A multiobjective routing model for Multiprotocol Label Switching networks with multiple service types and traffic splitting is presented in this paper. The routing problem is formulated as a multiobjective mixed-integ...A multiobjective routing model for Multiprotocol Label Switching networks with multiple service types and traffic splitting is presented in this paper. The routing problem is formulated as a multiobjective mixed-integer program, where the considered objectives are the minimization of the bandwidth routing cost and the minimization of the load cost in the network links with a constraint on the maximal splitting of traffic trunks. Two different exact methods are developed for solving the formulated problem, one based on the classical constraint method and another based on a modified constraint method. A very extensive experimental study, with results on network performance measures in various reference test networks and in randomly generated networks, is also presented and its results are discussed.展开更多
Ethernet link aggregation, which provides an easy and cost-effective way to increase both bandwidth and link availability between a pair of devices, is well suited for data center networks. However, all the traffic sp...Ethernet link aggregation, which provides an easy and cost-effective way to increase both bandwidth and link availability between a pair of devices, is well suited for data center networks. However, all the traffic splitting algorithms used in existing Ethernet link aggregation are flow-level which do not work well owing to the traffic characteristics of data centers. Though frame-level traffic splitting can achieve optimal load balance and the maximum benefits from aggregated capacity, it is generally deprecated in most cases because of frame disordering which can disrupt the operation of many Internet protocols, most notably transmission control protocol (TCP). To address this issue, we first investigate the causes of frame disordering in link aggregation and find that all of them either are no longer true or can be prevented in data centers. Then we present a byte-counter frame-level traffic splitting algorithm which achieves optimal performance while causes no frame disordering. The only requirement is that frames in a flow are the same size which can be easily met in data centers. Simulation results show that the proposed frame-level traffic splitting method could achieve higher throughput and optimal load balance. The average completion time of different sized flows is reduced by 24% on average and by up to 46%.展开更多
In the future, the wireless communication networks can be visualized as the integration of different radio access technologies (RATs), which are referred to as heterogeneous wireless networks (HWNs). In this paper...In the future, the wireless communication networks can be visualized as the integration of different radio access technologies (RATs), which are referred to as heterogeneous wireless networks (HWNs). In this paper, the traffic split scheme in the HWNs integrating the long term evolution (LTE) and the high speed downlink packet access (HSDPA) networks is investigated. Assuming that the networks can support multi-homing access and the user can be served by both networks simultaneously, the traffic split problem is described as an optimization problem with the aim of maximizing the throughput. By solving the problem, the dynamic traffic split scheme is proposed. The split ratios in the scheme should be proportional to the transmission rates in theory, which are hard to be described in the closed forms. Then the adaptive algorithm is proposed to obtain the split ratios. Simulation results show that the scheme with the adaptive algorithm provides better performance than the scheme without it over the additive white Gaussian noise (AWGN) fading channel and Rayleigh fading channel.展开更多
Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in in...Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.展开更多
Recent traffic measurements in corporate LANs, Variable Bit Rate (VBR) video sources, ISDN control channels, and other communication systems, have indicated traffic behavior of self similar nature, which has implicati...Recent traffic measurements in corporate LANs, Variable Bit Rate (VBR) video sources, ISDN control channels, and other communication systems, have indicated traffic behavior of self similar nature, which has implications for design, control and analysis of high speed networks. Merging and splitting are two basic networking operations. This paper gave the necessary and sufficient conditions for that merging of second order self similar traffic streams also results in a second order self similar stream. It shows that splitting traffic streams of the second order self similar stream are still self similar streams by the independent splitting operation.展开更多
In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is...In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.展开更多
Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the sele...Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve.展开更多
this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of t...this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.展开更多
基金financially supported by programme COMPETE of the EC Community Support Framework Ⅲcosponsored by the EC fund FEDERnational funds(Portuguese Foundation for Science and Technology under projects PTDC/EEA-TEL/101884/2008,PEstOE/EEI/UI0308/2014 and PEst-OE/MAT/ UI0152)
文摘A multiobjective routing model for Multiprotocol Label Switching networks with multiple service types and traffic splitting is presented in this paper. The routing problem is formulated as a multiobjective mixed-integer program, where the considered objectives are the minimization of the bandwidth routing cost and the minimization of the load cost in the network links with a constraint on the maximal splitting of traffic trunks. Two different exact methods are developed for solving the formulated problem, one based on the classical constraint method and another based on a modified constraint method. A very extensive experimental study, with results on network performance measures in various reference test networks and in randomly generated networks, is also presented and its results are discussed.
基金supported by the National Natural Science Foundation of China(61002011)the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2009KF-2-08)+1 种基金the National Basic Research Program of China(2009CB320505)the Hi-Tech Research and Development Program of China(2011AA01A102)
文摘Ethernet link aggregation, which provides an easy and cost-effective way to increase both bandwidth and link availability between a pair of devices, is well suited for data center networks. However, all the traffic splitting algorithms used in existing Ethernet link aggregation are flow-level which do not work well owing to the traffic characteristics of data centers. Though frame-level traffic splitting can achieve optimal load balance and the maximum benefits from aggregated capacity, it is generally deprecated in most cases because of frame disordering which can disrupt the operation of many Internet protocols, most notably transmission control protocol (TCP). To address this issue, we first investigate the causes of frame disordering in link aggregation and find that all of them either are no longer true or can be prevented in data centers. Then we present a byte-counter frame-level traffic splitting algorithm which achieves optimal performance while causes no frame disordering. The only requirement is that frames in a flow are the same size which can be easily met in data centers. Simulation results show that the proposed frame-level traffic splitting method could achieve higher throughput and optimal load balance. The average completion time of different sized flows is reduced by 24% on average and by up to 46%.
基金supported by the Research Fund of ZTE Corporation
文摘In the future, the wireless communication networks can be visualized as the integration of different radio access technologies (RATs), which are referred to as heterogeneous wireless networks (HWNs). In this paper, the traffic split scheme in the HWNs integrating the long term evolution (LTE) and the high speed downlink packet access (HSDPA) networks is investigated. Assuming that the networks can support multi-homing access and the user can be served by both networks simultaneously, the traffic split problem is described as an optimization problem with the aim of maximizing the throughput. By solving the problem, the dynamic traffic split scheme is proposed. The split ratios in the scheme should be proportional to the transmission rates in theory, which are hard to be described in the closed forms. Then the adaptive algorithm is proposed to obtain the split ratios. Simulation results show that the scheme with the adaptive algorithm provides better performance than the scheme without it over the additive white Gaussian noise (AWGN) fading channel and Rayleigh fading channel.
文摘Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.
文摘Recent traffic measurements in corporate LANs, Variable Bit Rate (VBR) video sources, ISDN control channels, and other communication systems, have indicated traffic behavior of self similar nature, which has implications for design, control and analysis of high speed networks. Merging and splitting are two basic networking operations. This paper gave the necessary and sufficient conditions for that merging of second order self similar traffic streams also results in a second order self similar stream. It shows that splitting traffic streams of the second order self similar stream are still self similar streams by the independent splitting operation.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (Grant No. 61231008), National Basic Research Program of China (973 Program) (Grant No. 2009CB320404), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0852), and the 111 Project (Grant No. B08038).
文摘In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.
文摘为解决车辆在信号交叉口频繁停走导致高能耗的问题,同时考虑到自动驾驶车(autonomous vehicle,AV)与人工驾驶车(human-driven vehicle,HDV)混合交通的趋势,采用通过自动驾驶车引领人工驾驶车组成混合车队的方式实现信号交叉口处的生态驾驶。在混合车队建模方面,不仅考虑跟驰行为和能量消耗模型,还通过真实车辆轨迹数据进行理论分析,并采用Lighthill,Whitham and Richards(LWR)模型研究排队消散行为,为后续生态驾驶策略设计提供理论基础;研究了前方不同排队情况下目标速度的计算方法,提出了两阶段速度策略,并针对混合车队在同一绿灯时长内不能通过交叉口的情况设计了车队拆分策略。研究结果表明:在前方无排队的情况下,混合车队总能量消耗较自由驾驶模型减少了33.96%,比传统生态驾驶模型多节约了3.33%;在前方有排队且可消散的情况下,未考虑拆分策略的混合车队总能量消耗较自由驾驶模型减少了23.26%,应用拆分策略后总能量消耗的节约比例提高了4.41%;在存在二次排队的情况下,提出的模型相较自由驾驶模型总能量消耗下降了14.55%。研究结果有助于交通管理者根据不同交通状态为混合车队设计更加精准、灵活的动态策略,以降低单位车辆能耗,为实现双碳目标奠定基础。
文摘Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve.
文摘this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.