Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint hea...Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint health and guided intervention.However,there is no technology that can provide the precision,effectiveness,low-resource setting,and longterm wearability to simultaneously achieve both rapid and accurate joint torque measurement to enable risk assessment of joint injury and long-term monitoring of joint rehabilitation in wider environments.Herein,we propose a piezoelectric boron nitride nanotubes(BNNTs)-based,AI-enabled wearable device for regular monitoring of joint torque.We first adopted an iterative inverse design to fabricate the wearable materials with a Poisson's ratio precisely matched to knee biomechanics.A highly sensitive piezoelectric film was constructed based on BNNTs and polydimethylsiloxane and applied to precisely capture the knee motion,while concurrently realizing self-sufficient energy harvesting.With the help of a lightweight on-device artificial neural network,the proposed wearable device was capable of accurately extracting targeted signals from the complex piezoelectric outputs and then effectively mapping these signals to their corresponding physical characteristics,including torque,angle,and loading.A real-time platform was constructed to demonstrate the capability of fine real-time torque estimation.This work offers a relatively low-cost wearable solution for effective,regular joint torque monitoring that can be made accessible to diverse populations in countries and regions with heterogeneous development levels,potentially producing wide-reaching global implications for joint health,MSK conditions,ageing,rehabilitation,personal health,and beyond.展开更多
To further clarify the dewatering performance and torque evolution during the tailings thickening process,a self-made rake was connected to a rheometer to monitor the shear stress and torque.The dewatering performance...To further clarify the dewatering performance and torque evolution during the tailings thickening process,a self-made rake was connected to a rheometer to monitor the shear stress and torque.The dewatering performance of the total tailings was greatly improved to a solid mass fraction of 75.33%in 240 min.The dewatering process could be divided into three stages:the rapid torque growth period,damping torque growth period,and constant torque thickening zone.The machine restart was found to have a significant effect on the rake torque;it could result in rake blockage.Furthermore,the simultaneous evolution of the torque and solid mass fraction of thickened tailings was analyzed.A relationship between the torque and the solid mass fraction was established,which followed a power function.Both the experimental and theoretical results provide a reference for the deep cone thickener design and operation to enhance the dewatering performance.展开更多
基金support from the EPSRC REMIN project(EP/W009412/1)the UCL Fellowship Incubator Award+6 种基金the EPSRC award(TEGMOF EP/Z534146/1)for fundingfinancial support from the China Scholarship Councilfinancial support from UCL Research Excellence Scholarshipthe Wellcome Trust and EPSRC through the WEISS Centre(grant:203145Z/16/Z)at UCLsupport from the Royal Society Research Grant(RGSR2222333)Engineering and Physical Sciences Research Council Grant(13171178 R00287)European Innovative Council(EIC)under the European Union’s Horizon Europe research and innovation program(Grant agreement No.101099093)。
文摘Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint health and guided intervention.However,there is no technology that can provide the precision,effectiveness,low-resource setting,and longterm wearability to simultaneously achieve both rapid and accurate joint torque measurement to enable risk assessment of joint injury and long-term monitoring of joint rehabilitation in wider environments.Herein,we propose a piezoelectric boron nitride nanotubes(BNNTs)-based,AI-enabled wearable device for regular monitoring of joint torque.We first adopted an iterative inverse design to fabricate the wearable materials with a Poisson's ratio precisely matched to knee biomechanics.A highly sensitive piezoelectric film was constructed based on BNNTs and polydimethylsiloxane and applied to precisely capture the knee motion,while concurrently realizing self-sufficient energy harvesting.With the help of a lightweight on-device artificial neural network,the proposed wearable device was capable of accurately extracting targeted signals from the complex piezoelectric outputs and then effectively mapping these signals to their corresponding physical characteristics,including torque,angle,and loading.A real-time platform was constructed to demonstrate the capability of fine real-time torque estimation.This work offers a relatively low-cost wearable solution for effective,regular joint torque monitoring that can be made accessible to diverse populations in countries and regions with heterogeneous development levels,potentially producing wide-reaching global implications for joint health,MSK conditions,ageing,rehabilitation,personal health,and beyond.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51804015 and 51834001)the Fundamental Research Funds for the Central Universities(No.FRF-TP-17-024A1).
文摘To further clarify the dewatering performance and torque evolution during the tailings thickening process,a self-made rake was connected to a rheometer to monitor the shear stress and torque.The dewatering performance of the total tailings was greatly improved to a solid mass fraction of 75.33%in 240 min.The dewatering process could be divided into three stages:the rapid torque growth period,damping torque growth period,and constant torque thickening zone.The machine restart was found to have a significant effect on the rake torque;it could result in rake blockage.Furthermore,the simultaneous evolution of the torque and solid mass fraction of thickened tailings was analyzed.A relationship between the torque and the solid mass fraction was established,which followed a power function.Both the experimental and theoretical results provide a reference for the deep cone thickener design and operation to enhance the dewatering performance.