期刊文献+
共找到907,598篇文章
< 1 2 250 >
每页显示 20 50 100
Joint inversion of gravity and magnetic data for a two-layer model 被引量:1
1
作者 江凡 吴健生 王家林 《Applied Geophysics》 SCIE CSCD 2008年第4期331-339,共9页
Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose... Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method. 展开更多
关键词 two-layer model joint inversion of gravity and magnetic data Cenozoic andcrystalline basement
在线阅读 下载PDF
A Novel Two-Layer Model for Overall Quality Assessment of Multichannel Audio
2
作者 Jiyue Liu Jing Wang +2 位作者 Min Liu Xiang Xie Jingming Kuang 《China Communications》 SCIE CSCD 2017年第9期42-51,共10页
With the development of multichannel audio systems, corresponding audio quality assessment techniques, especially the objective prediction models, have received increasing attention. Existing methods, such as PEAQ(Per... With the development of multichannel audio systems, corresponding audio quality assessment techniques, especially the objective prediction models, have received increasing attention. Existing methods, such as PEAQ(Perceptual Evaluation of Audio Quality) recommended by ITU, usually lead to poor results when assessing multichannel audio, which have little correlation with subjective scores. In this paper, a novel two-layer model based on Multiple Linear Regression(MLR) and Neural Network(NN) is proposed. Through the first layer, two indicators of multichannel audio, Audio Quality Score(AQS) and Spatial Perception Score(SPS) are derived, and through the second layer the overall score is output. The final results show that this model can not only improve the correlation with the subjective test score by 30.7% and decrease the Root Mean Square Error(RMSE) by 44.6%, but also add two new indicators: AQS and SPS, which can help reflect the multichannel audio quality more clearly. 展开更多
关键词 MULTICHANNEL AUDIO two-layermodel AUDIO QUALITY assessment multiple lin-ear regression NEURAL network
在线阅读 下载PDF
Evaluating Two-Layer Models for Velocity Profiles in Open-Channels with Submerged Vegetation 被引量:3
3
作者 Xiaonan Tang 《Journal of Geoscience and Environment Protection》 2019年第1期68-80,共13页
For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy... For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used. 展开更多
关键词 AQUATIC VEGETATION VELOCITY Profile Vegetated FLOW ANALYTICAL model RIGID VEGETATION Open-Channel FLOW
暂未订购
A Two-Layer Model for Superposed Electrified Maxwell Fluids in Presence of Heat Transfer 被引量:1
4
作者 Kadry Zakaria Magdy A. Sirwah Sameh A. Alkharashi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第6期1077-1094,共18页
Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instabi... Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instability under an electric field, is an electrostatic force exerted on the free charges accumulated at the dividing interface. Normal mode analysis is considered to study the linear stability of the disturbances layers. The solutions of the linearized equations of motion with the boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. These equations are parameterized by Weber number, Reynolds number, Marangoni number, dimensionless conductivities, and dimensionless electric potentials. The case of long waves interfaciaJ stability has been studied. The stability criteria are performed theoreticaily in which stability diagrams are obtained. In the limiting cases, some previously published results can be considered as particular cases of our results. It is found that the Reynolds number plays a destabilizing role in the stability criteria, while the damping influence is observed for the increasing of Marangoni number and Maxwell relaxation time. 展开更多
关键词 modified-Darcy-Maxwell model two layers stability heat transfer surface charges porous media
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
5
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Pitch Motion Analysis of a Submerged Cylindrical Structure in a Two-layer Fluid
6
作者 Champak Kr.Neog Mohammad Hassan 《哈尔滨工程大学学报(英文版)》 2025年第5期984-997,共14页
This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerge... This study investigates the effects of radiation force due to the rotational pitch motion of a wave energy device,which comprises a coaxial bottom-mounted cylindrical caisson in a two-layer fluid,along with a submerged cylindrical buoy.The system is modeled as a two-layer fluid with infinite horizontal extent and finite depth.The radiation problem is analyzed in the context of linear water waves.The fluid domain is divided into outer and inner zones,and mathematical solutions for the pitch radiating potential are derived for the corresponding boundary valve problem in these zones using the separation of variables approach.Using the matching eigenfunction expansion method,the unknown coefficients in the analytical expression of the radiation potentials are evaluated.The resulting radiation potential is then used to compute the added mass and damping coefficients.Several numerical results for the added mass and damping coefficients are investigated for numerous parameters,particularly the effects of the cylinder radius,the draft of the submerged cylinder,and the density proportion between the two fluid layers across different frequency ranges.The major findings are presented and discussed. 展开更多
关键词 Pitch radiation Eigenfunction expansion two-layer Hydrodynamic coefficients Submerged cylinder Bottom-mounted cylinder
在线阅读 下载PDF
A Two-Layer Network Intrusion Detection Method Incorporating LSTM and Stacking Ensemble Learning
7
作者 Jun Wang Chaoren Ge +4 位作者 Yihong Li Huimin Zhao Qiang Fu Kerang Cao Hoekyung Jung 《Computers, Materials & Continua》 2025年第6期5129-5153,共25页
Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class at... Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security. 展开更多
关键词 two-layer architecture minority class attack stacking ensemble learning network intrusion detection
在线阅读 下载PDF
Early cancer diagnosis via interpretable two-layer machine learning of plasma extracellular vesicle long RNA
8
作者 Shi-Cai Liu Han Zhang 《World Journal of Gastrointestinal Oncology》 2025年第11期254-277,共24页
BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To ... BACKGROUND The early diagnosis rate of pancreatic ductal adenocarcinoma(PDAC)is low and the prognosis is poor.It is important to develop an interpretable noninvasive early diagnostic model in clinical practice.AIM To develop an interpretable noninvasive early diagnostic model for PDAC using plasma extracellular vesicle long RNA(EvlRNA).METHODS The diagnostic model was constructed based on plasma EvlRNA data.During the process of establishing the model,EvlRNA-index was introduced,and four algorithms were adopted to calculate EvlRNA-index.After the model was successfully constructed,performance evaluation was conducted.A series of bioinformatics methods were adopted to explore the potential mechanism of EvlRNA-index as the input feature of the model.And the relationship between key characteristics and PDAC were explored at the single-cell level.RESULTS A novel interpretable machine learning framework was developed based on plasma EvlRNA.In this framework,a two-layer classifier was established.A new concept was proposed:EvlRNA-index.Based on EvlRNA-index,a cancer diagnostic model was established,and a good diagnostic effect was achieved.The accuracy of PDACandCPvsHealth-Probabilistic PCA Index-SVM(PDAC and chronic pancreatitis vs health-probabilistic principal component analysis index-support vector machine)(1-18)was 91.51%,with Mathew’s correlation coefficient 0.7760 and area under the curve 0.9560.In the second layer of the model,the accuracy of PDACvsCP-Probabilistic PCA Index-RF(PDAC vs chronic pancreatitis-probabilistic principal component analysis index-random forest)(2-17)was 93.83%,with Mathew’s correlation coefficient 0.8422 and area under the curve 0.9698.Forty-nine PDAC-related genes were identified,among which 16 were known,inferring that the remaining ones were also PDAC-related genes.CONCLUSION An interpretable two-layer machine learning framework was proposed for early diagnosis and prediction of PDAC based on plasma EvlRNA,providing new insights into the clinical value of EvlRNA. 展开更多
关键词 Pancreatic ductal adenocarcinoma Extracellular vesicle long RNA Noninvasive early diagnosis Interpretable machine learning two-layer classifier
暂未订购
A Two-Layer UAV Cooperative Computing Offloading Strategy Based on Deep Reinforcement Learning
9
作者 Zhang Jianfei Wang Zhen +1 位作者 Hu Yun Chang Zheng 《China Communications》 2025年第10期251-268,共18页
In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapi... In the wake of major natural disasters or human-made disasters,the communication infrastruc-ture within disaster-stricken areas is frequently dam-aged.Unmanned aerial vehicles(UAVs),thanks to their merits such as rapid deployment and high mobil-ity,are commonly regarded as an ideal option for con-structing temporary communication networks.Con-sidering the limited computing capability and battery power of UAVs,this paper proposes a two-layer UAV cooperative computing offloading strategy for emer-gency disaster relief scenarios.The multi-agent twin delayed deep deterministic policy gradient(MATD3)algorithm integrated with prioritized experience replay(PER)is utilized to jointly optimize the scheduling strategies of UAVs,task offloading ratios,and their mobility,aiming to diminish the energy consumption and delay of the system to the minimum.In order to address the aforementioned non-convex optimiza-tion issue,a Markov decision process(MDP)has been established.The results of simulation experiments demonstrate that,compared with the other four base-line algorithms,the algorithm introduced in this paper exhibits better convergence performance,verifying its feasibility and efficacy. 展开更多
关键词 cooperative computational offloading deep reinforcement learning mobile edge computing prioritized experience replay two-layer unmanned aerial vehicles
在线阅读 下载PDF
Simulating the evolution of focused waves by a two-layer Boussinesq-type model
10
作者 Ping Wang Zhongbo Liu +3 位作者 Kezhao Fang Wenfeng Zou Xiangke Dong Jiawen Sun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期91-99,共9页
Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simul... Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters. 展开更多
关键词 focused waves numerical simulation Boussinesq-type model velocity profile
在线阅读 下载PDF
A Two-Layer Energy Management Strategy for Fuel Cell Ships Considering the Performance Consistency of Fuel Cells
11
作者 Yi Zhang Diju Gao +1 位作者 Yide Wang Zhaoxia Huang 《Energy Engineering》 2025年第9期3681-3702,共22页
Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equ... Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equipment on ships.Compared to single-stack system,MFCS may be difficult to apply traditional energy management strategies(EMS)due to their complex structure.In this paper,a two-layer power allocation strategy for MFCS of a hydrogen fuel cell ship is proposed to reduce the complexity of the allocation task by splitting it into each layer of the EMS.The first layer of the EMSis centered on the Nonlinear Model Predictive Control(NMPC).The Northern Goshawk Optimization(NGO)algorithm is used to solve the nonlinear optimization problem in NMPC,and the local fine search is performed using sequential quadratic programming(SQP).Based on the power allocation results of the first layer,the second layer is centered on a fuzzy rule-based adaptive power allocation strategy(AP-Fuzzy).The membership function bounds of the fuzzy controller are related to the aging level of the MFCS.The Particle Swarm Optimization(PSO)algorithm is used to optimize the parameters of the residual membership function to improve the performance of the proposed strategy.The effectiveness of the proposed EMS is verified by comparing it with the traditional EMS.The experimental results show that the EMS proposed in this paper can ensure reasonable hydrogen consumption,slow down the FC aging and equalize its performance,effectively extend the system life,and ensure that the ship has good endurance after completing the mission. 展开更多
关键词 Energy management strategy fuel cell nonlinear model predictive control fuzzy rule control performance consistency hydrogen fuel cell ship
在线阅读 下载PDF
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
12
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
13
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
在线阅读 下载PDF
Effect of the Coefficient on the Performance of A Two-Layer Boussinesq- Type Model 被引量:2
14
作者 SUN Jia-wen LIU Zhong-bo +3 位作者 WANG Xing-gang FANG Ke-zhao DU Xin-yuan WANG Ping 《China Ocean Engineering》 SCIE EI CSCD 2021年第1期36-47,共12页
The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assi... The coefficients embodied in a Boussinesq-type model are very important since they are determined to optimize the linear and nonlinear properties.In most conventional Boussinesq-type models,these coefficients are assigned the specific values.As for the multi-layer Boussinesq-type models with the inclusion of the vertical velocity,however,the effect of the different values of these coefficients on linear and nonlinear performances has never been investigated yet.The present study focuses on a two-layer Boussinesq-type model with the highest spatial derivatives being 2 and theoretically and numerically examines the effect of the coefficient on model performance.Theoretical analysis show that different values for(0.13≤α≤0.25)do not have great effects on the high accuracy of the linear shoaling,linear phase celerity and even third-order nonlinearity for water depth range of 0<kh≤10(k is wave number and h is water depth).The corresponding errors using different values are restricted within 0.1%,0.1%and 1%for the linear shoaling amplitude,dispersion and nonlinear harmonics,respectively.Numerical tests including regular wave shoaling over mildly varying slope from deep to shallow water,regular wave propagation over submerged bar,bichromatic wave group and focusing wave propagation over deep water are conducted.The comparison between numerical results using different values of,experimental data and analytical solutions confirm the theoretical analysis.The flexibility and consistency of the two-layer Boussinesq-type model is therefore demonstrated theoretically and numerically. 展开更多
关键词 two-layer Boussinesq-type model dispersion nonlinear properties shoaling amplitude
在线阅读 下载PDF
Asymptotic solution of a weak nonlinear model for the mid-latitude stationary wind field of a two-layer barotropic ocean 被引量:8
15
作者 林万涛 张宇 莫嘉琪 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期72-78,共7页
A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon... A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed. 展开更多
关键词 two-layer barotropic ocean ocean model asymptotic solution
原文传递
基于24Model的动火作业事故致因文本挖掘 被引量:1
16
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
Two-Layer Coupled Network Model for Topic Derivation in Public Opinion Propagation 被引量:8
17
作者 Yuexia Zhang Yixuan Feng 《China Communications》 SCIE CSCD 2020年第3期176-187,共12页
In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of pub... In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of public opinion propagation into two layers:the original topic layer and the derived topic layer.Messages are transmitted separately by the SEIR model in the two topic layers,which are independent and interactive.The influence of the topic derivation rate on the propagation trend is established by solving for the equilibrium point and propagation threshold.Further,we establish the relationship between the original topic and the derived topic by simulation.This paper uses the Baidu index to demonstrate the correctness of the model.The relationship between the derived topic and the original topic is verified by adjusting the parameters by the control variable method.The results show that the proposed model is consistent with the propagation of actual public opinion. 展开更多
关键词 complex network PUBLIC OPINION PROPAGATION SEIR model
在线阅读 下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
18
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 Blast load two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
在线阅读 下载PDF
Numerical Model of Internal Solitary Wave Evolution on ImpermeableVariable Seabed in A Stratified Two-Layer Fluid System 被引量:4
19
作者 Chen-Yuan CHEN John Rong-Chung HSU +1 位作者 Cheng-Wu CHEN Ming-Hung CHENG 《China Ocean Engineering》 SCIE EI 2006年第2期303-313,共11页
In the present study a numerical model developed by Lynett and Liu (2002) is modified to include density difference in a stratified two-layer fluid in a three-dimensional internal wave domain. The internal solitary ... In the present study a numerical model developed by Lynett and Liu (2002) is modified to include density difference in a stratified two-layer fluid in a three-dimensional internal wave domain. The internal solitary wave (ISW) in the model is assumed to be weakly nonlinear and weakly dispersive, and the viscosity effects at all boundaries are ignored. The governing equations based on the Navier-Stokes and Euler equations are solved for internal solitary wave propagation over variable seabed topography. Theoretical formulations are established, from which analytical solutions are obtained, in addition to numerical results. Wave profiles from previous experimental studies are compared with the numerical results from the present analytical solutions. Numerical models developed on the basis of the present analytical solutions are better than those developed by Lynett and Liu (2002). The results of numerical modeling agree well with the experimental data. 展开更多
关键词 Navier-Stokes equation NONLINEARITY frequency dispersion internal solitary wave numerical model
在线阅读 下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
20
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部