Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose...Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.展开更多
With the development of multichannel audio systems, corresponding audio quality assessment techniques, especially the objective prediction models, have received increasing attention. Existing methods, such as PEAQ(Per...With the development of multichannel audio systems, corresponding audio quality assessment techniques, especially the objective prediction models, have received increasing attention. Existing methods, such as PEAQ(Perceptual Evaluation of Audio Quality) recommended by ITU, usually lead to poor results when assessing multichannel audio, which have little correlation with subjective scores. In this paper, a novel two-layer model based on Multiple Linear Regression(MLR) and Neural Network(NN) is proposed. Through the first layer, two indicators of multichannel audio, Audio Quality Score(AQS) and Spatial Perception Score(SPS) are derived, and through the second layer the overall score is output. The final results show that this model can not only improve the correlation with the subjective test score by 30.7% and decrease the Root Mean Square Error(RMSE) by 44.6%, but also add two new indicators: AQS and SPS, which can help reflect the multichannel audio quality more clearly.展开更多
For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy...For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.展开更多
Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instabi...Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instability under an electric field, is an electrostatic force exerted on the free charges accumulated at the dividing interface. Normal mode analysis is considered to study the linear stability of the disturbances layers. The solutions of the linearized equations of motion with the boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. These equations are parameterized by Weber number, Reynolds number, Marangoni number, dimensionless conductivities, and dimensionless electric potentials. The case of long waves interfaciaJ stability has been studied. The stability criteria are performed theoreticaily in which stability diagrams are obtained. In the limiting cases, some previously published results can be considered as particular cases of our results. It is found that the Reynolds number plays a destabilizing role in the stability criteria, while the damping influence is observed for the increasing of Marangoni number and Maxwell relaxation time.展开更多
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so...Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.展开更多
This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerge...This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerged cylindrical buoy.The system is modeled as a two-layer fluid with infinite horizontal extent and finite depth.The radiation problem is analyzed in the context of linear water waves.The fluid domain is divided into outer and inner zones,and mathematical solutions for the pitch radiating potential are derived for the corresponding boundary valve problem in these zones using the separation of variables approach.Using the matching eigenfunction expansion method,the unknown coefficients in the analytical expression of the radiation potentials are evaluated.The resulting radiation potential is then used to compute the added mass and damping coefficients.Several numerical results for the added mass and damping coefficients are investigated for numerous parameters,particularly the effects of the cylinder radius,the draft of the submerged cylinder,and the density proportion between the two fluid layers across different frequency ranges.The major findings are presented and discussed.展开更多
Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class at...Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security.展开更多
BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To ...BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To develop an interpretable noninvasive early diagnostic model for PDAC using plasma extracellular vesicle long RNA(EvlRNA).METHODS The diagnostic model was constructed based on plasma EvlRNA data.During the process of establishing the model,EvlRNA-index was introduced,and four algorithms were adopted to calculate EvlRNA-index.After the model was successfully constructed,performance evaluation was conducted.A series of bioinformatics methods were adopted to explore the potential mechanism of EvlRNA-index as the input feature of the model.And the relationship between key characteristics and PDAC were explored at the single-cell level.RESULTS A novel interpretable machine learning framework was developed based on plasma EvlRNA.In this framework,a two-layer classifier was established.A new concept was proposed:EvlRNA-index.Based on EvlRNA-index,a cancer diagnostic model was established,and a good diagnostic effect was achieved.The accuracy of PDACandCPvsHealth-Probabilistic PCA Index-SVM(PDAC and chronic pancreatitis vs health-probabilistic principal component analysis index-support vector machine)(1-18)was 91.51%,with Mathew’s correlation coefficient 0.7760 and area under the curve 0.9560.In the second layer of the model,the accuracy of PDACvsCP-Probabilistic PCA Index-RF(PDAC vs chronic pancreatitis-probabilistic principal component analysis index-random forest)(2-17)was 93.83%,with Mathew’s correlation coefficient 0.8422 and area under the curve 0.9698.Forty-nine PDAC-related genes were identified,among which 16 were known,inferring that the remaining ones were also PDAC-related genes.CONCLUSION An interpretable two-layer machine learning framework was proposed for early diagnosis and prediction of PDAC based on plasma EvlRNA,providing new insights into the clinical value of EvlRNA.展开更多
In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapi...In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy.展开更多
Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simul...Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters.展开更多
Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equ...Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equipment on ships.Compared to single-stack system,MFCS may be difficult to apply traditional energy management strategies(EMS)due to their complex structure.In this paper,a two-layer power allocation strategy for MFCS of a hydrogen fuel cell ship is proposed to reduce the complexity of the allocation task by splitting it into each layer of the EMS.The first layer of the EMSis centered on the Nonlinear Model Predictive Control(NMPC).The Northern Goshawk Optimization(NGO)algorithm is used to solve the nonlinear optimization problem in NMPC,and the local fine search is performed using sequential quadratic programming(SQP).Based on the power allocation results of the first layer,the second layer is centered on a fuzzy rule-based adaptive power allocation strategy(AP-Fuzzy).The membership function bounds of the fuzzy controller are related to the aging level of the MFCS.The Particle Swarm Optimization(PSO)algorithm is used to optimize the parameters of the residual membership function to improve the performance of the proposed strategy.The effectiveness of the proposed EMS is verified by comparing it with the traditional EMS.The experimental results show that the EMS proposed in this paper can ensure reasonable hydrogen consumption,slow down the FC aging and equalize its performance,effectively extend the system life,and ensure that the ship has good endurance after completing the mission.展开更多
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assi...The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assigned the specific values.As for the multi-layer Boussinesq-type models with the inclusion of the vertical velocity,however,the effect of the different values of these coefficients on linear and nonlinear performances has never been investigated yet.The present study focuses on a two-layer Boussinesq-type model with the highest spatial derivatives being 2 and theoretically and numerically examines the effect of the coefficient on model performance.Theoretical analysis show that different values for(0.13≤α≤0.25)do not have great effects on the high accuracy of the linear shoaling,linear phase celerity and even third-order nonlinearity for water depth range of 0<kh≤10(k is wave number and h is water depth).The corresponding errors using different values are restricted within 0.1%,0.1%and 1%for the linear shoaling amplitude,dispersion and nonlinear harmonics,respectively.Numerical tests including regular wave shoaling over mildly varying slope from deep to shallow water,regular wave propagation over submerged bar,bichromatic wave group and focusing wave propagation over deep water are conducted.The comparison between numerical results using different values of,experimental data and analytical solutions confirm the theoretical analysis.The flexibility and consistency of the two-layer Boussinesq-type model is therefore demonstrated theoretically and numerically.展开更多
A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon...A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.展开更多
In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of pub...In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of public opinion propagation into two layers:the original topic layer and the derived topic layer.Messages are transmitted separately by the SEIR model in the two topic layers,which are independent and interactive.The influence of the topic derivation rate on the propagation trend is established by solving for the equilibrium point and propagation threshold.Further,we establish the relationship between the original topic and the derived topic by simulation.This paper uses the Baidu index to demonstrate the correctness of the model.The relationship between the derived topic and the original topic is verified by adjusting the parameters by the control variable method.The results show that the proposed model is consistent with the propagation of actual public opinion.展开更多
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib...This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.展开更多
In the present study a numerical model developed by Lynett and Liu (2002) is modified to include density difference in a stratified two-layer fluid in a three-dimensional internal wave domain. The internal solitary ...In the present study a numerical model developed by Lynett and Liu (2002) is modified to include density difference in a stratified two-layer fluid in a three-dimensional internal wave domain. The internal solitary wave (ISW) in the model is assumed to be weakly nonlinear and weakly dispersive, and the viscosity effects at all boundaries are ignored. The governing equations based on the Navier-Stokes and Euler equations are solved for internal solitary wave propagation over variable seabed topography. Theoretical formulations are established, from which analytical solutions are obtained, in addition to numerical results. Wave profiles from previous experimental studies are compared with the numerical results from the present analytical solutions. Numerical models developed on the basis of the present analytical solutions are better than those developed by Lynett and Liu (2002). The results of numerical modeling agree well with the experimental data.展开更多
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les...Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.40674063)National Hi-tech Research and Development Program of China(863Program)(Grant No.2006AA09Z311)
文摘Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.
基金supported by the National Natural Science Foundation of China (No.61571044,No.11590772,and No.61473041)
文摘With the development of multichannel audio systems, corresponding audio quality assessment techniques, especially the objective prediction models, have received increasing attention. Existing methods, such as PEAQ(Perceptual Evaluation of Audio Quality) recommended by ITU, usually lead to poor results when assessing multichannel audio, which have little correlation with subjective scores. In this paper, a novel two-layer model based on Multiple Linear Regression(MLR) and Neural Network(NN) is proposed. Through the first layer, two indicators of multichannel audio, Audio Quality Score(AQS) and Spatial Perception Score(SPS) are derived, and through the second layer the overall score is output. The final results show that this model can not only improve the correlation with the subjective test score by 30.7% and decrease the Root Mean Square Error(RMSE) by 44.6%, but also add two new indicators: AQS and SPS, which can help reflect the multichannel audio quality more clearly.
文摘For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.
文摘Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instability under an electric field, is an electrostatic force exerted on the free charges accumulated at the dividing interface. Normal mode analysis is considered to study the linear stability of the disturbances layers. The solutions of the linearized equations of motion with the boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. These equations are parameterized by Weber number, Reynolds number, Marangoni number, dimensionless conductivities, and dimensionless electric potentials. The case of long waves interfaciaJ stability has been studied. The stability criteria are performed theoreticaily in which stability diagrams are obtained. In the limiting cases, some previously published results can be considered as particular cases of our results. It is found that the Reynolds number plays a destabilizing role in the stability criteria, while the damping influence is observed for the increasing of Marangoni number and Maxwell relaxation time.
文摘Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.
基金supported by MHRD as researcher C.K.Neog received the MHRD Institute GATE scholarship from Govt.of India.
文摘This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerged cylindrical buoy.The system is modeled as a two-layer fluid with infinite horizontal extent and finite depth.The radiation problem is analyzed in the context of linear water waves.The fluid domain is divided into outer and inner zones,and mathematical solutions for the pitch radiating potential are derived for the corresponding boundary valve problem in these zones using the separation of variables approach.Using the matching eigenfunction expansion method,the unknown coefficients in the analytical expression of the radiation potentials are evaluated.The resulting radiation potential is then used to compute the added mass and damping coefficients.Several numerical results for the added mass and damping coefficients are investigated for numerous parameters,particularly the effects of the cylinder radius,the draft of the submerged cylinder,and the density proportion between the two fluid layers across different frequency ranges.The major findings are presented and discussed.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)—Innovative Human Resource Development for Local Intellectualization program grant funded by the Korea government(MSIT)(IITP-2025-RS-2022-00156334)in part by Liaoning Province Nature Fund Project(2024-BSLH-214).
文摘Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security.
基金Supported by Talent Scientific Research Start-up Foundation of Wannan Medical College,No.WYRCQD2023045.
文摘BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To develop an interpretable noninvasive early diagnostic model for PDAC using plasma extracellular vesicle long RNA(EvlRNA).METHODS The diagnostic model was constructed based on plasma EvlRNA data.During the process of establishing the model,EvlRNA-index was introduced,and four algorithms were adopted to calculate EvlRNA-index.After the model was successfully constructed,performance evaluation was conducted.A series of bioinformatics methods were adopted to explore the potential mechanism of EvlRNA-index as the input feature of the model.And the relationship between key characteristics and PDAC were explored at the single-cell level.RESULTS A novel interpretable machine learning framework was developed based on plasma EvlRNA.In this framework,a two-layer classifier was established.A new concept was proposed:EvlRNA-index.Based on EvlRNA-index,a cancer diagnostic model was established,and a good diagnostic effect was achieved.The accuracy of PDACandCPvsHealth-Probabilistic PCA Index-SVM(PDAC and chronic pancreatitis vs health-probabilistic principal component analysis index-support vector machine)(1-18)was 91.51%,with Mathew’s correlation coefficient 0.7760 and area under the curve 0.9560.In the second layer of the model,the accuracy of PDACvsCP-Probabilistic PCA Index-RF(PDAC vs chronic pancreatitis-probabilistic principal component analysis index-random forest)(2-17)was 93.83%,with Mathew’s correlation coefficient 0.8422 and area under the curve 0.9698.Forty-nine PDAC-related genes were identified,among which 16 were known,inferring that the remaining ones were also PDAC-related genes.CONCLUSION An interpretable two-layer machine learning framework was proposed for early diagnosis and prediction of PDAC based on plasma EvlRNA,providing new insights into the clinical value of EvlRNA.
基金supported by the Basic Scientific Research Business Fund Project of Higher Education Institutions in Heilongjiang Province(145409601)the First Batch of Experimental Teaching and Teaching Laboratory Construction Research Projects in Heilongjiang Province(SJGZ20240038).
文摘In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy.
基金The National Natural Science Foundation under contract Nos 52171247,51779022,52071057,and 51709054.
文摘Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters.
基金supported by the National Key R&D Program of China(2022YFB4301403).
文摘Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equipment on ships.Compared to single-stack system,MFCS may be difficult to apply traditional energy management strategies(EMS)due to their complex structure.In this paper,a two-layer power allocation strategy for MFCS of a hydrogen fuel cell ship is proposed to reduce the complexity of the allocation task by splitting it into each layer of the EMS.The first layer of the EMSis centered on the Nonlinear Model Predictive Control(NMPC).The Northern Goshawk Optimization(NGO)algorithm is used to solve the nonlinear optimization problem in NMPC,and the local fine search is performed using sequential quadratic programming(SQP).Based on the power allocation results of the first layer,the second layer is centered on a fuzzy rule-based adaptive power allocation strategy(AP-Fuzzy).The membership function bounds of the fuzzy controller are related to the aging level of the MFCS.The Particle Swarm Optimization(PSO)algorithm is used to optimize the parameters of the residual membership function to improve the performance of the proposed strategy.The effectiveness of the proposed EMS is verified by comparing it with the traditional EMS.The experimental results show that the EMS proposed in this paper can ensure reasonable hydrogen consumption,slow down the FC aging and equalize its performance,effectively extend the system life,and ensure that the ship has good endurance after completing the mission.
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51779022,51809053,and 51579034)the Innovation Team Project of Estuary and Coast Protection and Management(Grant No.Y220013)the Open Project Fund of State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP19015).
文摘The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assigned the specific values.As for the multi-layer Boussinesq-type models with the inclusion of the vertical velocity,however,the effect of the different values of these coefficients on linear and nonlinear performances has never been investigated yet.The present study focuses on a two-layer Boussinesq-type model with the highest spatial derivatives being 2 and theoretically and numerically examines the effect of the coefficient on model performance.Theoretical analysis show that different values for(0.13≤α≤0.25)do not have great effects on the high accuracy of the linear shoaling,linear phase celerity and even third-order nonlinearity for water depth range of 0<kh≤10(k is wave number and h is water depth).The corresponding errors using different values are restricted within 0.1%,0.1%and 1%for the linear shoaling amplitude,dispersion and nonlinear harmonics,respectively.Numerical tests including regular wave shoaling over mildly varying slope from deep to shallow water,regular wave propagation over submerged bar,bichromatic wave group and focusing wave propagation over deep water are conducted.The comparison between numerical results using different values of,experimental data and analytical solutions confirm the theoretical analysis.The flexibility and consistency of the two-layer Boussinesq-type model is therefore demonstrated theoretically and numerically.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB403501)the National Natural Science Foundation of China (GrantNos. 41175058,41275062,and 11202106)
文摘A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.
基金in part by the National Natural Science Foundation of China(No.51334003).
文摘In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of public opinion propagation into two layers:the original topic layer and the derived topic layer.Messages are transmitted separately by the SEIR model in the two topic layers,which are independent and interactive.The influence of the topic derivation rate on the propagation trend is established by solving for the equilibrium point and propagation threshold.Further,we establish the relationship between the original topic and the derived topic by simulation.This paper uses the Baidu index to demonstrate the correctness of the model.The relationship between the derived topic and the original topic is verified by adjusting the parameters by the control variable method.The results show that the proposed model is consistent with the propagation of actual public opinion.
文摘This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.
文摘In the present study a numerical model developed by Lynett and Liu (2002) is modified to include density difference in a stratified two-layer fluid in a three-dimensional internal wave domain. The internal solitary wave (ISW) in the model is assumed to be weakly nonlinear and weakly dispersive, and the viscosity effects at all boundaries are ignored. The governing equations based on the Navier-Stokes and Euler equations are solved for internal solitary wave propagation over variable seabed topography. Theoretical formulations are established, from which analytical solutions are obtained, in addition to numerical results. Wave profiles from previous experimental studies are compared with the numerical results from the present analytical solutions. Numerical models developed on the basis of the present analytical solutions are better than those developed by Lynett and Liu (2002). The results of numerical modeling agree well with the experimental data.
文摘Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.