,提出一种融合部分卷积和高效通道注意力机制(ECA)的U-Net模型。首先,针对原始U-Net解码阶段不同尺度特征的融合与重复使用产生冗余特征的问题,设计一种融合部分卷积的解码器,缓解冗余特征对模型的负面影响并提高模型的计算效率;其次,在解码器部分引入ECA,自适应建立通道之间的信息交互,增强模型捕捉和理解图像重要特征的能力;最后,针对轴承滚子外观检测任务易出现样本不均衡问题,设计一种融合Focal Loss的损失函数以监督训练模型,减轻样本不均衡对模型的负面影响。在轴承滚子缺陷数据集上的试验结果表明,所提模型在各评估指标上均达到了较高精度,验证了其有效性和可行性。 展开更多
关键词 滚动轴承 滚子 卷积 解码器 损失函数 注意力机制 u-net
在线阅读 下载PDF
An effective deep-learning prediction of Arctic sea-ice concentration based on the U-Net model
7
作者 Yifan Xie Ke Fan +2 位作者 Hongqing Yang Yi Fan Shengping He 《Atmospheric and Oceanic Science Letters》 2026年第1期34-40,共7页
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote... Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC. 展开更多
关键词 Arctic sea-ice concentration Deep-learning prediction u-net model CFSv2 NorCPM
在线阅读 下载PDF
基于改进U-Net的复杂场景实例分割方法研究
8
作者 孙佳慧 陈柯柯 李忠华 《电子制作》 2026年第1期36-40,共5页
在复杂场景下的实例分割任务中,边缘模糊和小目标漏检等问题严重影响了分割精度。为解决这些问题,本文对U-Net模型进行了改进,通过在解码器的多个特征层插入ESA模块,添加实例分离算法和边缘优化处理,有效提升了对边缘模糊和小目标的实... 在复杂场景下的实例分割任务中,边缘模糊和小目标漏检等问题严重影响了分割精度。为解决这些问题,本文对U-Net模型进行了改进,通过在解码器的多个特征层插入ESA模块,添加实例分离算法和边缘优化处理,有效提升了对边缘模糊和小目标的实例分割效果。实验表明,改进的U-Net模型与其他经典实例分割模型相比,在精度和效率平衡方面表现出明显优势。该方法在保持U-Net计算效率优势的同时,为野外环境中的蘑菇识别等需要精细分割的场景提供了有效的解决方案。未来可进一步研究注意力模块的轻量化设计,以适配移动端部署需求。 展开更多
关键词 深度学习 实例分割 u-net 野生蘑菇
在线阅读 下载PDF
基于改进U-Net和IWOA-LSSVM的番茄综合品质检测方法研究 被引量:2
9
作者 施利春 边可可 +1 位作者 王松伟 王治忠 《食品与机械》 北大核心 2025年第8期109-117,共9页
[目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像... [目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像信息;通过多尺度残差注意力U-Net模型对番茄图像进行分割,完成番茄果径参数测量;通过混沌映射和自适应收敛因子优化的鲸鱼优化算法对最小二乘支持向量机模型参数进行寻优,完成番茄硬度和番茄红素含量检测,并进行验证试验。[结果]试验方法可以实现番茄综合品质的准确、快速和无损检测。在番茄果径、硬度和番茄红素检测中均取得了较优的决定系数、均方根误差和平均检测时间,决定系数>0.960 0,均方根误差<0.012 5,平均检测时间<0.032 s。[结论]结合机器视觉、深度学习和智能算法可以实现番茄综合品质的准确、快速和无损检测。 展开更多
关键词 番茄 综合品质 无损检测 机器视觉 u-net模型 鲸鱼优化算法 最小二乘支持向量机
在线阅读 下载PDF
基于优化的U-net网络掘进工作面煤岩识别方法研究 被引量:1
10
作者 栾恒杰 杨玉晴 +4 位作者 刘建康 蒋宇静 刘建荣 马德良 张孙豪 《采矿与岩层控制工程学报》 北大核心 2025年第1期94-108,共15页
为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3... 为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3种网络模型对数据集进行训练,并对训练结果进行对比分析。分析结果表明:在训练次数达到100次时,3种网络模型准确率分别为89.25%, 93.52%及94.55%,改进U-net网络模型准确率相较改进前提高1.03%;在煤岩识别方面, U-net网络模型比FCN网络模型取得了更高的准确率,在测试环节中也表现出了更好的性能;在预测环节中,对煤岩边缘部分的识别做到了更为精准的处理。该方法可为煤岩识别的精准度的提高提供参考。 展开更多
关键词 煤岩识别 深度学习 u-net网络 CANNY边缘检测算法
在线阅读 下载PDF
基于改进U-Net的煤矸图像分割模型与放煤控制技术 被引量:2
11
作者 袁永 秦正寒 +3 位作者 夏永琪 武让 李立宝 李勇 《煤炭学报》 北大核心 2025年第5期2722-2738,共17页
煤矸识别技术是综放工作面实现智能化的关键技术之一,同时也是该领域面临的一个重要挑战。针对目前煤矸图像数据集整体质量差、数据规模小、煤矸图像分割模型检测速度慢、识别精度低等问题,参考实际综放工作面搭建了大尺寸等比例综放开... 煤矸识别技术是综放工作面实现智能化的关键技术之一,同时也是该领域面临的一个重要挑战。针对目前煤矸图像数据集整体质量差、数据规模小、煤矸图像分割模型检测速度慢、识别精度低等问题,参考实际综放工作面搭建了大尺寸等比例综放开采相似模拟平台,基于该平台建立了煤矸图像采集系统,采集构建了高清仿真综放工作面煤矸图像数据集,提出一种基于特征金字塔网络(FPN)和空洞空间金字塔池化(ASPP)的改进U-Net煤矸分割模型,提高了煤矸图像的分割精度。通过在U-Net模型的跳跃连接中添加FPN模块,同时在解码器部分引入ASPP模块,建立了FPN-ASPP-U-Net煤矸分割模型,消融试验验证了FPN模块和ASPP模块对U-Net模型性能的提升。结果表明:FPN-ASPP-U-Net模型分割效果最好,均准确率(M_(A))为97.29%,均F1得分(M_(F1))为97.44%,均交并比(M_(I))为95.65%,模型参数量(M_(P))为29.64 M,浮点运算量(F)为341.29 G,每秒帧数(f)为41.1 f/s,与U-Net模型相比,M_(I)、M_(F1)和M_(A)分别提升了2.64%、1.06%和1.15%,模型参数量仅仅增加了0.33 M,改进后的模型在图像分割速度上有少量提升。设计了FPN-ASPP-U-Net模型与PSPNet、SegFormer、DeepLabV3+、PSANet语义分割模型的图像分割效果对比试验,结果表明:FPN-ASPP-U-Net模型对煤矸图像分割的性能最好,同时模型整体计算参数量最小,在分割精度和分割速度之间有着较好的平衡。对于粉尘影响下的不清晰图像,采用暗通道与高斯加权相结合的方法对图像数据集进行去雾增强,轻度粉尘、中度粉尘、重度粉尘去雾前后的模型对煤的分割精度提高了14.81%、17.79%、23.62%,对矸的分割精度提高了11.73%、14.50%、14.86%。基于研究结论提出了FPN-ASPP-U-Net模型的煤矸图像混矸率计算方法,开展了煤矸图像分割控制放煤试验,以混矸率20%作为放煤口关闭的阈值,单次放煤口开关期间真实混矸率与模型预测混矸率平均误差率为4.71%,验证了基于煤矸图像混矸率对放煤控制的可行性。最后,封装模型代码研发了煤矸图像智能识别软件,设计了煤矸分割现场应用方案,在榆树田煤矿110501综放工作面进行了图像控制放煤试验,验证了该方法能够对煤矸图像进行精准分割,对放煤口开关进行合理控制,提高了综放工作面的智能化水平,为推动煤矿进一步智能化建设提供了有效的技术手段与参考价值。 展开更多
关键词 放顶煤 煤矸识别 图像分割 混矸率 u-net模型
在线阅读 下载PDF
基于空洞卷积U-Net的遥感影像道路提取方法 被引量:2
12
作者 林娜 张小青 +2 位作者 王岚 冯丽蓉 王伟 《测绘地理信息》 2025年第3期63-67,共5页
针对从遥感影像上提取道路出现的细节特征丢失、提取结果模糊的问题,本文提出了一种基于空洞卷积U-Net的遥感影像道路提取算法。首先,以U-Net为基础网络,将低层细节特征与高层语义特征进行多特征融合,更好地还原道路目标细节;其次,为了... 针对从遥感影像上提取道路出现的细节特征丢失、提取结果模糊的问题,本文提出了一种基于空洞卷积U-Net的遥感影像道路提取算法。首先,以U-Net为基础网络,将低层细节特征与高层语义特征进行多特征融合,更好地还原道路目标细节;其次,为了进一步提高网络对道路细节特征的识别能力,在U-Net中引入空洞卷积模块,学习更多语义信息来改善提取结果的模糊问题;最后,基于Massachusetts Roads数据集进行实验。结果表明,本文方法召回率、精度和F1得分分别达到82.5%、86.7%、84.5%。与基础的UNet相比,本文算法在解决细节特征丢失和提取结果模糊问题方面更具有应用价值。 展开更多
关键词 遥感影像 u-net 道路提取 空洞卷积 深度学习
原文传递
基于深度残差U-Net网络的海上地震混采数据分离技术研究
13
作者 梁兵 郭廷超 +2 位作者 许冲 鲍伟 潘成磊 《海洋地质前沿》 北大核心 2025年第10期28-37,共10页
随着地震数据空间采样密度的提高,混合震源采集逐渐成为提高采集效率的有效手段之一,而对于混采数据进行有效分离是混合震源数据处理的重要一环。本文提出了一种基于残差U-Net网络的海上双源交替激发混采数据智能分离技术。该方法首先... 随着地震数据空间采样密度的提高,混合震源采集逐渐成为提高采集效率的有效手段之一,而对于混采数据进行有效分离是混合震源数据处理的重要一环。本文提出了一种基于残差U-Net网络的海上双源交替激发混采数据智能分离技术。该方法首先将共炮道集混采数据分选为共检波点道集数据,以此来降低非主震源激发信号的相关性,然后基于残差UNet网络实现双源混采数据的智能分离。相比传统U-Net网络,本文的网络模型增加了网络深度,并在下采样过程中引入了卷积残差模块,有效避免了梯度消失和梯度爆炸问题,提升了特征提取能力,尤其在细节问题处理上,更好地保护了有效信息。通过模型试算和实际资料处理,验证了该网络在海洋混采数据分离中的良好效果。实验结果表明,残差U-Net网络能够有效分离混采数据,且不损失有效信号,显著提高了分离结果的信噪比。研究结果可为海洋地震混采数据的高精度分离提供新思路,为后续地震资料处理奠定基础。 展开更多
关键词 混采分离 深度学习 残差u-net网络 分离精度
在线阅读 下载PDF
基于U-Net和KAN的FAST射频干扰检测方法
14
作者 李宏伟 于徐红 +3 位作者 张思聪 游善平 张彬 何兵 《自动化应用》 2025年第8期135-138,共4页
射电干扰是影响射电天文观测的重要因素之一。针对500m口径球面射电望远镜(FAST)高灵敏度易受RFI影响的现状及传统多层感知机(MLPs)高计算成本与不可解释性的问题,构建了RFI区域时频域图像识别神经网络系统KEU-Net,通过将通道注意力机... 射电干扰是影响射电天文观测的重要因素之一。针对500m口径球面射电望远镜(FAST)高灵敏度易受RFI影响的现状及传统多层感知机(MLPs)高计算成本与不可解释性的问题,构建了RFI区域时频域图像识别神经网络系统KEU-Net,通过将通道注意力机制模块ECA和基于深度可分离卷积改进的U-Net进行融合,并应用Kolmogorov-Arnold网络(KANs)替换深层MLPs,在有效提高RFI检测精度的同时降低了参数量。实验基于FAST早期观测数据,结果表明,KEU-Net的RFI识别召回率、交并比、F1分数分别为85.94%、80.29%、89.07%,显著优于主流模型,且参数量仅为9.2M;最后通过消融实验验证了KAN层对于性能提升的关键作用。ECU-Net提高了RFI识别的准确性,并降低了计算资源的需求。 展开更多
关键词 射频干扰 KEu-net Kolmogorov-Arnold网络 u-net 深度学习 通道注意力机制 脉冲星
在线阅读 下载PDF
基于改进U-Net的城市洪涝灾害图像识别模型
15
作者 钟兴润 田晨斌 +2 位作者 李新宏 孟晓静 杨文欣 《中国安全科学学报》 北大核心 2025年第10期190-197,共8页
为解决洪涝灾害识别模型在城市复杂背景下区域分割不清和细节还原不足等问题,提升洪涝灾害图像识别准确性,提出一种基于残差网络和自注意力机制的改进U-Net语义分割模型——AttResU-Net模型。该模型在经典U-Net网络架构基础上进行优化设... 为解决洪涝灾害识别模型在城市复杂背景下区域分割不清和细节还原不足等问题,提升洪涝灾害图像识别准确性,提出一种基于残差网络和自注意力机制的改进U-Net语义分割模型——AttResU-Net模型。该模型在经典U-Net网络架构基础上进行优化设计,采用深层残差网络作为编码器以增强特征表达能力,同时在解码器中引入注意力机制,以提高对关键洪涝区域的响应能力;构建完整的训练与测试流程,使用FloodNet多类别复杂环境数据集训练改进AttResU-Net模型,从定量指标和定性可视化效果2个维度来评估模型性能,并与现有主流模型进行对比分析。结果表明:AttResU-Net模型在平均像素准确率(mPA)、像素准确率(PA)、平均精度(mPrecision)等指标上表现优异,其中,mPA为79.75%、PA为90.01%、mPrecision为81.78%;相比其他模型,AttResU-Net模型在树木、水体、道路和建筑物等识别中表现出更高的分割准确率、全局像素精度和全局识别能力。 展开更多
关键词 u-net 洪涝灾害 图像识别 图像分割 注意力机制 残差
原文传递
基于改进U-Net网络的PCB缺陷检测方法 被引量:1
16
作者 彭勇 刘慧民 +1 位作者 李伟松 王石 《计算技术与自动化》 2025年第1期183-188,共6页
针对PCB表面小尺寸缺陷难以检测的问题,提出了一种改进的U-Net语义分割网络,实现PCB表面缺陷图像的精确检测。首先,将U-Net的四层网络层次修改为三层,可以减少整体的计算工作量、提升网络模型收敛速度、缩短训练时间;其次,在U-Net网络... 针对PCB表面小尺寸缺陷难以检测的问题,提出了一种改进的U-Net语义分割网络,实现PCB表面缺陷图像的精确检测。首先,将U-Net的四层网络层次修改为三层,可以减少整体的计算工作量、提升网络模型收敛速度、缩短训练时间;其次,在U-Net网络中融入CBAM(Convolutional Block Attention Module)模块来提升图像中缺陷目标的显著度;然后,在编码阶段使用混合空洞卷积替换原有卷积块,增大感受野,获取更多的上下文信息。结果表明,U-Net的改进模型能够在提升模型性能的同时减少计算复杂度,能够增加PCB缺陷检测效率。 展开更多
关键词 缺陷检测 u-net 空洞卷积 注意力机制 语义分割网络 轻量型网络 深度学习 小目标检测
在线阅读 下载PDF
结合并联Transformer和残差U-Net网络的水下图像增强 被引量:1
17
作者 陈清江 李宗莹 《电子科技》 2025年第8期57-65,共9页
针对光在水中传播时被吸收,水下图像存在颜色失真、对比度低和细节模糊等问题,文中设计了一个基于并联Transformer和残差卷积的U-Net网络进行水下图像增强。在新U-Net结构中,在编码和解码部分分别置入混合卷积Transformer块(Hybrid Conv... 针对光在水中传播时被吸收,水下图像存在颜色失真、对比度低和细节模糊等问题,文中设计了一个基于并联Transformer和残差卷积的U-Net网络进行水下图像增强。在新U-Net结构中,在编码和解码部分分别置入混合卷积Transformer块(Hybrid Convolution Transformer Block,HCTB)。综合了Transformer的捕获全局信息能力和卷积块捕获局部信息能力,并且在跳跃连接部分搭建了若干平行注意模块(Parallel Attention Module,PAM)来提取更重要的像素和通道信息。采用现有UIEB(Underwater Image Enhancement Benchmark dataset)配对数据集对网络进行训练。为验证所提算法的有效性,选取不同偏色程度的水下图像进行实验与测试。实验结果表明,所提模型较其他先进模型的峰值信噪比PSNR(Peak Single-to-Ratio)值提升了4.3%,获得了较好的主观和客观评价结果,有效提升了水下图像的增强水平。 展开更多
关键词 水下图像增强 TRANSFORMER 残差卷积 u-net网络 平行注意模块 通道注意 像素注意 卷积神经网络 深度学习
在线阅读 下载PDF
轻量化U-net模型在钢筋直径测量中的应用研究 被引量:1
18
作者 张学辉 于站海 +2 位作者 田学昭 安军海 刘新军 《河北工业科技》 2025年第3期248-257,共10页
为了解决钢筋工程验收时传统人工检测效率低,检测过程中容易因人为因素导致的测量误差大,甚至误检漏检等问题,提出了一种基于改进轻量化U-net模型的钢筋直径测量方法。首先,采集大量钢筋图像并构建钢筋图像自制数据集,引入MobileNetV3 B... 为了解决钢筋工程验收时传统人工检测效率低,检测过程中容易因人为因素导致的测量误差大,甚至误检漏检等问题,提出了一种基于改进轻量化U-net模型的钢筋直径测量方法。首先,采集大量钢筋图像并构建钢筋图像自制数据集,引入MobileNetV3 Block模块和坐标注意力(coordinate attention,CA)机制对经典U-net模型进行改进。然后,基于自制数据集对改进U-net模型进行训练,训练完成后,将测试图像导入模型进行分割实验和直径测量实验。结果表明:改进U-net模型在钢筋图像分割任务中的交并比(IoU)达到了0.9795,模型大小仅为18.03 MB,直径测量实验的总平均误差为0.207 mm。改进模型在钢筋图像分割时表现出色,具有较高的检测精度和较低的计算成本,为钢筋图像分割提供了新的技术路径,在钢筋图像自动化处理和分析领域,具有一定的应用前景。 展开更多
关键词 土木建筑工程测量 钢筋直径测量 图像分割 改进u-net模型 CA注意力机制
在线阅读 下载PDF
融合PDE植物时序图像对比学习方法与GCN跳跃连接的U-Net温室甜樱桃图像分割方法
19
作者 胡玲艳 郭睿雅 +6 位作者 郭占俊 徐国辉 盖荣丽 汪祖民 张宇萌 鞠博文 聂晓宇 《智慧农业(中英文)》 2025年第3期131-142,共12页
[目的/意义]在植物表型特征提取中,面临小目标边界难以精确分割、上采样细节恢复空间信息不足等问题。提出一种融合嵌入先验距离(Priori Distance Embedding,PDE)植物时序图像对比学习方法,预训练与图卷积网络(Graph Convolutional Netw... [目的/意义]在植物表型特征提取中,面临小目标边界难以精确分割、上采样细节恢复空间信息不足等问题。提出一种融合嵌入先验距离(Priori Distance Embedding,PDE)植物时序图像对比学习方法,预训练与图卷积网络(Graph Convolutional Networks,GCN)跳跃连接的U-Net温室甜樱桃图像分割方法,借助预训练加速模型收敛,优化特征融合,为图像分割提供技术支持。[方法]将PDE植物时序图像对比学习方法的预训练权重迁移至语义分割任务;Encoder模块通过卷积-池化层执行多尺度特征提取,分层输入图像的语义信息,构建从低层纹理到高层语义的表示;利用Decoder模块进行上采样操作,融合不同尺度特征并恢复图像分辨率;Encoder和Decoder连接处,加入GCN,形成跳跃连接,使网络更容易学习多尺度图像的局部特征。[结果和讨论]从纵向消融实验和横向对比多角度进行试验,并结合准确率、召回率、F1分数等评价指标综合分析,可以验证本研究提出的融合PDE植物时序图像对比学习方法与GCN跳跃连接的U-Net在甜樱桃图像语义分割中的性能表现最佳,准确率可达0.9550。[结论]通过将PDE植物时序图像对比学习方法和GCN技术融合,构建面向植物表型分析的增强型U-Net架构。研究结果表明该方法在复杂场景下能有效解决小目标边界模糊、细节丢失等难题,实现对甜樱桃图像主要器官和背景区域的精确分割,提高原始模型的分割准度,对农业智慧化发展具有重要的实践意义。 展开更多
关键词 嵌入先验距离 迁移学习 图卷积网络 u-net 跳跃连接 植物表型
在线阅读 下载PDF
基于U-Net和Transformer结合的不完整多模态脑肿瘤分割方法
20
作者 汤占军 蹇洪 王健 《数据采集与处理》 北大核心 2025年第4期934-949,共16页
由于患者个体差异、采集协议多样性和数据损坏等因素,现有基于磁共振成像(Magnetic resonance imaging,MRI)的脑肿瘤分割方法存在模态数据丢失问题,导致分割精度不高。为此,本文提出了一种基于U-Net和Transformer结合的不完整多模态脑... 由于患者个体差异、采集协议多样性和数据损坏等因素,现有基于磁共振成像(Magnetic resonance imaging,MRI)的脑肿瘤分割方法存在模态数据丢失问题,导致分割精度不高。为此,本文提出了一种基于U-Net和Transformer结合的不完整多模态脑肿瘤分割(Incomplete multimodal brain tumor segmentation based on the combination of U-Net and Transformer,IM TransNet)方法。首先,针对脑肿瘤MRI的4个不同模态设计了单模态特定编码器,提升模型对各模态数据的表征能力。其次,在U-Net中嵌入双重注意力的Transformer模块,克服模态缺失引起的信息不完整问题,减少U-Net的长距离上下文交互和空间依赖性局限。在U-Net的跳跃连接中加入跳跃交叉注意力机制,动态关注不同层级和模态的特征,即使在模态缺失时,也能有效融合特征并进行重建。此外,针对模态缺失引起的训练不平衡问题,设计了辅助解码模块,确保模型在各种不完整模态子集上均能稳定高效地分割脑肿瘤。最后,基于公开数据集BRATS验证模型的性能。实验结果表明,本文提出的模型在增强型肿瘤、肿瘤核心和全肿瘤上的平均Dice评分分别为63.19%、76.42%和86.16%,证明了其在处理不完整多模态数据时的优越性和稳定性,为临床实践中脑肿瘤的准确、高效和可靠分割提供了一种可行的技术手段。 展开更多
关键词 注意力机制 脑肿瘤分割 多模态 u-net TRANSFORMER
暂未订购
上一页 1 2 97 下一页 到第
使用帮助 返回顶部