We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training ph...We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.展开更多
In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical sim...In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical simulation model was established to optimize the design of the QTF structure.In the simulation of quartz-enhanced photoacoustic spectroscopy(QEPAS)technology,the maximum stress and the surface charge density of the four-prong QTF demonstrated increases of 11.1-fold and 15.9-fold,respectively,compared to that of the standard two-prong QTF.In the simulation of light-induced thermoelastic spectroscopy(LITES)technology,the surface temperature difference of the four-prong QTF was found to be 11.4 times greater than that of the standard QTF.Experimental results indicated that the C_(2)H_(2)-QEPAS system based on this innovative design improved the signal-to-noise-ratio(SNR)by 4.67 times compared with the standard QTF-based system,and the SNR could increase up to 147.72 times when the four-prong QTF was equipped with its optimal acoustic micro-resonator(AmR).When the average time of the system reached 370 s,the system achieved a MDL as low as 21 ppb.The four-prong QTF-based C_(2)H_(2)-LITES system exhibited a SNR improvement by a factor of 4.52,and a MDL of 96 ppb was obtained when the average time of the system reached 100 s.The theoretical and experimental results effectively demonstrated the superiority of the four-prong QTF in the field of laser spectroscopy sensing.展开更多
Mitochondria are vital organelles whose impairment leads to numerous metabolic disorders.Mitochondrial transplantation serves as a promising clinical therapy.However,its widespread application is hindered by the limit...Mitochondria are vital organelles whose impairment leads to numerous metabolic disorders.Mitochondrial transplantation serves as a promising clinical therapy.However,its widespread application is hindered by the limited availability of healthy mitochondria,with the dose required reaching up to 109 mitochondria per injection/patient.This necessitates sustainable and tractable approaches for producing high-quality human mitochondria.In this study,we demonstrated a highly efficient mitochondriaproducing strategy by manipulating mitobiogenesis and tuning organelle balance in human mesenchymal stem cells(MSCs).Utilizing an optimized culture medium(mito-condition)developed from our established formula,we achieved an 854-fold increase in mitochondria production compared to normal MSC culture within 15 days.These mitochondria were not only significantly expanded but also exhibited superior function both before and after isolation,with ATP production levels reaching 5.71 times that of normal mitochondria.Mechanistically,we revealed activation of the AMPK pathway and the establishment of a novel cellular state ideal for mitochondrial fabrication,characterized by enhanced proliferation and mitobiogenesis while suppressing other energy-consuming activities.Furthermore,the in vivo function of these mitochondria was validated in the mitotherapy in a mouse osteoarthritis model,resulting in significant cartilage regeneration over a 12-week period.Overall,this study presented a new strategy for the off-the-shelf fabrication of human mitochondria and provided insights into the molecular mechanisms governing organelle synthesis.展开更多
Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,ha...Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,have enabled automated fire detection in images and videos.Several deep learning models have been developed for object detection,including applications in fire and smoke detection.This study focuses on optimizing the training hyperparameters of YOLOv8 andYOLOv10models usingBayesianTuning(BT).Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance.Specifically,the proposed approach improves the mean average precision at an Intersection over Union(IoU)threshold of 0.5(mAP50)of the YOLOv8s,YOLOv10s,YOLOv8l,and YOLOv10lmodels by 0.26,0.21,0.84,and 0.63,respectively,compared tomodels trainedwith the default hyperparameters.The performance gains are more pronounced in larger models,YOLOv8l and YOLOv10l,than in their smaller counterparts,YOLOv8s and YOLOv10s.Furthermore,YOLOv8 models consistently outperform YOLOv10,with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l when trained with BT.These results establish YOLOv8 as the preferred model for fire detection applications where detection performance is prioritized.展开更多
Lanthanide-sensitized upconverting nanoparticles(UCNPs)are widely studied because of their unusual optical characteristics,such as large antenna-generated anti-Stokes shifts,high photostability,and narrow emission ban...Lanthanide-sensitized upconverting nanoparticles(UCNPs)are widely studied because of their unusual optical characteristics,such as large antenna-generated anti-Stokes shifts,high photostability,and narrow emission bandwidths,which can be harnessed for a variety of applications including bioimaging,sensing,information security and high-level anticounterfeiting.The diverse requirements of these applications typically require precise control over upconversion luminescence(UCL).Recently,the concept of energy migration upconversion has emerged as an effective approach to modulate UCL for various lanthanide ions.Moreover,it provides valuable insights into the fundamental comprehension of energy transfer mechanisms on the nanoscale,thereby contributing to the design of efficient lanthanide-sensitized UCNPs and their practical applications.Here we present a comprehensive overview of the latest developments in energy migration upconversion in lanthanide-sensitized nanoparticles for photon upconversion tuning,encompassing design strategies,mechanistic investigations and applications.Additionally,some future prospects in the field of energy migration upconversion are also discussed.展开更多
P2-type layered oxide Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)(NM)is a promising cathode material for sodium-ion batteries(SIBs).However,the severe irreversible phase transition,sluggish Na+diffusion kinetics,and interfacial sid...P2-type layered oxide Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)(NM)is a promising cathode material for sodium-ion batteries(SIBs).However,the severe irreversible phase transition,sluggish Na+diffusion kinetics,and interfacial side reactions at high-voltage result in grievous capacity degradation and inferior electrochemical performance.Herein,a dual-function strategy of entropy tuning and artificial cathode electrolyte interface(CEI)layer construction is reported to generate a novel P2-type medium-entropy Na_(0.75)Li_(0.1)Mg_(0.05)Ni_(0.18)Mn_(0.66)Ta_(0.01)O_(2)with NaTaO_(3)surface modification(LMNMT)to address the aforementioned issues.In situ X-ray diffraction reveals that LMNMT exhibits a near zero-strain phase transition with a volume change of only 1.4%,which is significantly lower than that of NM(20.9%),indicating that entropy tuning effectively suppresses irreversible phase transitions and enhances ion diffusion.Kinetic analysis and post-cycling interfacial characterization further confirm that the artificial CEI layer promotes the formation of a stable,thin NaF-rich CEI and reduces interfacial side reactions,thereby further enhancing ion transport kinetics and surface/interface stability.Consequently,the LMNMT electrode exhibits outstanding rate capability(46 mA h g^(−1)at 20 C)and cycling stability(89.5%capacity retention after 200 cycles at 2 C)within the voltage range of 2–4.35 V.The LMNMT also exhibits superior all-climate performance and air stability.This study provides a novel path for the design of high-voltage cathode materials for SIBs.展开更多
Hydrogenation catalysts frequently impose a compromise between activity and selectivity,where maximizing one property inevitably diminishes the other.Researchers from the Dalian Institute of Chemical Physics(DICP)of t...Hydrogenation catalysts frequently impose a compromise between activity and selectivity,where maximizing one property inevitably diminishes the other.Researchers from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences,in collaboration with scholars from University of Science and Technology of China and the Karlsruhe Institute of Technology in Germany,cracked this dilemma by engineering bimetallic catalysts with atomic precision-a breakthrough that boosts hydrogenation efficiency by 35-fold while maintaining pinpoint accuracy,resolving the stubborn activity-selectivity paradox.展开更多
Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA...Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA)spectroscopy,attenuated total reflection(ATR)spectroscopy and molecular dynamics(MD),we reveal the assembled C≡N at gold nanofilm exhibits a reduced Stark tuning rate(STR)referring to the vibrational frequency shift in response to electric field comparing with the bulk which was regulated by the electron transfer between S and Au.These findings lead to a deeper understanding of the vibrational Stark effect at the interface and provide guidance for improving the interface electric field theory.展开更多
Grooved tuning forks with hierarchical structures have become some of the most widely used piezoelectric quartz microelectromechanical system devices;however,fabricating these devices requires multi-step processes due...Grooved tuning forks with hierarchical structures have become some of the most widely used piezoelectric quartz microelectromechanical system devices;however,fabricating these devices requires multi-step processes due to the complexity of etching of quartz,particularly in specific orientations of the crystal lattice.This paper proposes a one-step fabrication strategy that can form a complete hierarchical structure with only a single etching process using novel lithography patterns.The core principle of this strategy is based on the effect of the size of the groove patterns on quartz etching,whereby trenches of varying depths can be created in a fixed etching time by adjusting the width of the hard mask.Specifically,the device outline and grooved structure can be completed using a seamlessly designed etching pattern and optimized time.Furthermore,the etching structure itself influences the etching results.It was found that dividing a wide trench by including a wall to separate it into two narrow trenches significantly reduces the etching rate,allowing for predictable tuning of the etching rate for wider grooves.This effectively increases the usability and flexibility of the one-step strategy.This was applied to the manufacture of an ultra-small quartz grooved tuning fork resonator with a frequency of 32.768 kHz in a single step,increasing production efficiency by almost 45%and reducing costs by almost 30%compared to current methods.This has great potential for improving the productivity of grooved tuning fork devices.It can also be extended to the fabrication of other quartz crystal devices requiring hierarchical structures.展开更多
Optically detected magnetic resonance(ODMR)has emerged as a powerful technique for quantum sensing,enabling high-sensitivity detection of physical quantities even at room temperature.Solid-state defects,such as nitrog...Optically detected magnetic resonance(ODMR)has emerged as a powerful technique for quantum sensing,enabling high-sensitivity detection of physical quantities even at room temperature.Solid-state defects,such as nitrogen-vacancy(NV)centers in diamond,have demonstrated remarkable capabilities in this domain[1–4].However,these systems are limited by their rigid lattice structures and lack tunability.展开更多
We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with du...We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with dual tunable couplers,where each coupler comprises two 2×2 multimode interferometers and a MZI phase-tuning section.Experimental results demonstrate continuous delay tuning from 0 to 293 ps through synchronized control of coupling coefficients,corresponding to a 4 cm path difference between interferometer arms.The measured delay range exhibits excellent agreement with theoretical predictions derived from ODL waveguide parameters.This result addresses critical challenges in integrated photonic systems that require precise temporal control,particularly for applications in optical communications and quantum information processing,where a wide tuning range is paramount.展开更多
The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of ma...The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of matter at smaller scales.However,the extremely low emittance results in stronger sextupole magnet strengths,leading to high natural chromaticity.This necessitates the use of sextupole magnets to correct the natural chromaticity.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a lattice was designed for the storage ring that can achieve an ultra-low natural emittance of 72.2 pm·rad at the beam energy of 3.5 GeV.However,the significant detuning effects,driven by high second-order resonant driving terms due to strong sextupoles,will degrade the performance of the facility.To resolve this issue,installation of octupoles in the SSRF-U storage ring has been planned.This paper presents the study results on configuration selection and optimization method for the octupoles.An optimal solution for the SSRF-U storage ring was obtained to effectively mitigate the amplitude-dependent tune shift and the second-order chromaticity,consequently leading to an increased dynamic aperture(DA),momentum acceptance(MA),and reduced sensitivity to magnetic field errors.展开更多
Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the pr...Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.展开更多
The void defect in intermetallic compounds(IMCs)layer at the joints caused by inhomogeneous atomic diffusion is one of the most important factors limiting the further development of Sn-based solders.In this work,the t...The void defect in intermetallic compounds(IMCs)layer at the joints caused by inhomogeneous atomic diffusion is one of the most important factors limiting the further development of Sn-based solders.In this work,the thermodynamic stability of IMCs(high-temperatureη-Cu_(6)Sn_(5)and o-Cu_(3)Sn phases)was improved by adding small amounts of indium(In),and the IMCs layers with moderate thickness,low defect concentrations and stable interface bonding were successfully obtained.The formation order of compounds and the interfacial orientation relationships in IMCs layers,the atomic diffusion mechanism,and the growth tuning mechanism of In onη-Cu_(6)Sn_(5)and Cu_(3)Sn,after In adding,were discussed com-prehensively by combining calculations and experiments.It is the first time that the classic heteroge-neous nucleation theory and CALPHAD data were used to obtain the critical nucleus radius ofη-Cu_(6)Sn_(5)and Cu_(3)Sn,and to explain in detail the main factors affecting the formation order and location of IMCs at joints during the welding process.A novel and systematic growth model about IMCs layers in the case of doping with alloying elements was proposed.The growth tuning mechanism of In doping onη-Cu_(6)Sn_(5)and Cu_(3)Sn was further clarified based on the proposed model using first-principles calculations.The growth model used in this study can provide insights into the development and design of multiele-ment Sn-based solders.展开更多
Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact pro...Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.展开更多
The Floquet technology,a powerful way to manipulate quantum states,is employed to drive sidebands transition under large detuning.Our results demonstrate that high fidelities over 99%can be achieved through optimizing...The Floquet technology,a powerful way to manipulate quantum states,is employed to drive sidebands transition under large detuning.Our results demonstrate that high fidelities over 99%can be achieved through optimizing suitable modulation frequencies under large detuning.We observe high-fidelity transitions within a high bandwidth by utilizing a single modulation frequency and reveal that this capability is due to the emergence of a flat-band structure in the bandwidth range.The key finding of high-fidelity sideband manipulation under large detuning is experimentally confirmed in nuclear magnetic resonance platform.Finally,we propose a new parallel sideband cooling scheme that enables simultaneous cooling of multiple motional modes.This approach improves the cooling rate compared to conventional schemes with fixed laser frequency and power,and eliminates the need for mode-specific addressing.Our Floquet parallel scheme is applicable to any harmonic oscillator system and is not limited by bandwidth in theory.展开更多
This article presents a compact magnetic levitation energy harvester(MLEH)with tunable resonant frequency.Unlike many of the reported tunable harvesters with unknown tuning results,the proposed MLEH can be tuned towar...This article presents a compact magnetic levitation energy harvester(MLEH)with tunable resonant frequency.Unlike many of the reported tunable harvesters with unknown tuning results,the proposed MLEH can be tuned toward designated resonant frequency values within its tuning range.The targeted tuning processes is realized by a nonlinear magnet repulsive force exerted on a Halbach magnet array,combined with a calibrated scaling system.At a sinusoidal acceleration of±0.15 g,the maximum frequency tuning range of the proposed MLEH is 6.3 Hz(8.1–14.4 Hz),which is 77.8%of its resonant MLEH(8.1 Hz).At a frequency of 9.7 Hz,the output power is 462.1μW and the calculated normalized power density is 496μWcm^(−3)g^(−2).展开更多
Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a nov...Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a novel self-tuning approach is developed.First,two novel path tracking performance indices,i.e.,steadystate time ratio and steady-state distance ratio are proposed to more accurately reflect the control performance.Second,the mapping relationship between the proposed indices and the MPC parameters is established based on machine learning technique,and then a novel controller structure which can automatically tune the control parameters online is further designed.Finally,experimental verification with an actual wheeled mobile robot is conducted,which shows that the proposed method could outperform the existing method via achieving significant improvement in the rapidity,accuracy and adaptability of the robot path tracking.展开更多
In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 n...In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 neurons induced by a weak noise relative to 5 dB below minimum threshold of tone (reMT-5 dB) under free field stimulation conditions.The results were as follows:① There were three types of variations in FTCs,sharpened (34.4%),broadened (18.8%),and unaffected (46.9%),nevertheless,only the alteration of sharpened FTCs was statistically different.② Sharpness of frequency tuning induced by a reMT-5 dB noise was very strong.Q 10 and Q 30 of FTCs were increased by (34.42±17.04)% (P=0.026,n=11) and (46.34±22.88)% (P=0.009,n=7).③ The changes of inverse-slopes (ISs,kHz/dB) between high (IS high) and low (IS low) limbs of FTCs were dissymmetry.The IS high of FTCs decreased markedly (P=0.046,n=7),however,there was little change (P=0.947,n=7) in IS low.Our data revealed for the first time that the weak noise could sharpen frequency tuning and increase the sensitivity on the high frequency of sound signal in IC neurons of mouse.展开更多
基金supported by the Natural Science Research Project of Colleges and Universities in Anhui Province (No.KJ2021A0479)the Science Research Program of Anhui University of Finance and Economics (No.ACKYC22082)。
文摘We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.
基金supports from the National Natural Science Foundation of China(Grant Nos.62335006,62022032,62275065,and 62405078)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University),Ministry of Education(Grant No.OEIAM202202)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023011)China Postdoctoral Science Foundation(Grant No.2024M764172)Heilongjiang Postdoctoral Fund(Grant No.LBH-Z23144).
文摘In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical simulation model was established to optimize the design of the QTF structure.In the simulation of quartz-enhanced photoacoustic spectroscopy(QEPAS)technology,the maximum stress and the surface charge density of the four-prong QTF demonstrated increases of 11.1-fold and 15.9-fold,respectively,compared to that of the standard two-prong QTF.In the simulation of light-induced thermoelastic spectroscopy(LITES)technology,the surface temperature difference of the four-prong QTF was found to be 11.4 times greater than that of the standard QTF.Experimental results indicated that the C_(2)H_(2)-QEPAS system based on this innovative design improved the signal-to-noise-ratio(SNR)by 4.67 times compared with the standard QTF-based system,and the SNR could increase up to 147.72 times when the four-prong QTF was equipped with its optimal acoustic micro-resonator(AmR).When the average time of the system reached 370 s,the system achieved a MDL as low as 21 ppb.The four-prong QTF-based C_(2)H_(2)-LITES system exhibited a SNR improvement by a factor of 4.52,and a MDL of 96 ppb was obtained when the average time of the system reached 100 s.The theoretical and experimental results effectively demonstrated the superiority of the four-prong QTF in the field of laser spectroscopy sensing.
基金supported by the National Key Research and Development Program of China(2022YFA1106800)the National Natural Science Foundation of China(T2121004,82394441,92268203).
文摘Mitochondria are vital organelles whose impairment leads to numerous metabolic disorders.Mitochondrial transplantation serves as a promising clinical therapy.However,its widespread application is hindered by the limited availability of healthy mitochondria,with the dose required reaching up to 109 mitochondria per injection/patient.This necessitates sustainable and tractable approaches for producing high-quality human mitochondria.In this study,we demonstrated a highly efficient mitochondriaproducing strategy by manipulating mitobiogenesis and tuning organelle balance in human mesenchymal stem cells(MSCs).Utilizing an optimized culture medium(mito-condition)developed from our established formula,we achieved an 854-fold increase in mitochondria production compared to normal MSC culture within 15 days.These mitochondria were not only significantly expanded but also exhibited superior function both before and after isolation,with ATP production levels reaching 5.71 times that of normal mitochondria.Mechanistically,we revealed activation of the AMPK pathway and the establishment of a novel cellular state ideal for mitochondrial fabrication,characterized by enhanced proliferation and mitobiogenesis while suppressing other energy-consuming activities.Furthermore,the in vivo function of these mitochondria was validated in the mitotherapy in a mouse osteoarthritis model,resulting in significant cartilage regeneration over a 12-week period.Overall,this study presented a new strategy for the off-the-shelf fabrication of human mitochondria and provided insights into the molecular mechanisms governing organelle synthesis.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2024-RS-2022-00156354)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)supported by the Technology Development Program(RS-2023-00264489)funded by the Ministry of SMEs and Startups(MSS,Republic of Korea).
文摘Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,have enabled automated fire detection in images and videos.Several deep learning models have been developed for object detection,including applications in fire and smoke detection.This study focuses on optimizing the training hyperparameters of YOLOv8 andYOLOv10models usingBayesianTuning(BT).Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance.Specifically,the proposed approach improves the mean average precision at an Intersection over Union(IoU)threshold of 0.5(mAP50)of the YOLOv8s,YOLOv10s,YOLOv8l,and YOLOv10lmodels by 0.26,0.21,0.84,and 0.63,respectively,compared tomodels trainedwith the default hyperparameters.The performance gains are more pronounced in larger models,YOLOv8l and YOLOv10l,than in their smaller counterparts,YOLOv8s and YOLOv10s.Furthermore,YOLOv8 models consistently outperform YOLOv10,with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l when trained with BT.These results establish YOLOv8 as the preferred model for fire detection applications where detection performance is prioritized.
基金supported by Senior Talent Fund of Jiangsu University(No.5501310021)China Postdoctoral Science Foundation(No.2023M741419)+1 种基金the Young Elite Scientist Sponsorship Program by ZJAST(No.G301310002)Research Fund for International Scientists(No.22350710187).
文摘Lanthanide-sensitized upconverting nanoparticles(UCNPs)are widely studied because of their unusual optical characteristics,such as large antenna-generated anti-Stokes shifts,high photostability,and narrow emission bandwidths,which can be harnessed for a variety of applications including bioimaging,sensing,information security and high-level anticounterfeiting.The diverse requirements of these applications typically require precise control over upconversion luminescence(UCL).Recently,the concept of energy migration upconversion has emerged as an effective approach to modulate UCL for various lanthanide ions.Moreover,it provides valuable insights into the fundamental comprehension of energy transfer mechanisms on the nanoscale,thereby contributing to the design of efficient lanthanide-sensitized UCNPs and their practical applications.Here we present a comprehensive overview of the latest developments in energy migration upconversion in lanthanide-sensitized nanoparticles for photon upconversion tuning,encompassing design strategies,mechanistic investigations and applications.Additionally,some future prospects in the field of energy migration upconversion are also discussed.
基金supported by the National Natural Science Foundation of China(52272295,52071137,51977071,51802040,and 21802020)the Science and Technology Innovation Program of Hunan Province(2021RC3066 and 2021RC3067)+2 种基金the Natural Science Foundation of Hunan Province(2020JJ3004 and 2020JJ4192)Graduate Research Innovation Project of Hunan Province(CX20240456 and CX20240405)N.Zhang and X.Xie also acknowledge the financial support of the Fundamental Research Funds for the Central。
文摘P2-type layered oxide Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)(NM)is a promising cathode material for sodium-ion batteries(SIBs).However,the severe irreversible phase transition,sluggish Na+diffusion kinetics,and interfacial side reactions at high-voltage result in grievous capacity degradation and inferior electrochemical performance.Herein,a dual-function strategy of entropy tuning and artificial cathode electrolyte interface(CEI)layer construction is reported to generate a novel P2-type medium-entropy Na_(0.75)Li_(0.1)Mg_(0.05)Ni_(0.18)Mn_(0.66)Ta_(0.01)O_(2)with NaTaO_(3)surface modification(LMNMT)to address the aforementioned issues.In situ X-ray diffraction reveals that LMNMT exhibits a near zero-strain phase transition with a volume change of only 1.4%,which is significantly lower than that of NM(20.9%),indicating that entropy tuning effectively suppresses irreversible phase transitions and enhances ion diffusion.Kinetic analysis and post-cycling interfacial characterization further confirm that the artificial CEI layer promotes the formation of a stable,thin NaF-rich CEI and reduces interfacial side reactions,thereby further enhancing ion transport kinetics and surface/interface stability.Consequently,the LMNMT electrode exhibits outstanding rate capability(46 mA h g^(−1)at 20 C)and cycling stability(89.5%capacity retention after 200 cycles at 2 C)within the voltage range of 2–4.35 V.The LMNMT also exhibits superior all-climate performance and air stability.This study provides a novel path for the design of high-voltage cathode materials for SIBs.
文摘Hydrogenation catalysts frequently impose a compromise between activity and selectivity,where maximizing one property inevitably diminishes the other.Researchers from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences,in collaboration with scholars from University of Science and Technology of China and the Karlsruhe Institute of Technology in Germany,cracked this dilemma by engineering bimetallic catalysts with atomic precision-a breakthrough that boosts hydrogenation efficiency by 35-fold while maintaining pinpoint accuracy,resolving the stubborn activity-selectivity paradox.
基金The National Key R&D Program of China(No.2022YFE0113000)the National Science Fund for Distinguished Young Scholars(No.22025406)+1 种基金the National Natural Science Foundation of China(Nos.22074138,12174457)the Youth Innovation Promotion Association of CAS(No.2020233)for financial support。
文摘Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA)spectroscopy,attenuated total reflection(ATR)spectroscopy and molecular dynamics(MD),we reveal the assembled C≡N at gold nanofilm exhibits a reduced Stark tuning rate(STR)referring to the vibrational frequency shift in response to electric field comparing with the bulk which was regulated by the electron transfer between S and Au.These findings lead to a deeper understanding of the vibrational Stark effect at the interface and provide guidance for improving the interface electric field theory.
文摘Grooved tuning forks with hierarchical structures have become some of the most widely used piezoelectric quartz microelectromechanical system devices;however,fabricating these devices requires multi-step processes due to the complexity of etching of quartz,particularly in specific orientations of the crystal lattice.This paper proposes a one-step fabrication strategy that can form a complete hierarchical structure with only a single etching process using novel lithography patterns.The core principle of this strategy is based on the effect of the size of the groove patterns on quartz etching,whereby trenches of varying depths can be created in a fixed etching time by adjusting the width of the hard mask.Specifically,the device outline and grooved structure can be completed using a seamlessly designed etching pattern and optimized time.Furthermore,the etching structure itself influences the etching results.It was found that dividing a wide trench by including a wall to separate it into two narrow trenches significantly reduces the etching rate,allowing for predictable tuning of the etching rate for wider grooves.This effectively increases the usability and flexibility of the one-step strategy.This was applied to the manufacture of an ultra-small quartz grooved tuning fork resonator with a frequency of 32.768 kHz in a single step,increasing production efficiency by almost 45%and reducing costs by almost 30%compared to current methods.This has great potential for improving the productivity of grooved tuning fork devices.It can also be extended to the fabrication of other quartz crystal devices requiring hierarchical structures.
文摘Optically detected magnetic resonance(ODMR)has emerged as a powerful technique for quantum sensing,enabling high-sensitivity detection of physical quantities even at room temperature.Solid-state defects,such as nitrogen-vacancy(NV)centers in diamond,have demonstrated remarkable capabilities in this domain[1–4].However,these systems are limited by their rigid lattice structures and lack tunability.
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,12404378,92480001,12134001,12174113,12174107,12474325,12404379,and 12474378)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Fundamental Research Funds for the Central Universities,the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005).
文摘We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with dual tunable couplers,where each coupler comprises two 2×2 multimode interferometers and a MZI phase-tuning section.Experimental results demonstrate continuous delay tuning from 0 to 293 ps through synchronized control of coupling coefficients,corresponding to a 4 cm path difference between interferometer arms.The measured delay range exhibits excellent agreement with theoretical predictions derived from ODL waveguide parameters.This result addresses critical challenges in integrated photonic systems that require precise temporal control,particularly for applications in optical communications and quantum information processing,where a wide tuning range is paramount.
文摘The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of matter at smaller scales.However,the extremely low emittance results in stronger sextupole magnet strengths,leading to high natural chromaticity.This necessitates the use of sextupole magnets to correct the natural chromaticity.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a lattice was designed for the storage ring that can achieve an ultra-low natural emittance of 72.2 pm·rad at the beam energy of 3.5 GeV.However,the significant detuning effects,driven by high second-order resonant driving terms due to strong sextupoles,will degrade the performance of the facility.To resolve this issue,installation of octupoles in the SSRF-U storage ring has been planned.This paper presents the study results on configuration selection and optimization method for the octupoles.An optimal solution for the SSRF-U storage ring was obtained to effectively mitigate the amplitude-dependent tune shift and the second-order chromaticity,consequently leading to an increased dynamic aperture(DA),momentum acceptance(MA),and reduced sensitivity to magnetic field errors.
基金supported by the STI 2030-Major Projects 2022ZD0208500(to DY)the National Natural Science Foundation of China,Nos.82072011(to YX),82121003(to DY),82271120(to YS)+2 种基金Sichuan Science and Technology Program,No.2022ZYD0066(to YS)a grant from Chinese Academy of Medical Science,No.2019-12M-5-032(to YS)the Fundamental Research Funds for the Central Universities,No.ZYGX2021YGLH219(to KC)。
文摘Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.
基金supported by the Innovation Team Cultivation Project of Yunnan Province(No.202005AE160016)Key Research&Development Program of Yunnan Province(No.202103AA080017)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(No.YNWR-QNBJ-2018-044).
文摘The void defect in intermetallic compounds(IMCs)layer at the joints caused by inhomogeneous atomic diffusion is one of the most important factors limiting the further development of Sn-based solders.In this work,the thermodynamic stability of IMCs(high-temperatureη-Cu_(6)Sn_(5)and o-Cu_(3)Sn phases)was improved by adding small amounts of indium(In),and the IMCs layers with moderate thickness,low defect concentrations and stable interface bonding were successfully obtained.The formation order of compounds and the interfacial orientation relationships in IMCs layers,the atomic diffusion mechanism,and the growth tuning mechanism of In onη-Cu_(6)Sn_(5)and Cu_(3)Sn,after In adding,were discussed com-prehensively by combining calculations and experiments.It is the first time that the classic heteroge-neous nucleation theory and CALPHAD data were used to obtain the critical nucleus radius ofη-Cu_(6)Sn_(5)and Cu_(3)Sn,and to explain in detail the main factors affecting the formation order and location of IMCs at joints during the welding process.A novel and systematic growth model about IMCs layers in the case of doping with alloying elements was proposed.The growth tuning mechanism of In doping onη-Cu_(6)Sn_(5)and Cu_(3)Sn was further clarified based on the proposed model using first-principles calculations.The growth model used in this study can provide insights into the development and design of multiele-ment Sn-based solders.
基金This work was supported by National Natural Science Foundation of China(No.12222513).
文摘Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.
基金supported by the National Natural Science Foundation of China(Grant Nos.11904402,12174447,12074433,12004430,and 12174448)。
文摘The Floquet technology,a powerful way to manipulate quantum states,is employed to drive sidebands transition under large detuning.Our results demonstrate that high fidelities over 99%can be achieved through optimizing suitable modulation frequencies under large detuning.We observe high-fidelity transitions within a high bandwidth by utilizing a single modulation frequency and reveal that this capability is due to the emergence of a flat-band structure in the bandwidth range.The key finding of high-fidelity sideband manipulation under large detuning is experimentally confirmed in nuclear magnetic resonance platform.Finally,we propose a new parallel sideband cooling scheme that enables simultaneous cooling of multiple motional modes.This approach improves the cooling rate compared to conventional schemes with fixed laser frequency and power,and eliminates the need for mode-specific addressing.Our Floquet parallel scheme is applicable to any harmonic oscillator system and is not limited by bandwidth in theory.
基金supported by the Key Research and Development Program of Shaanxi(Program Nos.2022GXLH-01-20 and 2024GXYBXM-193).
文摘This article presents a compact magnetic levitation energy harvester(MLEH)with tunable resonant frequency.Unlike many of the reported tunable harvesters with unknown tuning results,the proposed MLEH can be tuned toward designated resonant frequency values within its tuning range.The targeted tuning processes is realized by a nonlinear magnet repulsive force exerted on a Halbach magnet array,combined with a calibrated scaling system.At a sinusoidal acceleration of±0.15 g,the maximum frequency tuning range of the proposed MLEH is 6.3 Hz(8.1–14.4 Hz),which is 77.8%of its resonant MLEH(8.1 Hz).At a frequency of 9.7 Hz,the output power is 462.1μW and the calculated normalized power density is 496μWcm^(−3)g^(−2).
基金the National Natural Science Foundation of China(No.61903291)the Key Research and Development Program of Shaanxi Province(No.2022NY-094)。
文摘Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a novel self-tuning approach is developed.First,two novel path tracking performance indices,i.e.,steadystate time ratio and steady-state distance ratio are proposed to more accurately reflect the control performance.Second,the mapping relationship between the proposed indices and the MPC parameters is established based on machine learning technique,and then a novel controller structure which can automatically tune the control parameters online is further designed.Finally,experimental verification with an actual wheeled mobile robot is conducted,which shows that the proposed method could outperform the existing method via achieving significant improvement in the rapidity,accuracy and adaptability of the robot path tracking.
文摘In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 neurons induced by a weak noise relative to 5 dB below minimum threshold of tone (reMT-5 dB) under free field stimulation conditions.The results were as follows:① There were three types of variations in FTCs,sharpened (34.4%),broadened (18.8%),and unaffected (46.9%),nevertheless,only the alteration of sharpened FTCs was statistically different.② Sharpness of frequency tuning induced by a reMT-5 dB noise was very strong.Q 10 and Q 30 of FTCs were increased by (34.42±17.04)% (P=0.026,n=11) and (46.34±22.88)% (P=0.009,n=7).③ The changes of inverse-slopes (ISs,kHz/dB) between high (IS high) and low (IS low) limbs of FTCs were dissymmetry.The IS high of FTCs decreased markedly (P=0.046,n=7),however,there was little change (P=0.947,n=7) in IS low.Our data revealed for the first time that the weak noise could sharpen frequency tuning and increase the sensitivity on the high frequency of sound signal in IC neurons of mouse.