Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes...A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.展开更多
A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking appl...A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.展开更多
Advances in wireless technologies and positioning technologies and spread of wireless devices, an interest in LBS(Location Based Service) is arising. To provide location based service, tracking data should have been s...Advances in wireless technologies and positioning technologies and spread of wireless devices, an interest in LBS(Location Based Service) is arising. To provide location based service, tracking data should have been stored in moving object database management system (called MODBMS) with proper policies and managed efficiently. So the methods which acquire the location information at regular time intervals then, store and manage have been studied. In this paper, we suggest tracking data management techniques using topology that is corresponding to the moving path of moving object. In our techniques, we update the MODBMS when moving object arrived at a street intersection or a curved road which is represented as the node in topology and predict the location at past and future with attribute of topology and linear function. In this technique, location data that are corresponding to the node in topology are stored, thus reduce the number of update and amount of data. Also in case predicting the location, because topology are used as well as existing location information, accuracy for prediction is increased than applying linear function or spline function.展开更多
Most of the millions of Android users worldwide use applications from the official Android market (Google Play store) and unregulated alternative markets to get more functionality from their devices. Many of these app...Most of the millions of Android users worldwide use applications from the official Android market (Google Play store) and unregulated alternative markets to get more functionality from their devices. Many of these applications transmit sensitive data stored on the device, either maliciously or accidentally, to outside networks. In this paper, we will study the ways that Android applications transmit data to outside servers and propose a user-friendly application, DroidData, to inform and protect the user from these security risks. We will use tools such as TaintDroid, AppIntent, and Securacy to propose an application that reveals what types of data are being transmitted from apps, the location to which the data is being transmitted, whether the data is being transmitted through a secure channel (such as HTTPS) and whether the user is aware that the information is being transmitted. The application will generate a report that allows the user to block the application that leaks sensitive information. In doing so, we will examine the importance, relevance, and prevalence of these Android Data security issues.展开更多
This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instant...This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state, and the measurements are corrupted by random noises. The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology. Furthermore, the effects of the sampling period on the tracking performance are analysed. It turns out that from the view point of the sampling period, there is a trade-off between the tracking speed and the static tracking error. Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
The paper analyses the improvement of track loss in clutter with multisensor data fusion.By a determination of the transition probability density function for the fusion prediction error, one can study the mechanism o...The paper analyses the improvement of track loss in clutter with multisensor data fusion.By a determination of the transition probability density function for the fusion prediction error, one can study the mechanism of track loss analytically. With nearest-neighbor association algorithm. The paper we studies the fused tracking performance parameters, such as mean time to lose fused track and the cumulative probability of lost fused track versus the normalized clutter density, for track continuation and track initiation, respectively. A comparison of the results obtained with the case of a single sensor is presented. These results show that the fused tracks of multisensor reduce the possibility of track loss and improve the tracking performance. The analysis is of great importance for further understanding the action of data fusion.展开更多
Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challengin...Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.展开更多
Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilis...Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the framework of generalized probabilistic data association to calculate the residual and residual covariance matrices, and the interconnection probability is further optimized. On that basis, the dynamic combination of particle filter and generalized probabilistic data association method is realized in the new algorithm. The theoretical analysis and experimental results show the filtering precision is obviously improved with respect to the tradition method using suboptimal filter.展开更多
In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hy...In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.展开更多
This paper investigates asymptotic bounded consensus tracking(ABCT) of double-integrator multi-agent systems(MASs) with an asymptotically-unbounded-acceleration and bounded-jerk target(AUABJT) available to parti...This paper investigates asymptotic bounded consensus tracking(ABCT) of double-integrator multi-agent systems(MASs) with an asymptotically-unbounded-acceleration and bounded-jerk target(AUABJT) available to partial agents based on sampled-data without velocity measurements. A sampled-data consensus tracking protocol(CTP) without velocity measurements is proposed to guarantee that double-integrator MASs track an AUABJT available to only partial agents.The eigenvalue analysis method together with the augmented matrix method is used to obtain the necessary and sufficient conditions for ABCT. A numerical example is provided to illustrate the effectiveness of theoretical results.展开更多
As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to r...As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to realize its state detection. However, there was often a deficiency that the detection accuracy and calculation speed of model were difficult to balance, when the traditional deep learning model is used to detect the service state of track fasteners. Targeting this issue, an improved Yolov4 model for detecting the service status of track fasteners was proposed. Firstly, the Mixup data augmentation technology was introduced into Yolov4 model to enhance the generalization ability of model. Secondly, the MobileNet-V2 lightweight network was employed in lieu of the CSPDarknet53 network as the backbone, thereby reducing the number of algorithm parameters and improving the model’s computational efficiency. Finally, the SE attention mechanism was incorporated to boost the importance of rail fastener identification by emphasizing relevant image features, ensuring that the network’s focus was primarily on the fasteners being inspected. The algorithm achieved both high precision and high speed operation of the rail fastener service state detection, while realizing the lightweight of model. The experimental results revealed that, the MAP value of the rail fastener service state detection algorithm based on the improved Yolov4 model reaches 83.2%, which is 2.83% higher than that of the traditional Yolov4 model, and the calculation speed was improved by 67.39%. Compared with the traditional Yolov4 model, the proposed method achieved the collaborative optimization of detection accuracy and calculation speed.展开更多
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
文摘A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.
文摘A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.
基金Supported by National Natural Science Foundation of China (61304079, 61125306, 61034002), the Open Research Project from SKLMCCS (20120106), the Fundamental Research Funds for the Central Universities (FRF-TP-13-018A), and the China Postdoctoral Science. Foundation (201_3M_ 5305_27)_ _ _
文摘为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
文摘Advances in wireless technologies and positioning technologies and spread of wireless devices, an interest in LBS(Location Based Service) is arising. To provide location based service, tracking data should have been stored in moving object database management system (called MODBMS) with proper policies and managed efficiently. So the methods which acquire the location information at regular time intervals then, store and manage have been studied. In this paper, we suggest tracking data management techniques using topology that is corresponding to the moving path of moving object. In our techniques, we update the MODBMS when moving object arrived at a street intersection or a curved road which is represented as the node in topology and predict the location at past and future with attribute of topology and linear function. In this technique, location data that are corresponding to the node in topology are stored, thus reduce the number of update and amount of data. Also in case predicting the location, because topology are used as well as existing location information, accuracy for prediction is increased than applying linear function or spline function.
文摘Most of the millions of Android users worldwide use applications from the official Android market (Google Play store) and unregulated alternative markets to get more functionality from their devices. Many of these applications transmit sensitive data stored on the device, either maliciously or accidentally, to outside networks. In this paper, we will study the ways that Android applications transmit data to outside servers and propose a user-friendly application, DroidData, to inform and protect the user from these security risks. We will use tools such as TaintDroid, AppIntent, and Securacy to propose an application that reveals what types of data are being transmitted from apps, the location to which the data is being transmitted, whether the data is being transmitted through a secure channel (such as HTTPS) and whether the user is aware that the information is being transmitted. The application will generate a report that allows the user to block the application that leaks sensitive information. In doing so, we will examine the importance, relevance, and prevalence of these Android Data security issues.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011, and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology(HUST),China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state, and the measurements are corrupted by random noises. The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology. Furthermore, the effects of the sampling period on the tracking performance are analysed. It turns out that from the view point of the sampling period, there is a trade-off between the tracking speed and the static tracking error. Simulations are provided to demonstrate the effectiveness of the theoretical results.
文摘The paper analyses the improvement of track loss in clutter with multisensor data fusion.By a determination of the transition probability density function for the fusion prediction error, one can study the mechanism of track loss analytically. With nearest-neighbor association algorithm. The paper we studies the fused tracking performance parameters, such as mean time to lose fused track and the cumulative probability of lost fused track versus the normalized clutter density, for track continuation and track initiation, respectively. A comparison of the results obtained with the case of a single sensor is presented. These results show that the fused tracks of multisensor reduce the possibility of track loss and improve the tracking performance. The analysis is of great importance for further understanding the action of data fusion.
文摘Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.
文摘Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the framework of generalized probabilistic data association to calculate the residual and residual covariance matrices, and the interconnection probability is further optimized. On that basis, the dynamic combination of particle filter and generalized probabilistic data association method is realized in the new algorithm. The theoretical analysis and experimental results show the filtering precision is obviously improved with respect to the tradition method using suboptimal filter.
基金supported by the National GNSS Research Center Program of the Defense Acquisition Program Administration and Agency for Defense Developmentthe Ministry of Science and ICT of the Republic of Korea through the Space Core Technology Development Program (No. NRF2018M1A3A3A02065722)
文摘In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.
基金supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,61473138,and 61403168)the Fundamental Research Funds for the Central Universities of China(Grant No.JUSRP51510)
文摘This paper investigates asymptotic bounded consensus tracking(ABCT) of double-integrator multi-agent systems(MASs) with an asymptotically-unbounded-acceleration and bounded-jerk target(AUABJT) available to partial agents based on sampled-data without velocity measurements. A sampled-data consensus tracking protocol(CTP) without velocity measurements is proposed to guarantee that double-integrator MASs track an AUABJT available to only partial agents.The eigenvalue analysis method together with the augmented matrix method is used to obtain the necessary and sufficient conditions for ABCT. A numerical example is provided to illustrate the effectiveness of theoretical results.
文摘As an important part of railway lines, the healthy service status of track fasteners was very important to ensure the safety of trains. The application of deep learning algorithms was becoming an important method to realize its state detection. However, there was often a deficiency that the detection accuracy and calculation speed of model were difficult to balance, when the traditional deep learning model is used to detect the service state of track fasteners. Targeting this issue, an improved Yolov4 model for detecting the service status of track fasteners was proposed. Firstly, the Mixup data augmentation technology was introduced into Yolov4 model to enhance the generalization ability of model. Secondly, the MobileNet-V2 lightweight network was employed in lieu of the CSPDarknet53 network as the backbone, thereby reducing the number of algorithm parameters and improving the model’s computational efficiency. Finally, the SE attention mechanism was incorporated to boost the importance of rail fastener identification by emphasizing relevant image features, ensuring that the network’s focus was primarily on the fasteners being inspected. The algorithm achieved both high precision and high speed operation of the rail fastener service state detection, while realizing the lightweight of model. The experimental results revealed that, the MAP value of the rail fastener service state detection algorithm based on the improved Yolov4 model reaches 83.2%, which is 2.83% higher than that of the traditional Yolov4 model, and the calculation speed was improved by 67.39%. Compared with the traditional Yolov4 model, the proposed method achieved the collaborative optimization of detection accuracy and calculation speed.