Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynam...Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering.展开更多
A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and...A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.展开更多
KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to eva...KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to evaluate the influence of varying hydrothermal synthesis temperatures on the physicochemical properties of both the KIT-5/Beta supports and the resulting catalysts.The catalytic performances of catalysts were evaluated under reaction conditions of 320℃,4 MPa H_(2)pressure,and a weight hourly space velocity(WHSV)of 4.8 h^(-1)for hydrodenitrogenation(HDN)of quinoline.The results indicated that the specific surface area and pore structure of the materials could be effectively regulated by adjusting the hydrothermal synthesis temperature,which in turn influenced the number of active sites on the catalyst.The NiW/KB-125 catalyst,synthesized at 125℃,presented the highest quinoline HDN efficiency(96.8%),which can be attributed to its favorable pore channel structure,greater Brønsted acid number,higher degree of metal sulfidation(80.12%)and appropriate metal-support interaction(MSI).展开更多
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul...The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.展开更多
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the...Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.展开更多
There is an urgent need to develop magnesium-matrix materials that exhibit both high thermal conductivity and low thermal expansion to ensure compatibility with chips.This study aims to develop a Mg-Zn-Cu alloy with h...There is an urgent need to develop magnesium-matrix materials that exhibit both high thermal conductivity and low thermal expansion to ensure compatibility with chips.This study aims to develop a Mg-Zn-Cu alloy with high thermal conductivity.Furthermore,it explores the preparation of AlN_(P)/Mg-Zn-Cu composites featuring low coefficients of thermal expansion.The stir casting method was utilized to fabricate the composites and an investigation was conducted to examine their microstructure and thermal properties.Results indicate that the addition of AlN_(P)reduces the thermal expansion coefficient while maintaining relatively high thermal conductivity.Specifically,the AlN_(P)/Mg-0.5Zn-0.5Cu composite with 30wt.%AlN_(P)achieves a thermal conductivity of 132.7 W·m^(-1)·K^(-1)and a thermal expansion coefficient of 18.5×10^(-6)K^(-1),rendering it suitable for electronic packaging applications where thermal management is critical.展开更多
In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires...In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires.Microstructure and property analyses in both the cold-drawn and annealed states show that the incorporation of graphene significantly improves the ductility and electrical conductivity of the copper wire.After annealing at 350℃ for 30 minutes,the composite wire demonstrates a tensile strength of 270 MPa and an electrical conductivity of 102.74%IACS,both superior to those of pure copper wire under identical conditions.At 150℃,the electrical conductivity of the annealed composite wire reaches 72.60%IACS,notably higher than the 68.19%IACS of pure copper.The results suggest that graphene is uniformly distributed within the composite wire,with minimal impact on conductivity,while effectively refining the copper grain structure to enhance ductility.Moreover,graphene suppresses copper lattice vibrations at elevated temperatures,reducing the rate of conductivity degradation.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied....Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.Therefore,to analyze its bearing characteristics under complex conditions-such as silty soil,chalky soil,and shallow bedrock-this paper employs finite element software to establish various soil combination scenarios.The load-displacement curves of the foundations under these scenarios are calculated to subsequently evaluate the horizontal ultimate bearing capacity.This study investigates the effects of shallow bedrock depth,the type of soil above the bedrock,the thickness of layered soil,and the quality of layered soil on the bearing characteristics of the monocolumn composite bucket foundation.Based on the principle of single-variable control,the ultimate bearing capacity characteristics of the foundation under different conditions are compared.The distribution of soil pressure inside and outside the bucket wall on the compressed side of the foundation,along with the plastic strain of the soil at the base of the foundation,is also analyzed.In conclusion,shallow bedrock somewhat reduces foundation bearing capacity.Under shallow bedrock conditions,the degree of influence on foundation bearing capacity characteristics can considerably vary on different upper soils.The thickness of each soil layer and the depth to bedrock in stratified soils also affect the bearing capacity of the foundation.The findings of this paper provide a theoretical reference for related foundation design and construction.In practice,the bearing performance of the foundation can be enhanced by improvingthe soil quality in the bucket,adjusting the penetration depth,adjusting the percentage of different types of soil layers in the bucket,and applying other technical construction methods.展开更多
To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as wel...To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well.Herein,we suggest an effective approach to control the micropore structure of silicon oxide(SiO_(x))/artificial graphite(AG)composite electrodes using a perforated current collector.The electrode features a unique pore structure,where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance,leading to a 20%improvement in rate capability at a 5C-rate discharge condition.Using microstructure-resolved modeling and simulations,we demonstrate that the patterned micropore structure enhances lithium-ion transport,mitigating the electrolyte concentration gradient of lithium-ion.Additionally,perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiO_(x)/AG composite electrode,significantly improving adhesion strength.This,in turn,suppresses mechanical degradation and leads to a 50%higher capacity retention.Thus,regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiO_(x)/AG composite electrodes,providing valuable insights into electrode engineering.展开更多
Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may...Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.展开更多
Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures ...Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties.展开更多
Electroslag remelting(ESR) is an important metallurgical process for producing high-purity materials with homogeneous compositions and sound microstructures,and its typical products are ingots or simple castings.The c...Electroslag remelting(ESR) is an important metallurgical process for producing high-purity materials with homogeneous compositions and sound microstructures,and its typical products are ingots or simple castings.The core principle involves the resistive melting of a consumable electrode within a slag pool,followed by the refining of molten metal droplets as they traverse the slag,and subsequent sequential solidification in a water-cooled mold.However,conventional ESR processes face limitations in producing large or complex-shaped components,enhancing production efficiency,achieving highly specialized microstructures,and meeting ultra-high purity demands for advanced applications.Advanced composite ESR technologies have been developed to overcome these limitations by innovatively modifying key process aspects.For instance,electrode systems are improved using vibration,rotation,or multiple electrodes.Enhanced mold design and solidification control are achieved through techniques including conductive molds,mold rotation,and ingot withdrawal.Precise control of the process is realized through the use of protective gas,vacuum,or elevated pressure,as well as the application of external fields such as magnetic fields or ultrasonic vibration.This review comprehensively summarizes these advanced techniques,examining their principles and characteristics,and discussing their specific advantages and challenges.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
According to the Bruggeman theory and Maxwell-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especi...According to the Bruggeman theory and Maxwell-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especially, the theory is suited to study the dielectric properties of two-phase random composites with a spherical interfacial shell. The theoretical results on dielectric properties of polystyrene-barium titanate composites with an interfacial shell are in good agreement with experimental data.展开更多
Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other...Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other properties of the composites were studied. The combination of results of TGA with SEM indicated that the interdependence between starch and PLA was increased gradually as the starch/PLA ratio reduced. DSC results showed that the glass transition temperature(Tg), melting temperature(Tm) and degree of crystallinity of PLA in composites were increased gradually, whereas the cold crystallization temperature(Tc) was gradually decreased as the starch/PLA ratio reduced. The rheological properties of composites were closely related with the interdependence of two-phase, with reducing starch/PLA proportion, the interdependence was increased, and then the strain for storage modulus was firstl reduced and then gradually increased. Frequency scanning showed that the storage modulus and complex viscosity were decreased with reducing starch content. As the starch/PLA ratio reduced, the matrix phase PLA was increased, so that the strength of composites was increased gradually, whereas water absorption rate was decreased gradually.展开更多
The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) ...The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) metal-metal composites on the basis of slip deformation of individual grains. This simulation method can assure the continuity of stress and displacement at the boundary during heterogeneous deformation and take arbitrary boundary conditions into consideration. The starting hot-extruded textures, as initial input condition, were taken into account in the FEPM simulation. The simulation results show that the main texture components and their evolution after various cold rolling reductions in 10% and 20%Nb/Al metal-metal composites are well qualitatively in agreement with the experimental ones. The initially extruded textures are rather weak, so they have no much influence on the simulated final cold rolling textures of the matrix aluminum for Nb/Al composites.展开更多
A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elast...A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elastic matrix. It is demon- strated that a pseudoelastic stress-strain loop in a macroscopic loading-unloading cy- cle can be obtained by microscopically stress induced forward and reverse martensitic transformations in the SMA particles. The relation between the macroscopic stress- strain response and the material parameters of the constituents of this composite is quantified through the micromechanics calculations, which reveals that the best duc- tility and thus the greatest energy absorption capacity of this novel microstructure can be obtained by the optimum material design.展开更多
Fracture is a very common failure mode of the composite materials,which seriously affects the reliability and service-life of composite materials.Therefore,the study of the fracture behavior of the composite materials...Fracture is a very common failure mode of the composite materials,which seriously affects the reliability and service-life of composite materials.Therefore,the study of the fracture behavior of the composite materials is of great significance and necessity,which demands an accurate and efficient numerical tool in general cases because of the complexity of the arising boundary-value or initial-boundary value problems.In this paper,a phase field model is adopted and applied for the numerical simulation of the crack nucleation and propagation in brittle linear elastic two-phase perforated/particulate composites under a quasi-static tensile loading.The phase field model can well describe the initiation,propagation and coalescence of the cracks without assuming the existence and the geometry of the initial cracks in advance.Its numerical implementation is realized within the framework of the finite element method(FEM).The accuracy and the efficiency of the present phase field model are verified by the available reference results in literature.In the numerical examples,we first study and discuss the influences of the hole/particle size on the crack propagation trajectory and the force-displacement curve.Then,the effects of the hole/particle shape on the crack initiation and propagation are investigated.Furthermore,numerical examples are presented and discussed to show the influences of the hole/particle location on the crack initiation and propagation characteristics.It will be demonstrated that the present phase field model is an efficient tool for the numerical simulation of the crack initiation and propagation problems in brittle two-phase composite materials,and the corresponding results may play an important role in predicting and preventing possible hazardous crack initiation and propagation in engineering applications.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.52293472,22473096 and 22471164)。
文摘Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering.
文摘A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.
基金Supported by the Autonomous Research Project of SKLCC(2024BWZ003)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA0390401)the Doctoral Research Start-up Funding of Shanxi Institute of Technology(026012).
文摘KIT-5/Beta composite supports were synthesized using an in situ self-assembly hydrothermal method,and NiW/KIT-5/Beta catalysts were prepared by impregnation.A series of characterization techniques were utilized to evaluate the influence of varying hydrothermal synthesis temperatures on the physicochemical properties of both the KIT-5/Beta supports and the resulting catalysts.The catalytic performances of catalysts were evaluated under reaction conditions of 320℃,4 MPa H_(2)pressure,and a weight hourly space velocity(WHSV)of 4.8 h^(-1)for hydrodenitrogenation(HDN)of quinoline.The results indicated that the specific surface area and pore structure of the materials could be effectively regulated by adjusting the hydrothermal synthesis temperature,which in turn influenced the number of active sites on the catalyst.The NiW/KB-125 catalyst,synthesized at 125℃,presented the highest quinoline HDN efficiency(96.8%),which can be attributed to its favorable pore channel structure,greater Brønsted acid number,higher degree of metal sulfidation(80.12%)and appropriate metal-support interaction(MSI).
文摘The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.
基金support provided by the Center for Fabrication and Application of Electronic Materials at Dokuz Eylül University,Türkiye。
文摘Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.
基金financially supported by National Natural Science Foundation of China(No.52175321)the Fund of Key Laboratory of High Temperature Electromagnetic Materials and Structure of MOE(No.KB202505)。
文摘There is an urgent need to develop magnesium-matrix materials that exhibit both high thermal conductivity and low thermal expansion to ensure compatibility with chips.This study aims to develop a Mg-Zn-Cu alloy with high thermal conductivity.Furthermore,it explores the preparation of AlN_(P)/Mg-Zn-Cu composites featuring low coefficients of thermal expansion.The stir casting method was utilized to fabricate the composites and an investigation was conducted to examine their microstructure and thermal properties.Results indicate that the addition of AlN_(P)reduces the thermal expansion coefficient while maintaining relatively high thermal conductivity.Specifically,the AlN_(P)/Mg-0.5Zn-0.5Cu composite with 30wt.%AlN_(P)achieves a thermal conductivity of 132.7 W·m^(-1)·K^(-1)and a thermal expansion coefficient of 18.5×10^(-6)K^(-1),rendering it suitable for electronic packaging applications where thermal management is critical.
基金Funded by Hunan Provincial Natural Science Foundation(No.2023JJ40074)Hunan Provincial Education Department Excellent Youth Project(No.21B0757)Hunan Provincial Engineering Technology Center(No.2022TP2036)。
文摘In this study,multilayer lamination welding was employed to prepare graphene/copper(Gr/Cu)composite billets from graphene-coated copper foils,followed by multi-pass cold drawing to produce Φ1 mm Gr/Cu composite wires.Microstructure and property analyses in both the cold-drawn and annealed states show that the incorporation of graphene significantly improves the ductility and electrical conductivity of the copper wire.After annealing at 350℃ for 30 minutes,the composite wire demonstrates a tensile strength of 270 MPa and an electrical conductivity of 102.74%IACS,both superior to those of pure copper wire under identical conditions.At 150℃,the electrical conductivity of the annealed composite wire reaches 72.60%IACS,notably higher than the 68.19%IACS of pure copper.The results suggest that graphene is uniformly distributed within the composite wire,with minimal impact on conductivity,while effectively refining the copper grain structure to enhance ductility.Moreover,graphene suppresses copper lattice vibrations at elevated temperatures,reducing the rate of conductivity degradation.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
文摘Monocolumn composite bucket foundation is a new type of offshore wind energy foundation.Its bearing characteristics under shallow bedrock conditions and complex geological conditions have not been extensively studied.Therefore,to analyze its bearing characteristics under complex conditions-such as silty soil,chalky soil,and shallow bedrock-this paper employs finite element software to establish various soil combination scenarios.The load-displacement curves of the foundations under these scenarios are calculated to subsequently evaluate the horizontal ultimate bearing capacity.This study investigates the effects of shallow bedrock depth,the type of soil above the bedrock,the thickness of layered soil,and the quality of layered soil on the bearing characteristics of the monocolumn composite bucket foundation.Based on the principle of single-variable control,the ultimate bearing capacity characteristics of the foundation under different conditions are compared.The distribution of soil pressure inside and outside the bucket wall on the compressed side of the foundation,along with the plastic strain of the soil at the base of the foundation,is also analyzed.In conclusion,shallow bedrock somewhat reduces foundation bearing capacity.Under shallow bedrock conditions,the degree of influence on foundation bearing capacity characteristics can considerably vary on different upper soils.The thickness of each soil layer and the depth to bedrock in stratified soils also affect the bearing capacity of the foundation.The findings of this paper provide a theoretical reference for related foundation design and construction.In practice,the bearing performance of the foundation can be enhanced by improvingthe soil quality in the bucket,adjusting the penetration depth,adjusting the percentage of different types of soil layers in the bucket,and applying other technical construction methods.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2021M3H4A1A02048529)the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government under grant No.RS-2022-00155854support from the DGIST Supercomputing and Big Data Center.
文摘To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well.Herein,we suggest an effective approach to control the micropore structure of silicon oxide(SiO_(x))/artificial graphite(AG)composite electrodes using a perforated current collector.The electrode features a unique pore structure,where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance,leading to a 20%improvement in rate capability at a 5C-rate discharge condition.Using microstructure-resolved modeling and simulations,we demonstrate that the patterned micropore structure enhances lithium-ion transport,mitigating the electrolyte concentration gradient of lithium-ion.Additionally,perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiO_(x)/AG composite electrode,significantly improving adhesion strength.This,in turn,suppresses mechanical degradation and leads to a 50%higher capacity retention.Thus,regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiO_(x)/AG composite electrodes,providing valuable insights into electrode engineering.
基金funded by the American University of Sharjah.United Arab Emirates award number EN 9502-FRG19-M-E75。
文摘Variable stiffness composites present a promising solution for mitigating impact loads via varying the fiber volume fraction layer-wise,thereby adjusting the panel's stiffness.Since each layer of the composite may be affected by a different failure mode,the optimal fiber volume fraction to suppress damage initiation and evolution is different across the layers.This research examines how re-allocating the fibers layer-wise enhances the composites'impact resistance.In this study,constant stiffness panels with the same fiber volume fraction throughout the layers are compared to variable stiffness ones by varying volume fraction layer-wise.A method is established that utilizes numerical analysis coupled with optimization techniques to determine the optimal fiber volume fraction in both scenarios.Three different reinforcement fibers(Kevlar,carbon,and glass)embedded in epoxy resin were studied.Panels were manufactured and tested under various loading conditions to validate results.Kevlar reinforcement revealed the highest tensile toughness,followed by carbon and then glass fibers.Varying reinforcement volume fraction significantly influences failure modes.Higher fractions lead to matrix cracking and debonding,while lower fractions result in more fiber breakage.The optimal volume fraction for maximizing fiber breakage energy is around 45%,whereas it is about 90%for matrix cracking and debonding.A drop tower test was used to examine the composite structure's behavior under lowvelocity impact,confirming the superiority of Kevlar-reinforced composites with variable stiffness.Conversely,glass-reinforced composites with constant stiffness revealed the lowest performance with the highest deflection.Across all reinforcement materials,the variable stiffness structure consistently outperformed its constant stiffness counterpart.
基金financially supported by National Natural Science Foundation of China(Grant Nos.12141203,52202083,W2421013)the Natural Science Foundation Project of Shaanxi Province(Grant No.2024JC-YBMS-450)+1 种基金the Sichuan Science and Technology Program(Grant No.2024YFHZ0265)the Open Project of High-end Equipment Advanced Materials and Manufacturing Technology Laboratory(Grant No.2023KFKT0005)。
文摘Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties.
基金supported by the National Natural Science Foundation of China (NSFC 52175352)。
文摘Electroslag remelting(ESR) is an important metallurgical process for producing high-purity materials with homogeneous compositions and sound microstructures,and its typical products are ingots or simple castings.The core principle involves the resistive melting of a consumable electrode within a slag pool,followed by the refining of molten metal droplets as they traverse the slag,and subsequent sequential solidification in a water-cooled mold.However,conventional ESR processes face limitations in producing large or complex-shaped components,enhancing production efficiency,achieving highly specialized microstructures,and meeting ultra-high purity demands for advanced applications.Advanced composite ESR technologies have been developed to overcome these limitations by innovatively modifying key process aspects.For instance,electrode systems are improved using vibration,rotation,or multiple electrodes.Enhanced mold design and solidification control are achieved through techniques including conductive molds,mold rotation,and ingot withdrawal.Precise control of the process is realized through the use of protective gas,vacuum,or elevated pressure,as well as the application of external fields such as magnetic fields or ultrasonic vibration.This review comprehensively summarizes these advanced techniques,examining their principles and characteristics,and discussing their specific advantages and challenges.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
文摘According to the Bruggeman theory and Maxwell-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especially, the theory is suited to study the dielectric properties of two-phase random composites with a spherical interfacial shell. The theoretical results on dielectric properties of polystyrene-barium titanate composites with an interfacial shell are in good agreement with experimental data.
基金Funded by the National Forestry Public Welfare Industry Major Projects of Scientific Research(No.201504502)National Natural Science Foundation of China(No.31200442)Supported by the Post Doctorate Research from the Ministry of Science and Technology of China(No.2014M550178)
文摘Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other properties of the composites were studied. The combination of results of TGA with SEM indicated that the interdependence between starch and PLA was increased gradually as the starch/PLA ratio reduced. DSC results showed that the glass transition temperature(Tg), melting temperature(Tm) and degree of crystallinity of PLA in composites were increased gradually, whereas the cold crystallization temperature(Tc) was gradually decreased as the starch/PLA ratio reduced. The rheological properties of composites were closely related with the interdependence of two-phase, with reducing starch/PLA proportion, the interdependence was increased, and then the strain for storage modulus was firstl reduced and then gradually increased. Frequency scanning showed that the storage modulus and complex viscosity were decreased with reducing starch content. As the starch/PLA ratio reduced, the matrix phase PLA was increased, so that the strength of composites was increased gradually, whereas water absorption rate was decreased gradually.
文摘The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) metal-metal composites on the basis of slip deformation of individual grains. This simulation method can assure the continuity of stress and displacement at the boundary during heterogeneous deformation and take arbitrary boundary conditions into consideration. The starting hot-extruded textures, as initial input condition, were taken into account in the FEPM simulation. The simulation results show that the main texture components and their evolution after various cold rolling reductions in 10% and 20%Nb/Al metal-metal composites are well qualitatively in agreement with the experimental ones. The initially extruded textures are rather weak, so they have no much influence on the simulated final cold rolling textures of the matrix aluminum for Nb/Al composites.
文摘A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elastic matrix. It is demon- strated that a pseudoelastic stress-strain loop in a macroscopic loading-unloading cy- cle can be obtained by microscopically stress induced forward and reverse martensitic transformations in the SMA particles. The relation between the macroscopic stress- strain response and the material parameters of the constituents of this composite is quantified through the micromechanics calculations, which reveals that the best duc- tility and thus the greatest energy absorption capacity of this novel microstructure can be obtained by the optimum material design.
基金the National Natural Science Foundation of China(Grants U1333201 and U1833116)。
文摘Fracture is a very common failure mode of the composite materials,which seriously affects the reliability and service-life of composite materials.Therefore,the study of the fracture behavior of the composite materials is of great significance and necessity,which demands an accurate and efficient numerical tool in general cases because of the complexity of the arising boundary-value or initial-boundary value problems.In this paper,a phase field model is adopted and applied for the numerical simulation of the crack nucleation and propagation in brittle linear elastic two-phase perforated/particulate composites under a quasi-static tensile loading.The phase field model can well describe the initiation,propagation and coalescence of the cracks without assuming the existence and the geometry of the initial cracks in advance.Its numerical implementation is realized within the framework of the finite element method(FEM).The accuracy and the efficiency of the present phase field model are verified by the available reference results in literature.In the numerical examples,we first study and discuss the influences of the hole/particle size on the crack propagation trajectory and the force-displacement curve.Then,the effects of the hole/particle shape on the crack initiation and propagation are investigated.Furthermore,numerical examples are presented and discussed to show the influences of the hole/particle location on the crack initiation and propagation characteristics.It will be demonstrated that the present phase field model is an efficient tool for the numerical simulation of the crack initiation and propagation problems in brittle two-phase composite materials,and the corresponding results may play an important role in predicting and preventing possible hazardous crack initiation and propagation in engineering applications.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.