期刊文献+
共找到908,165篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel 被引量:3
1
作者 M.M.RASHIDI A.HOSSEINI +2 位作者 I.POP S.KUMAR N.FREIDOONIMEHR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第7期831-848,共18页
The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) p... The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel. 展开更多
关键词 NANOFLUID two-phase model wavy channel semi implicit method for pres-sure linked equation (SIMPLE) method
在线阅读 下载PDF
GLOBAL EXISTENCE OF CLASSICAL SOLUTION FOR A VISCOUS LIQUID-GAS TWO-PHASE MODEL WITH MASS-DEPENDENT VISCOSITY AND VACUUM 被引量:2
2
作者 王振 张卉 《Acta Mathematica Scientia》 SCIE CSCD 2014年第1期39-52,共14页
In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowe... In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations. 展开更多
关键词 viscous liquid-gas two-phase model global classical solution VACUUM mass-dependent viscosity
在线阅读 下载PDF
LARGE TIME BEHAVIOR OF GLOBAL STRONG SOLUTIONS TO A TWO-PHASE MODEL WITH A MAGNETIC FIELD 被引量:1
3
作者 Wenjun WANG Zhen CHENG 《Acta Mathematica Scientia》 SCIE CSCD 2022年第5期1921-1946,共26页
In this paper,the Cauchy problem for a two-phase model with a magnetic field in three dimensions is considered.Based on a new linearized system with respect to(c−c_(∞),P−P_(∞),u,H)for constants c_(∞)≥0 and P_(∞)&... In this paper,the Cauchy problem for a two-phase model with a magnetic field in three dimensions is considered.Based on a new linearized system with respect to(c−c_(∞),P−P_(∞),u,H)for constants c_(∞)≥0 and P_(∞)>0,the existence theory of global strong solution is established when the initial data is close to its equilibrium in three dimensions for the small H^(2) initial data.We improve the existence results obtained by Wen and Zhu in[40]where an additional assumption that the initial perturbations are bounded in L^(1)-norm was needed.The energy method combined with the low-frequency and high-frequency decomposition is used to derive the decay of the solution and hence the global existence.As a by-product,the time decay estimates of the solution and its derivatives in the L^(2)-norm are obtained. 展开更多
关键词 two-phase model magnetic field strong solution global existence decay rates
在线阅读 下载PDF
Numerical simulation of macrosegregation in steel ingots using a two-phase model 被引量:9
4
作者 Wen-sheng Li Hou-fa Shen Bai-cheng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期787-794,共8页
A two-phase model for the prediction of macrosegregation formed during solidification is presented. This model incorporates the descriptions of heat transfer, melt convection, solute transport, and solid movement on t... A two-phase model for the prediction of macrosegregation formed during solidification is presented. This model incorporates the descriptions of heat transfer, melt convection, solute transport, and solid movement on the system scale with microscopic relations for grain nucleation and growth. Then the model is used to simulate the solidification of a benchmark industrial 3.3-t steel ingot. Simulations are per- formed to investigate the effects of grain motion and pipe shrinkage formation on the final macrosegregation pattern. The model predictions are compared with experimental data and numerical results from literatures. It is demonstrated that the model is able to express the overall macrosegregation patterns in the ingot. Furthermore, the results show that it is essential to consider the motion of equiaxed grains and the formation of pipe shrinkage in modelling. Several issues for future model improvements are identified. 展开更多
关键词 steel ingots SOLIDIFICATION SEGREGATION SHRINKAGE modelling
在线阅读 下载PDF
Numerical Study of Heat Transfer and Flow Bifurcation of CuO Nanofluid in Sudden Expansion Microchannel Using Two-Phase Model
5
作者 Farhad A. Abbassi Mohsen Nazari Mohammad Mohsen Shahmardan 《Modern Mechanical Engineering》 2017年第2期57-72,共16页
In this paper, laminar forced convection of CuO nanofluid is numerically investigated in sudden expansion microchannel with isotherm walls and different expansion ratios (ER). An Eulerian two-fluid model is considered... In this paper, laminar forced convection of CuO nanofluid is numerically investigated in sudden expansion microchannel with isotherm walls and different expansion ratios (ER). An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. Eulerian-Eulerian two-phase model is very efficient because of considering the relative velocity and temperature of the phases and the nanoparticle concentration distribution. In solving the flow equations for both phases, the SIMPLE algorithm is modified for the coupling of the velocity and pressure and the continuity equations for both phases are combined in order to create the pressure correction equations. However, the Eulerian-Eulerian modeling results show higher heat transfer enhancement in comparison to pure water, so that for a 2% copper-water nanofluid, it has been observed a 35% increase of the heat transfer. The heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration, while the pressure drop increases only slightly. An investigation of the expansion ratio of microchannel shows that the average Nusselt number increases with decrease in expansion ratio as well as with increase in Reynolds number. Also, the Bifurcation has been occurred in higher Reynolds number that is different for each expansion ratio of the microchannel. 展开更多
关键词 Heat Transfer NANOFLUID SUDDEN Expansion MICROCHANNEL two-phase Eulerian-Eulerian
在线阅读 下载PDF
A quasi single-phase model for debris flows and its comparison with a two-phase model
6
作者 XIA Chun-chen LI Ji +2 位作者 CAO Zhi-xian LIU Qing-quan HU Kai-heng 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1071-1089,共19页
A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctua... A depth-averaged quasi single-phase mixture model is proposed for debris flows over inclined bed slopes based on the shallow water hydrosediment-morphodynamic theory with multi grain sizes. The stresses due to fluctuations are incorporated based on analogy to turbulent flows, as estimated using the depth-averaged k-? turbulence model and a modification component. A fully conservative numerical algorithm, using wellbalanced slope limited centred scheme, is deployed to solve the governing equations. The present quasi single-phase model using four closure relationships for the bed shear stresses is evaluated against USGS experimental debris flow and compared with traditional quasi single-phase models and a recent physically enhanced two-phase model. It is found that the present quasi single-phase model performs much better than the traditional models, and is attractive in terms of computational cost while the two-phase model performs even better appreciably. 展开更多
关键词 DEBRIS flows QUASI SINGLE-PHASE mixturemodel Stresses DUE to fluctuations Well-balanced
原文传递
Influence of Fractal Dimension on Gas-Driven Two-Phase Flow in Fractal Porous Media:A VOF Model-Based Simulation
7
作者 Xiaolin Wang Richeng Liu +3 位作者 Kai Qiu Zhongzhong Liu Shisen Zhao Shuchen Li 《Computer Modeling in Engineering & Sciences》 2025年第7期289-307,共19页
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe... Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution. 展开更多
关键词 Fractal porous media gas-liquid two-phase flow fractal dimension vortex evolution VOF model displacement efficiency
在线阅读 下载PDF
Dynamic characterization of viscoelasticity during polymer flooding:A two-phase numerical well test model and field study
8
作者 Yang Wang Shi-Long Yang +3 位作者 Hang Xie Yu Jiang Shi-Qing Cheng Jia Zhang 《Petroleum Science》 2025年第6期2493-2501,共9页
Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer... Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model. 展开更多
关键词 Polymer flooding two-phase flow Numerical well test model Viscoelastic characteristic Nonlinear flow Near-well blockage
原文传递
Modification of the bubble drag force model and prediction of gasliquid two-phase flow dynamics in blade-type multiphase pumps
9
作者 Yu-Qing Zhang Guang-Tai Shi +3 位作者 Man-Qi Tang Ye-Xiang Xiao Hai-Gang Wen Zong-Liu Huang 《Petroleum Science》 2025年第9期3770-3786,共17页
In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase dra... In multiphase pumps transporting gas-liquid two-phase flows,the high-speed rotation of the impeller induces complex deformations in bubble shapes within the flow domain,making the prediction of gasliquid two-phase drag forces highly challenging in numerical simulations.To achieve precise prediction of the drag forces on irregular bubbles within multiphase pumps,this study modifies the existing bubble drag force model and applies the revised model to the prediction of gas-liquid two-phase flow within multiphase pumps.The research findings indicate that the modified drag force model significantly enhances the accuracy of predicting flow characteristics within the pump,particularly under high gas volume fraction conditions.The simulation results for gas phase distribution and vorticity exhibit strong agreement with experimental data.The modified drag model better captures the accumulation of the gas phase at the suction side of the impeller outlet.It also accurately predicts the vortex characteristics induced by bubble backflow from the trailing edges of the diffuser.Additionally,the adjustment of the drag coefficient enhances the model’s ability to represent local flow field characteristics,thereby optimizing the performance simulation methods of multiphase pumps.Compared to traditional drag force models,the modified model reduces prediction errors in head and efficiency by 36.4%and 27.5%,respectively.These results provide important theoretical foundations and model support for improving the accuracy of gas-liquid two-phase flow simulations and optimizing the design of multiphase pumps under high gas volume fraction conditions. 展开更多
关键词 Bubble drag force Gas-liquid two-phase flow Blade-type multiphase pump Population balance model(PBM)
原文传递
Efficient prediction of gaseous n-hexane removal in two-phase partitioning bioreactors with silicone oil based on the mechanism and kinetic models
10
作者 Lichao Lu Tuo Ju +6 位作者 Yangdan Fang Jingtao Hu Zhuqiu Sun Zhuowei Cheng Qian Li Jianmeng Chen Dong-zhi Chen 《Journal of Environmental Sciences》 2025年第8期729-740,共12页
Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mec... Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation. 展开更多
关键词 Mass transfer N-HEXANE two-phase partitioning bioreactors Silicone oil
原文传递
Numerical investigation on the engraving process of a pyrotechnic actuator with an improved two-phase flow model of interior ballistic
11
作者 Yue Li Cong Liu +1 位作者 Cheng Cheng Genghui Jiang 《Defence Technology(防务技术)》 2025年第4期120-132,共13页
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput... By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs. 展开更多
关键词 Pyrotechnic actuator Engraving process two-phase flow Pressure oscillation
在线阅读 下载PDF
Modeling and Experimental Study of an Open Two-Phase Loop Driven by Osmotic Pressure and Capillary Force
12
作者 Hanli Bi Zheng Peng +5 位作者 Chenpeng Liu Zhichao Jia Guoguang Li Yuandong Guo Hongxing Zhang Jianyin Miao 《Frontiers in Heat and Mass Transfer》 2025年第1期55-70,共16页
As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it ... As space technology advances,thermal control systems must effectively collect and dissipate heat from distributed,multi-source environments.Loop heat pipe is a highly reliable two-phase heat transfer component,but it has several limitations when addressing multi-source heat dissipation.Inspired by the transport and heat dissipation system of plants,large trees achieve stable and efficient liquid supply under the influence of two driving forces:capillary force during transpiration in the leaves(pull)and root pressure generated by osmotic pressure in the roots(push).The root pressure provides an effective liquid supply with a driving force exceeding 2 MPa,far greater than the driving force in conventional capillary-pumped two-phase loops.Research has shown that osmotic heat pipes offer a powerful driving force,and combining osmotic pressure with capillary force has significant advantages.Therefore,this paper designs a multi-evaporator,dual-drive two-phase loop,using both osmotic pressure and capillary force to solve the multi-source heat dissipation challenge.First,a transmembrane water flux model for the osmotic pressure-driven device was established to predict the maximum heat transfer capacity of the dual-drive two-phase loop.Then,an experimental setup for a multi-evaporator“osmotic pressure+capillary force”dual-drive two-phase loop was constructed,capable of transferring at least 235 W of power under a reverse gravity condition of 20 m.The study also analyzed the effects of reverse gravity height,heat load distribution among the three evaporators,startup sequence,and varying branch resistances on the performance of the dual-drive two-phase loop. 展开更多
关键词 Multi-heat sources osmotic pressure two-phase loop dual-drive loop heat pipe
在线阅读 下载PDF
Progresses on two-phase modeling of proton exchange membrane water electrolyzer
13
作者 Boshi Xu Tao Ouyang +8 位作者 Yang Wang Yang Yang Jun Li Liangliang Jiang Chaozhong Qin Dingding Ye Rong Chen Xun Zhu Qiang Liao 《Energy Reviews》 2024年第3期30-57,共28页
The Proton Exchange Membrane(PEM)water electrolyzer is considered one of the promising energy storing means for harnessing variable renewable energy sources to produce hydrogen.Understanding the internal fluid dynamic... The Proton Exchange Membrane(PEM)water electrolyzer is considered one of the promising energy storing means for harnessing variable renewable energy sources to produce hydrogen.Understanding the internal fluid dynamics,which are often challenging to directly observe experimentally,has prompted the use of numerical models to investigate two-phase flow within PEM water electrolyzers.In this study,we provide a comprehensive review of prior research focusing on two-phase modeling of PEM electrolyzers,encompassing both components at mesoscopic scales and the full electrolyzer at the macroscopic level.We delve into the specifics of various modeling approaches for two-phase flow at different scales and summarize and discuss the current state of the art in the field.Presently,two-phase models for the full electrolyzer predominantly employ a macroscopic homogeneous assumption.However,mesoscopic and microscopic models capable of tracking phase interfaces are limited to components.Challenges persist in integrating various modeling scales into a comprehensive electrolyzer model,particularly in coupling two-phase flow between the channels and porous media.Future efforts should focus on developing multi-scale models and simulating two-phase flow under fluctuating input conditions.Additionally,given the structural similarities between PEM water electrolyzers and PEM fuel cells,we compare and discuss differences in two-phase modeling between the two technologies.This work offers the insights for researchers in the field of modeling of PEM water electrolyzers and even fuel cells. 展开更多
关键词 Proton exchange membrane(PEM)water ELECTROLYZER two-phase model Multiscale modeling Water management Numerical simulation
在线阅读 下载PDF
Mechanism of the Fluidelastic Instability of a Flexible Tube with a Squeeze Film Within a Rigid Tube Array Subjected to Two-Phase Flow 被引量:1
14
作者 YANG Shi-hao LAI Jiang ZHU Hong-jun 《China Ocean Engineering》 2025年第5期855-865,共11页
The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the th... The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the threshold for fluidelastic instability and affect heat transfer efficiency.This paper presents a mathematical model incorporating the squeeze film force between the tube and the support structure.We aim to clarify the mechanisms underlying fluidelastic instability in tube bundle systems exposed to two-phase flow.Using a self-developed computer program,we performed numerical calculations to examine the influence of the squeeze film on the threshold of fluidelastic instability in the tube bundle system.Furthermore,we analyzed how the thickness and length of the squeeze film affect both the underlying mechanisms and the critical velocity of fluidelastic instability. 展开更多
关键词 fluidelastic instability tube bundles squeeze film eigenvalue problem two-phase flow
在线阅读 下载PDF
Dynamic Behavior of a Pipe Conveying a Gas-Liquid Two-Phase Flow Under External Excitations 被引量:1
15
作者 FU Guang-ming WANG Xiao +4 位作者 JIAO Hui-lin WANG Bo-ying SHAN Zheng-feng SUN Bao-jiang SU Jian 《China Ocean Engineering》 2025年第5期822-838,共17页
This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the... This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the excitation frequency aligns with the natural frequency of the pipe,significantly increasing the degree of operational risk.The governing equation of motion based on the Euler-Bernoulli beam is derived for the relative deflection with stationary simply supported ends,with the effects of the external excitations represented by source terms distributed along the pipe length.The fourth-order partial differential equation is solved via the generalized integral transform technique(GITT),with the solution successfully verified via comparison with results in the literature.A comprehensive analysis of the vibration phenomena and changes in the motion state of the pipe is conducted for three classes of external excitation conditions:same frequency and amplitude(SFSA),same frequency but different amplitudes(SFDA),and different frequencies and amplitudes(DFDA).The numerical results show that with increasing gas volume fraction,the position corresponding to the maximum vibration displacement shifts upward.Compared with conditions without external excitation,the vibration displacement of the pipe conveying two-phase flow under external excitation increases significantly.The frequency of external excitation has a significant effect on the dynamic behavior of a pipe conveying two-phase flow. 展开更多
关键词 pipe conveying fluid integral transform two-phase flow external excitations dynamic response forced vibrations
在线阅读 下载PDF
A Review of Pressure Drop Characteristics and Optimization Measures of Two-Phase Flow with Low Boiling Point Working Fluids in Microchannels
16
作者 Zongyu Jie Chao Dang Qingliang Meng 《Frontiers in Heat and Mass Transfer》 2025年第4期1053-1089,共37页
With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchan... With the increasing miniaturization of systems and surging demand for power density,accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers.Pressure drop,a critical hydraulic characteristic,serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels.This paper reviews the characteristics,prediction models,and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels.It systematically analyzes key influencing factors such as fluid physical properties,operating conditions,channel geometry,and flow patterns,and discusses the complex mechanisms of pressure drop under the coupling effect of multi-physical fields.Mainstream prediction models are reviewed:the homogeneous flow model simplifies calculations but shows large deviations at low quality;the separated flow model considers interphase interactions and can be applied to micro-scales after modification;the flow-pattern-based model performs zoned modeling but relies on subjective classification;machine learning improves prediction accuracy but faces the“black-box”problem.In terms of optimization,channel designs are improved through porous structures and micro-rib arrays,and flow rate distribution is optimized using splitters to balance pressure drop and heat transfer performance.This study provides theoretical support for microchannel thermal management in high-power-density devices. 展开更多
关键词 Pressure drop two-phase flow microchannels bubble shape prediction model
在线阅读 下载PDF
Pore-scale gas–water two-phase flow and relative permeability characteristics of disassociated hydrate reservoir
17
作者 Yu-Xuan Xia Derek Elsworth +3 位作者 Sai Xu Xuan-Zhe Xia Jian-Chao Cai Cheng Lu 《Petroleum Science》 2025年第8期3344-3356,共13页
Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristic... Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development. 展开更多
关键词 Clayey-silt reservoir Gasewater two-phase flow CT scanning Relative permeability Pore network model
原文传递
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model 被引量:1
18
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
在线阅读 下载PDF
Flow characteristics of solid-liquid two-phase flow in flexible vibrating pipelines
19
作者 Sheng-peng Xiao Chu-yi Wan +4 位作者 Hong-bo Zhu Dai Zhou Yan Bao Meng-meng Zhang Zi-rong Niu 《Journal of Hydrodynamics》 2025年第4期649-663,共15页
Vibration of flexible pipelines in the marine environment affects the flow characteristics of the transported materials inside the pipelines,which is related to transportation efficiency and energy consumption,thereby... Vibration of flexible pipelines in the marine environment affects the flow characteristics of the transported materials inside the pipelines,which is related to transportation efficiency and energy consumption,thereby necessitating further investigation.In this study,the flow characteristics of particle-liquid two-phase flow transported upward in flexible pipelines are investigated based on the computational fluid dynamics-discrete element method(CFD-DEM).Typical forms of vibration including standing wave vibration and traveling wave vibration are employed and compared with a stationary pipeline.Results reveal that particles in the upward-traveling-wave vibrating pipeline still mainly distribute in the middle of the pipeline,while particles in the standing-wave vibrating pipeline exhibit periodic transverse aggregation near the pipe wall,and the fluctuations of particle concentration and particle z-direction velocity over time in each cross section of the pipeline are more obviously suppressed.When the propagation direction of the vibration wave changes from the same direction as the particle transport to static and then to the opposite direction,its hindering and regulating effect on the particles gradually increases,and the pipeline pressure drop gradually decreases. 展开更多
关键词 Flexible pipeline PARTICLES solid-liquid two-phase flow VIBRATION
原文传递
Dual-scale insights of two-phase flow in inter-cleats based on microfluidics:Interface jumps and energy dissipation
20
作者 Jicheng Zhang Dawei Lv +3 位作者 Jon Jincai Zhang Feng Wang Dawei Yin Haiyang Yu 《International Journal of Mining Science and Technology》 2025年第3期451-465,共15页
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c... Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media. 展开更多
关键词 Inter-cleat MICROFLUIDICS two-phase flow Dual-scale Interface jump Inertial effect
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部