Many investigation techniques are commonly employed with the aim of estimating the spatial distribution of transmissivity. Unfortunately, the conventional methods for the determination of hydraulic parameters such as ...Many investigation techniques are commonly employed with the aim of estimating the spatial distribution of transmissivity. Unfortunately, the conventional methods for the determination of hydraulic parameters such as pumping tests, permeameter measurements and grain size analysis are invasive and relatively expensive. A geoelectric investigation involving vertical electrical sounding was carried in parts of Enugu town, Enugu state, Nigeria. The survey was aimed at extrapolating the result of pumping tests over an area. Using the Dar Zarrouk parameter, a β constant of 0.32 was found to translate resistivity to transmissivity with clay content as the primary factor controlling the hydraulic conductivity. Results of the study show a strong correlation between aquifer transmissivity and longitudinal conductance (R2 = 0.82). Estimation of aquifer transmissivity values based on the results of the resistivity measurements also made it possible to demarcate area with good groundwater potential in parts of Enugu town, Nigeria.展开更多
During the long service period of a nuclear waste repository in crystalline rock,large earthquake(s)may occur nearby the repository site and coseismically alter the local stress field around pre-existing fractures wit...During the long service period of a nuclear waste repository in crystalline rock,large earthquake(s)may occur nearby the repository site and coseismically alter the local stress field around pre-existing fractures within the geological formation.The resulting fracture normal/shear displacements may lead to fracture opening and further promote the transport of leaked radionuclides into the groundwater system.Thus,it is of central importance to analyze the consequences of potential future earthquake(s)on the hydrogeological properties of a repository site for spent nuclear fuel disposal.Based on the detailed site characterization data of the repository site at Forsmark,Sweden,we conduct a three-dimensional(3D)seismo-hydro-mechanical simulation using the 3Dimensional Distinct Element Code(3DEC).We explicitly represent a primary seismogenic fault zone and its surrounding secondary fracture network associated with a power-law size scaling and a Fisher orientation distribution.An earthquake with a magnitude of M_(w)=5.6 caused by the reactivation of the primary fault zone is modeled by simulating its transient rupture propagating radially outwards from a predefined hypocenter at a specified rupture speed,with the faulting dynamics controlled by a strength weakening law.We model the coseismic response of the off-fault fracture network subject to both static and dynamic triggering effects.We further diagnose the distribution of fracture hydro-mechanical properties(e.g.mechanical/hydraulic aperture,hydraulic transmissivity)before and after the earthquake in order to quantify earthquakeinduced hydraulic changes in the fracture network.It is found that earthquake-induced fracture transmissivity changes tend to follow a power-law decay with the distance to the earthquake fault.Our simulation results and insights obtained have important implications for the long-term performance assessment of nuclear waste repositories in fractured crystalline rocks.展开更多
The application of geophysical methods in combination with pumping tests provides a cost-effective and efficient alternative to estimate aquifer parameters. In this study, nineteen Schlumberger vertical electrical sou...The application of geophysical methods in combination with pumping tests provides a cost-effective and efficient alternative to estimate aquifer parameters. In this study, nineteen Schlumberger vertical electrical soundings (VES) were occupied in parts of Bayelsa State using a maximum current electrode separation ranging beweeen 300 - 400 m with the aim of estimating the transmissivity of the alluvial aquifer in areas where no pumping test has been carried out. Four of the soundings were carried out near existing boreholes in which pumping test had been carried out. The VES data obtained was interpreted, and layer parameters such as true resistivities and thickness were determined. The geoelectric parameters were used to generate the Dar Zarrouk parameters. Correlating the Dar Zarrouk parameter (e.g longitudinal unit conductance) with transmissivity derived from pumping test data, a constant was found which translate longitudinal unit conductance to transmissivity in a hydrogeological setting where effective porosity is the primary control on resistivity and hydraulic conductivity. Transmissivity determined from the pumping test data range between 1634.0 - 5292.0 m2/day while transmissivity values estimated from the longitudinal unit conductance (Lc) range between 721 - 8991 m2/day. The transmissivity estimated from the pumping test (Tp) data and transmissivity estimated from the longitudinal conductance (Lc) on comparison show excellent correlation (R2 = 0.92). The high transmissivity values agree with the geology of the Benin Formation (Coastal Plain sands) consisting of fine-medium-coarse sands. The results give a useful first approximation of the transmissivity and could be used to site exploratory boreholes.展开更多
Global dimming term was introduced in 1990s which means the decline in global radiation. This decline was reported in several studies across the world. In the present study time series analysis of global radiation (19...Global dimming term was introduced in 1990s which means the decline in global radiation. This decline was reported in several studies across the world. In the present study time series analysis of global radiation (1960-2003), transmissivity (1960-2003) and bright sunshine hours (1973-2003) has been done over Nagpur during pre-monsoon (March to May) and monsoon seasons (June-September). A significant decrease in global radiation and transmissivity has been reported for both the seasons and it was higher during pre-monsoon compared to monsoon. Bright sunshine hour has also shown good agreement with the previous trend with a significant trend on pre-monsoon months only. Mann Kendall test was performed to confirm the significance of reported trend.展开更多
This study was undertaken to determine the hydrologic properties of the aquifer materials at Ogbozara-Opi/Ekwegbe-Agu and environs by the estimation of the aquifer transmissivity using Dar Zarrouk parameters. The stud...This study was undertaken to determine the hydrologic properties of the aquifer materials at Ogbozara-Opi/Ekwegbe-Agu and environs by the estimation of the aquifer transmissivity using Dar Zarrouk parameters. The study area lies in the Anambra basin and is underlain, from bottom to top, by 3 prominent geologic formations;Enugu Formation, Mamu Formation and Ajali Formation respectively. A total of 19 sounding stations were occupied within the study area using the Ohmega resistivity meter. The VES data were interpreted using the conventional partial curve matching technique to obtain initial model parameters which were later used as input data for computer iterative modelling using the Interpex software. These analyses were further combined with information from two existing boreholes in the study area to estimate aquifer hydraulic parameters using Dar-Zarrouk parameters. The layer parameters thus obtained revealed that the dominant curve type obtained from the different formations is the AK curve type followed by the HK curve type. An average of 6 geo-electric layers were delineated across all transect taken with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm and 2992.3 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. Results of the study revealed the aquifer resistivity in the study area ranges from 1 - 500 Ωm. The depth to the water table range from 13 - 208 m with a mean value of 76.05, while aquifer thickness varies between 95 and 140 m with a mean value of 102.89 m. The values of the Dar-Zarrouk parameters revealed that the transverse resistance varies between −10,000 - 170,000 Ωm<sup>2</sup>, while the longitudinal conductance varies from 0.1 - 1 to 1.9 Ω - 1. Similarly, the hydraulic conductivity in the area ranges from 5 to 50 m/day, while the transmissivity values range from 1000 to 14,000 m<sup>2</sup>/day.展开更多
Forests play an important role in the global carbon cycle and have a potential impact on global climatic change.Monitoring forest biomass is of considerable importance in understanding the hydrological cycle.Because o...Forests play an important role in the global carbon cycle and have a potential impact on global climatic change.Monitoring forest biomass is of considerable importance in understanding the hydrological cycle.Because of the problem of dense forest cover,no reliable method with which to retrieve soil moisture in forest areas from the microwave emission signature has been established.All of these issues relate to the microwave emissivity and transmissivity characteristics of a forest.The microwave emission contribution received by a sensor above a forest canopy comes from both the soil surface and the vegetation layer.To analyze the relationship of forest biomass and forest emission and transmissivity,a high-order emission model,the matrix-doubling model,which consists of both soil and vegetation models,was developed and then validated for a young deciduous forest stand in a field experiment.To simulate the emissivity and transmissivity of a deciduous forest in the L and X bands using the matrix-doubling model,the parameters of components of deciduous trees when the leaf area index varies from 1 to10 were generated by an L-system and a forest growth model.The emissivity and transmissivity of a forest and the relationships of these parameters to forest biomass are presented and analyzed in this paper.Emissivity in the L band when the leaf area index is less than 6 and at viewing angles less than 40°,and transmissivity in the L band are the most sensitive parameters in deciduous forest biomass estimation.展开更多
Forests have invariably been considered as an obstacle in retrieving land surface parameters from spaceborne passive microwave brightness temperature(T_(B))observations.For quantifying the effect of forests on microwa...Forests have invariably been considered as an obstacle in retrieving land surface parameters from spaceborne passive microwave brightness temperature(T_(B))observations.For quantifying the effect of forests on microwave signals,several models have been developed.However,these models rarely reveal the dependence of microwave radiation on forest types,which can hardly meet the needs of high-accuracy retrieval of terrestrial parameters in forested regions.A ground-based microwave radiometric observation experiment was designed to investigate the dependence of microwave radiation on frequency,polarization,and forest type.Downward TB at 18.7-and 36.5-GHz for horizontal-and vertical-polarization from the forest canopy was measured at 14 sample plots in Northeast China,along with snowpack and forest structural parameters.By providing fits to experimental data,new empirical transmissivity models for three forest types were developed,as a function of woody stem volume and depending on the frequency/polarization.The proposed models give diverse asymptotic transmissivity saturation levels and the corresponding saturation point of woody stem volume for different forest types.Root-mean-square error results between T_(B) simulations and Advanced Microwave Scanning Radiometer-2 observations are approximately 3-6 K.This study provides an experimental and theoretical reference for further development of inversion models for snow parameters in forested areas.展开更多
α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively dete...α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively determined.The expression of low-density lipoprotein receptor–related protein 1,which is abundantly expressed in neurons and considered to be a multifunctional endocytic receptor,is elevated in the neurons of patients with Parkinson's disease.However,whether there is a direct link between low-density lipoprotein receptor–related protein 1 andα-synuclein aggregation and propagation in Parkinson's disease remains unclear.Here,we established animal models of Parkinson's disease by inoculating monkeys and mice withα-synuclein pre-formed fibrils and observed elevated low-density lipoprotein receptor–related protein 1 levels in the striatum and substantia nigra,accompanied by dopaminergic neuron loss and increasedα-synuclein levels.However,low-density lipoprotein receptor–related protein 1 knockdown efficiently rescued dopaminergic neurodegeneration and inhibited the increase inα-synuclein levels in the nigrostriatal system.In HEK293A cells overexpressingα-synuclein fragments,low-density lipoprotein receptor–related protein 1 levels were upregulated only when the N-terminus ofα-synuclein was present,whereas anα-synuclein fragment lacking the N-terminus did not lead to low-density lipoprotein receptor–related protein 1 upregulation.Furthermore,the N-terminus ofα-synuclein was found to be rich in lysine residues,and blocking lysine residues in PC12 cells treated withα-synuclein pre-formed fibrils effectively reduced the elevated low-density lipoprotein receptor–related protein 1 andα-synuclein levels.These findings indicate that low-density lipoprotein receptor–related protein 1 regulates pathological transmission ofα-synuclein from the striatum to the substantia nigra in the nigrostriatal system via lysine residues in theα-synuclein N-terminus.展开更多
Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission ...Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission are associated with pathophysiological and neurodegenerative disorders,whereas glucagon-like peptide-1 has demonstrated neuroprotective effects.However,it is not yet clear whether diabetes causes alterations in inhibitory input to retinal ganglion cells and whether and how glucagon-like peptide-1 protects against neurodegeneration in the diabetic retina through regulating inhibitory synaptic transmission to retinal ganglion cells.In the present study,we used the patch-clamp technique to recordγ-aminobutyric acid subtype A receptor-mediated miniature inhibitory postsynaptic currents in retinal ganglion cells from streptozotocin-induced diabetes model rats.We found that early diabetes(4 weeks of hyperglycemia)decreased the frequency of GABAergic miniature inhibitory postsynaptic currents in retinal ganglion cells without altering their amplitude,suggesting a reduction in the spontaneous release ofγ-aminobutyric acid to retinal ganglion cells.Topical administration of glucagon-like peptide-1 eyedrops over a period of 2 weeks effectively countered the hyperglycemia-induced downregulation of GABAergic mIPSC frequency,subsequently enhancing the survival of retinal ganglion cells.Concurrently,the protective effects of glucagon-like peptide-1 on retinal ganglion cells in diabetic rats were eliminated by topical administration of exendin-9-39,a specific glucagon-like peptide-1 receptor antagonist,or SR95531,a specific antagonist of theγ-aminobutyric acid subtype A receptor.Furthermore,extracellular perfusion of glucagon-like peptide-1 was found to elevate the frequencies of GABAergic miniature inhibitory postsynaptic currents in both ON-and OFF-type retinal ganglion cells.This elevation was shown to be mediated by activation of the phosphatidylinositol-phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+/protein kinase C signaling pathway downstream of glucagon-like peptide-1 receptor activation.Moreover,multielectrode array recordings revealed that glucagon-like peptide-1 functionally augmented the photoresponses of ON-type retinal ganglion cells.Optomotor response tests demonstrated that diabetic rats exhibited reductions in visual acuity and contrast sensitivity that were significantly ameliorated by topical administration of glucagon-like peptide-1.These results suggest that glucagon-like peptide-1 facilitates the release ofγ-aminobutyric acid onto retinal ganglion cells through the activation of glucagon-like peptide-1 receptor,leading to the de-excitation of retinal ganglion cell circuits and the inhibition of excitotoxic processes associated with diabetic retinopathy.Collectively,our findings indicate that theγ-aminobutyric acid system has potential as a therapeutic target for mitigating early-stage diabetic retinopathy.Furthermore,the topical administration of glucagon-like peptide-1 eyedrops represents a non-invasive and effective treatment approach for managing early-stage diabetic retinopathy.展开更多
Theill-posed character of haze or fogmakes it difficult to remove froma single image.While most existing methods rely on a transmission map refined through depth estimation and assume a constant scattering coefficient...Theill-posed character of haze or fogmakes it difficult to remove froma single image.While most existing methods rely on a transmission map refined through depth estimation and assume a constant scattering coefficient,this assumption limits their effectiveness.In this paper,we propose an enhanced transmission map that incorporates spatially varying scattering information inherent in hazy images.To improve linearity,the model utilizes the ratio of the difference between intensity and saturation to their sum.Our approach also addresses critical issues such as edge preservation and color fidelity.In terms of qualitative as well as quantitative analysis,experimental outcomes show that the suggested framework is more effective than the currently used haze removal techniques.展开更多
The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke ...The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.展开更多
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo...The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.展开更多
BACKGROUND Transfusion transmissible infections(TTIs)are illnesses spread through contaminated blood or blood products.In India,screening for TTIs such as hepatitis B virus(HBV),hepatitis C virus(HCV),human immunodefi...BACKGROUND Transfusion transmissible infections(TTIs)are illnesses spread through contaminated blood or blood products.In India,screening for TTIs such as hepatitis B virus(HBV),hepatitis C virus(HCV),human immunodeficiency virus(HIV)-I/II,malaria,and syphilis is mandatory before blood transfusions.Worldwide,HCV,HBV,and HIV are the leading viruses causing mortality,affecting millions of people globally,including those with co-infections of HIV/HCV and HIV/HBV.Studies highlight the impact of TTIs on life expectancy and health risks,such as liver cirrhosis,cancer,and other diseases in individuals with chronic HBV.Globally,millions of blood donations take place annually,emphasizing the importance of maintaining blood safety.AIM To study the prevalence of TTIs,viz.,HBV,HCV,HIV I/II,syphilis,and malaria parasite(MP),among different blood donor groups.METHODS The study assessed the prevalence of TTIs among different blood donor groups in Delhi,India.Groups included total donors,in-house donors,total camp donors,institutional camp donors,and community camp donors.Tests for HIV,HBV,and HCV were done using enzyme-linked immunosorbent assay,while syphilis was tested with rapid plasma reagins and MP rapid card methods.The prevalence of HBV,HCV,HIV,and syphilis,expressed as percentages.Differences in infection rates between the groups were analyzed usingχ²tests and P-values(less than 0.05).RESULTS The study evaluated TTIs among 42158 blood donors in Delhi.The overall cumulative frequency of TTIs in total blood donors was 2.071%,and the frequencies of HBV,HCV,HIV-I/II,venereal disease research laboratory,and MP were 1.048%,0.425%,0.221%,0.377%,and 0.0024%,respectively.In-house donors,representing 37656 donors,had the highest transfusion transmissible infection(TTI)prevalence at 2.167%.Among total camp donors(4502 donors),TTIs were identified in 1.266%of donors,while community camp donors(2439 donors)exhibited a prevalence of 1.558%.Institutional camp donors(2063 donors)had the lowest TTI prevalence at 0.921%.Statistical analysis revealed significant differences in overall TTI prevalence,with total and in-house donors exhibiting higher rates compared to camp donors.CONCLUSION Ongoing monitoring and effective screening programs are essential for minimizing TTIs.Customizing blood safety measures for different donor groups and studying socio-economic-health factors is essential to improving blood safety.展开更多
In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings ...In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.展开更多
Asymmetric tilt boundaries on conventional twin boundaries(TBs)are significant for understanding the role of twins on coordinating plastic deformation in many metallic alloys.However,the formation modes of many asymme...Asymmetric tilt boundaries on conventional twin boundaries(TBs)are significant for understanding the role of twins on coordinating plastic deformation in many metallic alloys.However,the formation modes of many asymmetric tilt boundaries are hard to be accounted for based on traditional theoretical models,and the corresponding solute segregation is complex.Herein,atomic structures of a specific asymmetric boundary on{1012}TBs were reveled using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),molecular dynamics(MD)and density functional theory(DFT)simulations.Reaction between<a60>M dislocations and the{1012}TB can generate a~61°/25°asymmetric tilt boundary.The segregation of Gd and Zn atoms is closely related to the aggregateddislocations and the interfacial interstices of the asymmetric tilt boundary,which is energetically favorable in reducing the total system energy.展开更多
In this paper,the property degradation micromechanism of Al-5.10Cu-0.65 Mg-0.8Mn(wt%)alloy induced by 0.5 wt%Fe minor addition was revealed by atomic-scale scanning transmission electron microscopy and energy-dispersi...In this paper,the property degradation micromechanism of Al-5.10Cu-0.65 Mg-0.8Mn(wt%)alloy induced by 0.5 wt%Fe minor addition was revealed by atomic-scale scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy coupled with first-principles calculations.The results show that the Fe minor addition to the Al-Cu-Mg-Mn alloy leads to a slight reduction of grain size and the formation of coarse Al7Cu2Fe constituent particles.Fe tends to segregate into the T-phase dispersoids,θ'-,and S-phase precipitates by preferentially occupying Cu or Mn sites in these phase structures.The apparent Fe segregation contributes to an increase in stiffness of the T-phase and S-phase but decreased stiffness of theθ'phase.Formation of the coarse Al7Cu2Fe constituent particles and decreased stiffness of main precipitatesθ'containing Fe result in the degraded strength of the Al-Cu-Mg-Mn-Fe alloy.Further study reveals that corrosion resistance degradation of the Al-Cu-Mg-Mn-Fe alloy is associated with the increased width of precipitation free zones and consecutive grain boundary precipitates.The obtained results have significant implications for the usage of recycled Al alloys and the potential design strategies of high-performance alloys containing Fe.展开更多
The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the...The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the aged Mg-2Dy-0.5Zn(at.%)alloys were investigated by aberration-corrected scanning transmission electron microscopy.A novel formation mechanism of W phase was proposed,and its effects on the morphology and dimension of W particle,as well as mechanical properties of Mg-2Dy-0.5Zn alloys,were also discussed particularly.Different from other Mg-RE-Zn alloys,the nucleation and growth of W particle in Mg-Dy-Zn alloys mainly depend on the precipitatedγ′platelet.Primarily,a mass of Dy and Zn solute atoms concentrated nearγ′platelet or between two adjacentγ′platelets can meet the composition requirement of W particle nucleation.Next,the smaller interfacial mismatch between W andγ′facilitates the nucleation and growth of W particle.Thirdly,the growth of W particle can be achieved by consuming the surroundingγ′platelets.The nucleation and growth mechanisms make W particles exhibit rectangular or leaf-like and remain at the nanoscale.The coexistence ofγ′platelets and nanoscale W particles,and some better interfacial relationships between phases,lead to a high strength-ductility synergy of alloy.The findings may provide some fundamental guidelines for the microstructure design and optimization of new-type Mg-based alloys.展开更多
The increase in the utilization of infrared heat detection technology in military applications necessitates research on composites with improved thermal transmission performance and microwave absorption capabilities.T...The increase in the utilization of infrared heat detection technology in military applications necessitates research on composites with improved thermal transmission performance and microwave absorption capabilities.This study satisfactorily fabricated a series of MoS_(2)/BN-xyz composites(which were characterized by the weight ratio of MoS_(2)to BN,denoted by xy:z)through chemical vapor depos-ition,which resulted in their improved thermal stability and thermal transmission performance.The results show that the remaining mass of MoS_(2)/BN-101 was as high as 69.25wt%at 800℃under air atmosphere,and a temperature difference of 31.7℃was maintained between the surface temperature and the heating source at a heating temperature of 200℃.Furthermore,MoS_(2)/BN-301 exhibited an im-pressive minimum reflection loss value of-32.21 dB at 4.0 mm and a wide effective attenuation bandwidth ranging from 9.32 to 18.00 GHz(8.68 GHz).Therefore,these simplified synthesized MoS_(2)/BN-xyz composites demonstrate great potential as highly efficient con-tenders for the enhancement of microwave absorption performance and thermal conductance.展开更多
Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated...Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated the segregation behaviors of an Mg-RE alloy under deformation.We found that the enrichment of solute atoms occurred in{101^(-)1}compressive twin boundaries under compression at 298 K without any annealing in an Mg-RE alloy by scanning transmission electron microscopy and energy-dispersive X-ray analysis.The segregated solutes and precipitates impeded the twin growth,partially contributing to the formation of small-sized{101^(-)1}compressive twins.This research indicates the twin boundaries can be strengthened by segregated solutes and precipitates formed under deformation at room temperature.展开更多
文摘Many investigation techniques are commonly employed with the aim of estimating the spatial distribution of transmissivity. Unfortunately, the conventional methods for the determination of hydraulic parameters such as pumping tests, permeameter measurements and grain size analysis are invasive and relatively expensive. A geoelectric investigation involving vertical electrical sounding was carried in parts of Enugu town, Enugu state, Nigeria. The survey was aimed at extrapolating the result of pumping tests over an area. Using the Dar Zarrouk parameter, a β constant of 0.32 was found to translate resistivity to transmissivity with clay content as the primary factor controlling the hydraulic conductivity. Results of the study show a strong correlation between aquifer transmissivity and longitudinal conductance (R2 = 0.82). Estimation of aquifer transmissivity values based on the results of the resistivity measurements also made it possible to demarcate area with good groundwater potential in parts of Enugu town, Nigeria.
文摘During the long service period of a nuclear waste repository in crystalline rock,large earthquake(s)may occur nearby the repository site and coseismically alter the local stress field around pre-existing fractures within the geological formation.The resulting fracture normal/shear displacements may lead to fracture opening and further promote the transport of leaked radionuclides into the groundwater system.Thus,it is of central importance to analyze the consequences of potential future earthquake(s)on the hydrogeological properties of a repository site for spent nuclear fuel disposal.Based on the detailed site characterization data of the repository site at Forsmark,Sweden,we conduct a three-dimensional(3D)seismo-hydro-mechanical simulation using the 3Dimensional Distinct Element Code(3DEC).We explicitly represent a primary seismogenic fault zone and its surrounding secondary fracture network associated with a power-law size scaling and a Fisher orientation distribution.An earthquake with a magnitude of M_(w)=5.6 caused by the reactivation of the primary fault zone is modeled by simulating its transient rupture propagating radially outwards from a predefined hypocenter at a specified rupture speed,with the faulting dynamics controlled by a strength weakening law.We model the coseismic response of the off-fault fracture network subject to both static and dynamic triggering effects.We further diagnose the distribution of fracture hydro-mechanical properties(e.g.mechanical/hydraulic aperture,hydraulic transmissivity)before and after the earthquake in order to quantify earthquakeinduced hydraulic changes in the fracture network.It is found that earthquake-induced fracture transmissivity changes tend to follow a power-law decay with the distance to the earthquake fault.Our simulation results and insights obtained have important implications for the long-term performance assessment of nuclear waste repositories in fractured crystalline rocks.
文摘The application of geophysical methods in combination with pumping tests provides a cost-effective and efficient alternative to estimate aquifer parameters. In this study, nineteen Schlumberger vertical electrical soundings (VES) were occupied in parts of Bayelsa State using a maximum current electrode separation ranging beweeen 300 - 400 m with the aim of estimating the transmissivity of the alluvial aquifer in areas where no pumping test has been carried out. Four of the soundings were carried out near existing boreholes in which pumping test had been carried out. The VES data obtained was interpreted, and layer parameters such as true resistivities and thickness were determined. The geoelectric parameters were used to generate the Dar Zarrouk parameters. Correlating the Dar Zarrouk parameter (e.g longitudinal unit conductance) with transmissivity derived from pumping test data, a constant was found which translate longitudinal unit conductance to transmissivity in a hydrogeological setting where effective porosity is the primary control on resistivity and hydraulic conductivity. Transmissivity determined from the pumping test data range between 1634.0 - 5292.0 m2/day while transmissivity values estimated from the longitudinal unit conductance (Lc) range between 721 - 8991 m2/day. The transmissivity estimated from the pumping test (Tp) data and transmissivity estimated from the longitudinal conductance (Lc) on comparison show excellent correlation (R2 = 0.92). The high transmissivity values agree with the geology of the Benin Formation (Coastal Plain sands) consisting of fine-medium-coarse sands. The results give a useful first approximation of the transmissivity and could be used to site exploratory boreholes.
文摘Global dimming term was introduced in 1990s which means the decline in global radiation. This decline was reported in several studies across the world. In the present study time series analysis of global radiation (1960-2003), transmissivity (1960-2003) and bright sunshine hours (1973-2003) has been done over Nagpur during pre-monsoon (March to May) and monsoon seasons (June-September). A significant decrease in global radiation and transmissivity has been reported for both the seasons and it was higher during pre-monsoon compared to monsoon. Bright sunshine hour has also shown good agreement with the previous trend with a significant trend on pre-monsoon months only. Mann Kendall test was performed to confirm the significance of reported trend.
文摘This study was undertaken to determine the hydrologic properties of the aquifer materials at Ogbozara-Opi/Ekwegbe-Agu and environs by the estimation of the aquifer transmissivity using Dar Zarrouk parameters. The study area lies in the Anambra basin and is underlain, from bottom to top, by 3 prominent geologic formations;Enugu Formation, Mamu Formation and Ajali Formation respectively. A total of 19 sounding stations were occupied within the study area using the Ohmega resistivity meter. The VES data were interpreted using the conventional partial curve matching technique to obtain initial model parameters which were later used as input data for computer iterative modelling using the Interpex software. These analyses were further combined with information from two existing boreholes in the study area to estimate aquifer hydraulic parameters using Dar-Zarrouk parameters. The layer parameters thus obtained revealed that the dominant curve type obtained from the different formations is the AK curve type followed by the HK curve type. An average of 6 geo-electric layers were delineated across all transect taken with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm and 2992.3 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. Results of the study revealed the aquifer resistivity in the study area ranges from 1 - 500 Ωm. The depth to the water table range from 13 - 208 m with a mean value of 76.05, while aquifer thickness varies between 95 and 140 m with a mean value of 102.89 m. The values of the Dar-Zarrouk parameters revealed that the transverse resistance varies between −10,000 - 170,000 Ωm<sup>2</sup>, while the longitudinal conductance varies from 0.1 - 1 to 1.9 Ω - 1. Similarly, the hydraulic conductivity in the area ranges from 5 to 50 m/day, while the transmissivity values range from 1000 to 14,000 m<sup>2</sup>/day.
基金supported by the National Basic Research Program of China(Grant No.2013CB733406)the National Natural Science Foundations of China(Grant No.41171266)
文摘Forests play an important role in the global carbon cycle and have a potential impact on global climatic change.Monitoring forest biomass is of considerable importance in understanding the hydrological cycle.Because of the problem of dense forest cover,no reliable method with which to retrieve soil moisture in forest areas from the microwave emission signature has been established.All of these issues relate to the microwave emissivity and transmissivity characteristics of a forest.The microwave emission contribution received by a sensor above a forest canopy comes from both the soil surface and the vegetation layer.To analyze the relationship of forest biomass and forest emission and transmissivity,a high-order emission model,the matrix-doubling model,which consists of both soil and vegetation models,was developed and then validated for a young deciduous forest stand in a field experiment.To simulate the emissivity and transmissivity of a deciduous forest in the L and X bands using the matrix-doubling model,the parameters of components of deciduous trees when the leaf area index varies from 1 to10 were generated by an L-system and a forest growth model.The emissivity and transmissivity of a forest and the relationships of these parameters to forest biomass are presented and analyzed in this paper.Emissivity in the L band when the leaf area index is less than 6 and at viewing angles less than 40°,and transmissivity in the L band are the most sensitive parameters in deciduous forest biomass estimation.
基金supported by National Natural Science Foundation of China:[Grant Number 41771400]National Natural Science Foundation of China:[Grant Number 41871248]Science and Technology Basic Resources Investigation Program of China‘Investigation on snow characteristics and their distribution in China’[Grant Number 2017FY100500].
文摘Forests have invariably been considered as an obstacle in retrieving land surface parameters from spaceborne passive microwave brightness temperature(T_(B))observations.For quantifying the effect of forests on microwave signals,several models have been developed.However,these models rarely reveal the dependence of microwave radiation on forest types,which can hardly meet the needs of high-accuracy retrieval of terrestrial parameters in forested regions.A ground-based microwave radiometric observation experiment was designed to investigate the dependence of microwave radiation on frequency,polarization,and forest type.Downward TB at 18.7-and 36.5-GHz for horizontal-and vertical-polarization from the forest canopy was measured at 14 sample plots in Northeast China,along with snowpack and forest structural parameters.By providing fits to experimental data,new empirical transmissivity models for three forest types were developed,as a function of woody stem volume and depending on the frequency/polarization.The proposed models give diverse asymptotic transmissivity saturation levels and the corresponding saturation point of woody stem volume for different forest types.Root-mean-square error results between T_(B) simulations and Advanced Microwave Scanning Radiometer-2 observations are approximately 3-6 K.This study provides an experimental and theoretical reference for further development of inversion models for snow parameters in forested areas.
基金supported by the Natural Science Foundation of Guangxi Zhuang Automomous Region,Nos.2019GXNSFDA245015(to MC),2022GXNSFBA035654(to HL)the National Natural Science Foundation of China,Nos.82360241(to MC),82304876(to HL)+1 种基金Scientific Research and Technology Development Project of Guilin City,Nos.20220139-3(to MC),20210218-5(to HL)Guangxi Medical and Health Key Discipline Construction Project(to QL)。
文摘α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively determined.The expression of low-density lipoprotein receptor–related protein 1,which is abundantly expressed in neurons and considered to be a multifunctional endocytic receptor,is elevated in the neurons of patients with Parkinson's disease.However,whether there is a direct link between low-density lipoprotein receptor–related protein 1 andα-synuclein aggregation and propagation in Parkinson's disease remains unclear.Here,we established animal models of Parkinson's disease by inoculating monkeys and mice withα-synuclein pre-formed fibrils and observed elevated low-density lipoprotein receptor–related protein 1 levels in the striatum and substantia nigra,accompanied by dopaminergic neuron loss and increasedα-synuclein levels.However,low-density lipoprotein receptor–related protein 1 knockdown efficiently rescued dopaminergic neurodegeneration and inhibited the increase inα-synuclein levels in the nigrostriatal system.In HEK293A cells overexpressingα-synuclein fragments,low-density lipoprotein receptor–related protein 1 levels were upregulated only when the N-terminus ofα-synuclein was present,whereas anα-synuclein fragment lacking the N-terminus did not lead to low-density lipoprotein receptor–related protein 1 upregulation.Furthermore,the N-terminus ofα-synuclein was found to be rich in lysine residues,and blocking lysine residues in PC12 cells treated withα-synuclein pre-formed fibrils effectively reduced the elevated low-density lipoprotein receptor–related protein 1 andα-synuclein levels.These findings indicate that low-density lipoprotein receptor–related protein 1 regulates pathological transmission ofα-synuclein from the striatum to the substantia nigra in the nigrostriatal system via lysine residues in theα-synuclein N-terminus.
基金supported by the National Natural Science Foundation of China,Nos.32070989(to YMZ),31872766(to YMZ),81790640(to XLY),and 82070993(to SJW)the grant from Sanming Project of Medicine in Shenzhen,No.SZSM202011015(to XLY)。
文摘Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission are associated with pathophysiological and neurodegenerative disorders,whereas glucagon-like peptide-1 has demonstrated neuroprotective effects.However,it is not yet clear whether diabetes causes alterations in inhibitory input to retinal ganglion cells and whether and how glucagon-like peptide-1 protects against neurodegeneration in the diabetic retina through regulating inhibitory synaptic transmission to retinal ganglion cells.In the present study,we used the patch-clamp technique to recordγ-aminobutyric acid subtype A receptor-mediated miniature inhibitory postsynaptic currents in retinal ganglion cells from streptozotocin-induced diabetes model rats.We found that early diabetes(4 weeks of hyperglycemia)decreased the frequency of GABAergic miniature inhibitory postsynaptic currents in retinal ganglion cells without altering their amplitude,suggesting a reduction in the spontaneous release ofγ-aminobutyric acid to retinal ganglion cells.Topical administration of glucagon-like peptide-1 eyedrops over a period of 2 weeks effectively countered the hyperglycemia-induced downregulation of GABAergic mIPSC frequency,subsequently enhancing the survival of retinal ganglion cells.Concurrently,the protective effects of glucagon-like peptide-1 on retinal ganglion cells in diabetic rats were eliminated by topical administration of exendin-9-39,a specific glucagon-like peptide-1 receptor antagonist,or SR95531,a specific antagonist of theγ-aminobutyric acid subtype A receptor.Furthermore,extracellular perfusion of glucagon-like peptide-1 was found to elevate the frequencies of GABAergic miniature inhibitory postsynaptic currents in both ON-and OFF-type retinal ganglion cells.This elevation was shown to be mediated by activation of the phosphatidylinositol-phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+/protein kinase C signaling pathway downstream of glucagon-like peptide-1 receptor activation.Moreover,multielectrode array recordings revealed that glucagon-like peptide-1 functionally augmented the photoresponses of ON-type retinal ganglion cells.Optomotor response tests demonstrated that diabetic rats exhibited reductions in visual acuity and contrast sensitivity that were significantly ameliorated by topical administration of glucagon-like peptide-1.These results suggest that glucagon-like peptide-1 facilitates the release ofγ-aminobutyric acid onto retinal ganglion cells through the activation of glucagon-like peptide-1 receptor,leading to the de-excitation of retinal ganglion cell circuits and the inhibition of excitotoxic processes associated with diabetic retinopathy.Collectively,our findings indicate that theγ-aminobutyric acid system has potential as a therapeutic target for mitigating early-stage diabetic retinopathy.Furthermore,the topical administration of glucagon-like peptide-1 eyedrops represents a non-invasive and effective treatment approach for managing early-stage diabetic retinopathy.
基金The Deanship of Research and Graduate Studies at King Khalid University funded this work through a Large Research Project under grant number RGP2/274/46.
文摘Theill-posed character of haze or fogmakes it difficult to remove froma single image.While most existing methods rely on a transmission map refined through depth estimation and assume a constant scattering coefficient,this assumption limits their effectiveness.In this paper,we propose an enhanced transmission map that incorporates spatially varying scattering information inherent in hazy images.To improve linearity,the model utilizes the ratio of the difference between intensity and saturation to their sum.Our approach also addresses critical issues such as edge preservation and color fidelity.In terms of qualitative as well as quantitative analysis,experimental outcomes show that the suggested framework is more effective than the currently used haze removal techniques.
基金supported by MICIU(grant number PID2021-128133NB-100/AEI/FEDER10.13039/501100011033 to JMHG)by the National Institutes of Health(grant number R01 NS083858 to SAK)+1 种基金the Intramural Grants Program IGPP00057(to SAK)VIC enjoys a FPU contract from the Comunidad de Madrid(PIPF-2022/SAL-GL-25948)。
文摘The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.
基金supported by the National Natural Science Foundation of China,No.82371444(to YZ)the Natural Science Foundation of Hubei Province,No.2022CFB216(to XC)the Key Research Project of Ministry of Science and Technology of China,No.2022ZD021160(to YZ)。
文摘The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.
文摘BACKGROUND Transfusion transmissible infections(TTIs)are illnesses spread through contaminated blood or blood products.In India,screening for TTIs such as hepatitis B virus(HBV),hepatitis C virus(HCV),human immunodeficiency virus(HIV)-I/II,malaria,and syphilis is mandatory before blood transfusions.Worldwide,HCV,HBV,and HIV are the leading viruses causing mortality,affecting millions of people globally,including those with co-infections of HIV/HCV and HIV/HBV.Studies highlight the impact of TTIs on life expectancy and health risks,such as liver cirrhosis,cancer,and other diseases in individuals with chronic HBV.Globally,millions of blood donations take place annually,emphasizing the importance of maintaining blood safety.AIM To study the prevalence of TTIs,viz.,HBV,HCV,HIV I/II,syphilis,and malaria parasite(MP),among different blood donor groups.METHODS The study assessed the prevalence of TTIs among different blood donor groups in Delhi,India.Groups included total donors,in-house donors,total camp donors,institutional camp donors,and community camp donors.Tests for HIV,HBV,and HCV were done using enzyme-linked immunosorbent assay,while syphilis was tested with rapid plasma reagins and MP rapid card methods.The prevalence of HBV,HCV,HIV,and syphilis,expressed as percentages.Differences in infection rates between the groups were analyzed usingχ²tests and P-values(less than 0.05).RESULTS The study evaluated TTIs among 42158 blood donors in Delhi.The overall cumulative frequency of TTIs in total blood donors was 2.071%,and the frequencies of HBV,HCV,HIV-I/II,venereal disease research laboratory,and MP were 1.048%,0.425%,0.221%,0.377%,and 0.0024%,respectively.In-house donors,representing 37656 donors,had the highest transfusion transmissible infection(TTI)prevalence at 2.167%.Among total camp donors(4502 donors),TTIs were identified in 1.266%of donors,while community camp donors(2439 donors)exhibited a prevalence of 1.558%.Institutional camp donors(2063 donors)had the lowest TTI prevalence at 0.921%.Statistical analysis revealed significant differences in overall TTI prevalence,with total and in-house donors exhibiting higher rates compared to camp donors.CONCLUSION Ongoing monitoring and effective screening programs are essential for minimizing TTIs.Customizing blood safety measures for different donor groups and studying socio-economic-health factors is essential to improving blood safety.
基金support of the PID2021-124341OB-C22/AEI/10.13039/501100011033/FEDER,UE(MICIU)J.M.Vega also acknowledges the Grant RYC2021-034384-I funded by MICIU/AEI/10.13039/501100011033 and by“European Union Next Generation EU/PRTR”.
文摘In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.
基金supported by the Scientific and Technological Developing Scheme of Jilin Province under grants no.YDZJ202301ZYTS538the Chinese Academy of Sciences Youth Innovation Promotion Association under grants number 2023234+3 种基金the National Natural Science Foundation of China under grants number U21A20323the Scientific and Technological Developing Scheme of Jilin Province under grants no.SKL202302038the Major Scientific and Technological Projects of Hebei Province under grants No.23291001Zthe Scientific and Technology Project of Hanjiang District.
文摘Asymmetric tilt boundaries on conventional twin boundaries(TBs)are significant for understanding the role of twins on coordinating plastic deformation in many metallic alloys.However,the formation modes of many asymmetric tilt boundaries are hard to be accounted for based on traditional theoretical models,and the corresponding solute segregation is complex.Herein,atomic structures of a specific asymmetric boundary on{1012}TBs were reveled using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),molecular dynamics(MD)and density functional theory(DFT)simulations.Reaction between<a60>M dislocations and the{1012}TB can generate a~61°/25°asymmetric tilt boundary.The segregation of Gd and Zn atoms is closely related to the aggregateddislocations and the interfacial interstices of the asymmetric tilt boundary,which is energetically favorable in reducing the total system energy.
基金supported by the National Natural Science Foundation of China(Nos.U20A20274 and 52061003)the Natural Science Foundation of Yunnan Province(No.202301AT070209)the Science and Technology Major Project of Yunnan Province(No.202102AG050017).
文摘In this paper,the property degradation micromechanism of Al-5.10Cu-0.65 Mg-0.8Mn(wt%)alloy induced by 0.5 wt%Fe minor addition was revealed by atomic-scale scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy coupled with first-principles calculations.The results show that the Fe minor addition to the Al-Cu-Mg-Mn alloy leads to a slight reduction of grain size and the formation of coarse Al7Cu2Fe constituent particles.Fe tends to segregate into the T-phase dispersoids,θ'-,and S-phase precipitates by preferentially occupying Cu or Mn sites in these phase structures.The apparent Fe segregation contributes to an increase in stiffness of the T-phase and S-phase but decreased stiffness of theθ'phase.Formation of the coarse Al7Cu2Fe constituent particles and decreased stiffness of main precipitatesθ'containing Fe result in the degraded strength of the Al-Cu-Mg-Mn-Fe alloy.Further study reveals that corrosion resistance degradation of the Al-Cu-Mg-Mn-Fe alloy is associated with the increased width of precipitation free zones and consecutive grain boundary precipitates.The obtained results have significant implications for the usage of recycled Al alloys and the potential design strategies of high-performance alloys containing Fe.
基金supported by Natural Science Foundation of Liaoning Province of China under Grant No.2020-MS-085。
文摘The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the aged Mg-2Dy-0.5Zn(at.%)alloys were investigated by aberration-corrected scanning transmission electron microscopy.A novel formation mechanism of W phase was proposed,and its effects on the morphology and dimension of W particle,as well as mechanical properties of Mg-2Dy-0.5Zn alloys,were also discussed particularly.Different from other Mg-RE-Zn alloys,the nucleation and growth of W particle in Mg-Dy-Zn alloys mainly depend on the precipitatedγ′platelet.Primarily,a mass of Dy and Zn solute atoms concentrated nearγ′platelet or between two adjacentγ′platelets can meet the composition requirement of W particle nucleation.Next,the smaller interfacial mismatch between W andγ′facilitates the nucleation and growth of W particle.Thirdly,the growth of W particle can be achieved by consuming the surroundingγ′platelets.The nucleation and growth mechanisms make W particles exhibit rectangular or leaf-like and remain at the nanoscale.The coexistence ofγ′platelets and nanoscale W particles,and some better interfacial relationships between phases,lead to a high strength-ductility synergy of alloy.The findings may provide some fundamental guidelines for the microstructure design and optimization of new-type Mg-based alloys.
基金supported by the Science and Technology Department of Qinghai Province,China(No.2022-ZJ-932Q).
文摘The increase in the utilization of infrared heat detection technology in military applications necessitates research on composites with improved thermal transmission performance and microwave absorption capabilities.This study satisfactorily fabricated a series of MoS_(2)/BN-xyz composites(which were characterized by the weight ratio of MoS_(2)to BN,denoted by xy:z)through chemical vapor depos-ition,which resulted in their improved thermal stability and thermal transmission performance.The results show that the remaining mass of MoS_(2)/BN-101 was as high as 69.25wt%at 800℃under air atmosphere,and a temperature difference of 31.7℃was maintained between the surface temperature and the heating source at a heating temperature of 200℃.Furthermore,MoS_(2)/BN-301 exhibited an im-pressive minimum reflection loss value of-32.21 dB at 4.0 mm and a wide effective attenuation bandwidth ranging from 9.32 to 18.00 GHz(8.68 GHz).Therefore,these simplified synthesized MoS_(2)/BN-xyz composites demonstrate great potential as highly efficient con-tenders for the enhancement of microwave absorption performance and thermal conductance.
基金support from Interdisciplinary Research Project for Young Teachers of USTB Fundamental Research Funds for the Central Universities(Grant no.FRF-IDRY-23-030).
文摘Solute atoms and precipitates significantly influence the mechanical properties of Mg alloys.Previous studies have mainly focused on the segregation behaviors of Mg alloys after annealing.In this study,we investigated the segregation behaviors of an Mg-RE alloy under deformation.We found that the enrichment of solute atoms occurred in{101^(-)1}compressive twin boundaries under compression at 298 K without any annealing in an Mg-RE alloy by scanning transmission electron microscopy and energy-dispersive X-ray analysis.The segregated solutes and precipitates impeded the twin growth,partially contributing to the formation of small-sized{101^(-)1}compressive twins.This research indicates the twin boundaries can be strengthened by segregated solutes and precipitates formed under deformation at room temperature.