期刊文献+
共找到710篇文章
< 1 2 36 >
每页显示 20 50 100
Recent progress on electron-and magnon-mediated torques
1
作者 Jia-Min Lai Bingyue Bian +9 位作者 Zhonghai Yu Kaiwei Guo Yajing Zhang Pengnan Zhao Xiaoqian Zhang Chunyang Tang Jiasen Cao Zhiyong Quan Fei Wang Xiaohong Xu 《Chinese Physics B》 2025年第10期18-37,共20页
The growing demand for artificial intelligence and complex computing has underscored the urgent need for advanced data storage technologies.Spin-orbit torque(SOT)has emerged as a leading candidate for high-speed,high-... The growing demand for artificial intelligence and complex computing has underscored the urgent need for advanced data storage technologies.Spin-orbit torque(SOT)has emerged as a leading candidate for high-speed,high-density magnetic random-access memory due to its ultrafast switching speed and low power consumption.This review systematically explores the generation and switching mechanisms of electron-mediated torques(including both conventional SOTs and orbital torques)and magnon-mediated torques.We discuss key materials that enable these effects:heavy metals,topological insulators,low-crystal-symmetry materials,non-collinear antiferromagnets,and altermagnets for conventional SOTs;3d,4d,and 5d transition metals for orbital torques;and antiferromagnetic insulator Ni O-and multiferroic Bi Fe O_(3)-based sandwich structures for magnon torques.We emphasize that although key components of SOT devices have been demonstrated,numerous promising materials and critical questions regarding their underlying mechanisms remain to be explored.Therefore,this field represents a dynamic and rapidly evolving frontier in spintronics,offering significant potential for advancing next-generation information storage and computational technologies. 展开更多
关键词 spin-orbit torque orbital torque magnon torque altermagnet
原文传递
A Comprehensive Review of Torque and Speed Control Strategies for Switched Reluctance Motor Drives 被引量:1
2
作者 Sreeram K Preetha P K +1 位作者 Javier Rodríguez-García Carlosálvarez-Bel 《CES Transactions on Electrical Machines and Systems》 2025年第1期46-75,共30页
Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford... Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers. 展开更多
关键词 Electric vehicles Switched reluctance motor Speed control torque control Traction motor torque ripple
在线阅读 下载PDF
Analytical Method of Permanent Magnet Torque Machine with High Torque for Considering the Influence of Armature Magnetic Field
3
作者 Jiawei Chai Xianguo Gui +1 位作者 Qiang Gao Dianguo Xu 《CES Transactions on Electrical Machines and Systems》 2025年第3期289-299,共11页
Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on ... Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on magnetic circuit saturation,so this paper proposes a novel analytical method(AM)considering this problem.The key of this new AM is to consider armature reaction flux and armature leakage flux,which are closely related to output torque.Firstly,the expressions,including magnetomotive force(MMF)generated by permanent magnets(PMs)and armature windings are derived,and meanwhile slotting effect is considered by planning flux path.In addition,the expression of leakage flux density generated by armature windings are calculated,and flux density equivalence coefficient of tooth is calculated to be 2/3,which is used to solve the problem of uneven saturation of each tooth.Then,based on main flux factor and leakage flux factor proposed,an improved iteration process is proposed,and by this new process,the flux density of each yoke and tooth can be obtained,which is beneficial to obtain more accurate air-gap flux density and flux linkage.Finally,a prototype of 60-pole 54-slot is fabricated,and the performances of the electric machine,such as back electromotive force(EMF)and output torque,are calculated by this new AM and finite element method(FEM).The results of FEM and experimental test show that this new AM is good enough to calculate the performance of PMTM. 展开更多
关键词 Analytical method(AM) Permanent magnet torque machine(PMTM) High torque Leakage flux Equivalence coefficient
在线阅读 下载PDF
South American Breakup and Andean Torque Deformation
4
作者 Adolfo Antonio Gutiérrez 《Open Journal of Geology》 2025年第2期69-86,共18页
Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the wes... Geological deformations are generally attributed to compressional, extensional and strike-slip processes. Since the breakup of Gondwana, torque deformation has been responsible for the current configuration of the western coasts of Africa and the eastern shore of South America and the morphotectonic geometry of the rift basins of South America, conditioning the morphostructure of the Andean chain and the current geoforms of the foreland. 展开更多
关键词 TECTONIC torque Deformation Continental Drift Rift Valley South America
在线阅读 下载PDF
Improvement of Torque and Loss Characteristics for an In-wheel Permanent Magnet Motor based on Dominant Airgap Harmonic
5
作者 Jiawei Ren Xiaoyong Zhu +1 位作者 Li Quan Zixuan Xiang 《CES Transactions on Electrical Machines and Systems》 2025年第3期313-319,共7页
In this paper,a 12/14-pole permanent magnet in-wheel motor is studied for potential in-wheel application,and the torque and loss are improved simultaneously based on designing and optimizing the corresponding dominant... In this paper,a 12/14-pole permanent magnet in-wheel motor is studied for potential in-wheel application,and the torque and loss are improved simultaneously based on designing and optimizing the corresponding dominant harmonics.The key of this study is to evaluate the contributions of harmonics on torque and loss,and further determines the harmonics related to them.Based on this,the torque enhancement factor and loss suppression factor are defined based on the selected dominant harmonics.And,the two factors are set as the optimization objectives,aiming at improving the characteristics of torque and loss.At the same time,to achieve an efficient optimization,a layered optimization method is presented,which includes magnet source layer and permeance layer.Based on the optimization,the motor torque is improved effectively,while the rotor iron loss is also reduced significantly.Then,a prototype motor is manufactured for experimental test.Finally,the simulation analysis and test results verify the validation of the studied motor and the proposed optimization method based on dominant harmonics. 展开更多
关键词 In-wheel motor Flux modulation Harmonic analysis torque Rotor loss
在线阅读 下载PDF
AI-Enabled Piezoelectric Wearable for Joint Torque Monitoring
6
作者 Jinke Chang Jinchen Li +9 位作者 Jiahao Ye Bowen Zhang Jianan Chen Yunjia Xia Jingyu Lei Tom Carlson Rui Loureiro Alexander MKorsunsky Jin-Chong Tan Hubin Zhao 《Nano-Micro Letters》 2025年第10期453-472,共20页
Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint hea... Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint health and guided intervention.However,there is no technology that can provide the precision,effectiveness,low-resource setting,and longterm wearability to simultaneously achieve both rapid and accurate joint torque measurement to enable risk assessment of joint injury and long-term monitoring of joint rehabilitation in wider environments.Herein,we propose a piezoelectric boron nitride nanotubes(BNNTs)-based,AI-enabled wearable device for regular monitoring of joint torque.We first adopted an iterative inverse design to fabricate the wearable materials with a Poisson's ratio precisely matched to knee biomechanics.A highly sensitive piezoelectric film was constructed based on BNNTs and polydimethylsiloxane and applied to precisely capture the knee motion,while concurrently realizing self-sufficient energy harvesting.With the help of a lightweight on-device artificial neural network,the proposed wearable device was capable of accurately extracting targeted signals from the complex piezoelectric outputs and then effectively mapping these signals to their corresponding physical characteristics,including torque,angle,and loading.A real-time platform was constructed to demonstrate the capability of fine real-time torque estimation.This work offers a relatively low-cost wearable solution for effective,regular joint torque monitoring that can be made accessible to diverse populations in countries and regions with heterogeneous development levels,potentially producing wide-reaching global implications for joint health,MSK conditions,ageing,rehabilitation,personal health,and beyond. 展开更多
关键词 Artificial intelligence wearables Joint torque monitoring Boron nitride nanotubes Piezoelectric devices Inverse design
暂未订购
Enhanced Spin-Orbit Torque Induced by Interfacial Scattering in Ir/Pt Superlattice
7
作者 Jiahui Li Jing Dong +19 位作者 Yuqiang Wang Mingtong Zhu Yang Yao Ying Meng Jiyang Ou Guibin Lan Xuming Luo Jihao Xia Hongjun Xu Yizhan Wang Jiafeng Feng Hongxiang Wei Congli He Richeng Yu Junwei Zhang Yong Peng Nianpeng Lu Caihua Wan Xiufeng Han Guoqiang Yu 《Chinese Physics Letters》 2025年第5期140-150,共11页
The mechanisms of enhancing spin-orbit torque(SOT) have attracted significant attention, particularly regarding the influence of extrinsic scattering mechanisms on SOT efficiency, as they complement intrinsic contribu... The mechanisms of enhancing spin-orbit torque(SOT) have attracted significant attention, particularly regarding the influence of extrinsic scattering mechanisms on SOT efficiency, as they complement intrinsic contributions. In multilayer systems, extrinsic interfacial scattering, along with scattering from defects or impurities inside the materials, plays a crucial role in affecting the SOT efficiency. In this study, we successfully fabricated high-quality epitaxially grown [Ir/Pt]N superlattices with an increasing number of interfaces using a magnetron sputtering system to investigate the contribution of extrinsic interfacial scattering to SOT efficiency. We measured SOT efficiency through spin-torque ferromagnetic resonance methods and determined the spin Hall angle using the spin pumping technique. Additionally, we calculated spin transparency based on the SOT efficiency and spin Hall angle. Our findings indicate that the values of SOT efficiency, spin Hall angle, and spin transparency are enhanced in the superlattice structure compared to Pt, which we attribute to the increase in interfacial scattering.This research offers an effective strategy for designing and fabricating advanced spintronic devices. 展开更多
关键词 interfacial scattering spin transparency spin Hall angle extrinsic scattering mechanisms extrinsic interfacial scattering spin tronic devices ir pt superlattice spin orbit torque
原文传递
Real-time drilling torque prediction ahead of the bit with just-in-time learning
8
作者 Kan-Kan Bai Mao Sheng +2 位作者 Hong-Bao Zhang Hong-Hai Fan Shao-Wei Pan 《Petroleum Science》 2025年第1期430-441,共12页
The digital twin,as the decision center of the automated drilling system,incorporates physical or data-driven models to predict the system response(rate of penetration,down-hole circulating pressure,drilling torques,e... The digital twin,as the decision center of the automated drilling system,incorporates physical or data-driven models to predict the system response(rate of penetration,down-hole circulating pressure,drilling torques,etc.).Real-time drilling torque prediction aids in drilling parameter optimization,drill string stabilization,and comparing the discrepancy between observed signal and theoretical trend to detect down-hole anomalies.Due to their inability to handle huge amounts of time series data,current machine learning techniques are unsuitable for the online prediction of drilling torque.Therefore,a new way,the just-in-time learning(JITL)framework and local machine learning model,are proposed to solve the problem.The steps in this method are:(1)a specific metric is designed to measure the similarity between time series drilling data and scenarios to be predicted ahead of bit;(2)parts of drilling data are selected to train a local model for a specific prediction scenario separately;(3)the local machine learning model is used to predict drilling torque ahead of bit.Both the model data test results and the field data application results certify the advantages of the method over the traditional sliding window methods.Moreover,the proposed method has been proven to be effective in drilling parameter optimization and pipe sticking trend detection.Finally,we offer suggestions for the selection of local machine learning algorithms and real-time prediction with this approach based on the test results. 展开更多
关键词 Drilling torque prediction Just-in-time learning Digital twin Machine learning
原文传递
Distortion-Free Zeeman Torque Sampling for Detecting Terahertz Magnetic Field Pulse
9
作者 Chun-yan Geng Yi-chen Su +3 位作者 De-yin Kong Fei Dai Cheng-song Xiao-jun Wu 《Chinese Physics Letters》 2025年第11期383-392,共10页
Strong-field terahertz(THz) radiation holds significant potential in non-equilibrium state manipulation, electron acceleration, and biomedical effects. However, distortion-free detection of strong-field THz waveforms ... Strong-field terahertz(THz) radiation holds significant potential in non-equilibrium state manipulation, electron acceleration, and biomedical effects. However, distortion-free detection of strong-field THz waveforms remains an essential challenge in THz science and technology. To address this issue, we propose a ferromagnetic detection scheme based on Zeeman torque sampling, achieving distortion-free strong-field THz waveform detection in Py films. Thickness-dependent characterization(3–21 nm) identifies peak detection performance at 21 nm within the investigated range. Furthermore, by structurally engineering the Py ferromagnetic layer, we demonstrate strong-field THz detection in symmetric Ta(3 nm)/Py(9 nm)/Ta(3 nm) heterostructure while simultaneously resolving Zeeman torque responses and collective spin-wave dynamics in asymmetric W(4 nm)/Py(9 nm)/Pt(2 nm)heterostructure. We calculated spin wave excitations and spin orbit torque distributions in asymmetric heterostructures, along with spin wave excitations in symmetric modes. This approach overcomes the sensitivity limitations of conventional techniques in strong-field conditions. 展开更多
关键词 distortion free detection terahertz magnetic field ferromagnetic detection scheme py films strong field terahertz radiation zeeman torque sampling biomedical effects electron acceleration
原文传递
Initialization-Free Programmable Spin-Logic Gate in a Single Spin-Orbit Torque Device
10
作者 Jie Lin Shuai Zhang +13 位作者 Shihao Li Yan Xu Xin Li Wei Duan Jincheng Hou Chenxi Zhou Wei Zhan Zhe Guo Min Song Xiaofei Yang Yufeng Tian Xuecheng Zou Dan Feng Long You 《Engineering》 2025年第8期215-220,共6页
In-memory computing(IMC)based on spin-logic devices is regarded as an advantageous way to optimize the Von Neumann bottleneck.However,performing complete Boolean logic with spintronic devices typi-cally requires an in... In-memory computing(IMC)based on spin-logic devices is regarded as an advantageous way to optimize the Von Neumann bottleneck.However,performing complete Boolean logic with spintronic devices typi-cally requires an initialization operation,which can reduce processing speed.In this work,we conceptu-alize and experimentally demonstrate a programmable and initialization-free spin-logic gate,leveraging spin-orbit torque(SOT)to effectuate magnetization switching,assisted by in-plane Oersted field gener-ated by an integrated bias-field Au line.This spin-logic gate,fabricated as a Hall bar,allows complete Boolean logic operations without initialization.A current flowing through the bias-field line,which is electrically isolated from the device by a dielectric,generates an in-plane magnetic field that can invert the SOT-induced switching chirality,enabling on-the-fly complete Boolean logic operations.Additionally,the device demonstrated good reliability,repeatability,and reproducibility during logic operations.Our work demonstrates programmable and scalable spin-logic functions in a single device,offering a new approach for spin-logic operations in an IMC architecture. 展开更多
关键词 Spin logic Complete Boolean logic Spin-orbit torque Fully electrical operations Initialization-free
在线阅读 下载PDF
Linear Enhancement of Spin-Orbit Torque and Absence of Bulk Rashba Spin Splitting in Perpendicularly Magnetized[Pt/Co/W]_(n)Superlattices
11
作者 Zhihao Yan Zhengxiao Li +2 位作者 Lujun Zhu Xin Lin Lijun Zhu 《Chinese Physics Letters》 2025年第9期126-131,共6页
The development of magnetic heterostructures with strong perpendicular magnetic anisotropy(PMA),strong spin-orbit torques(SOTs),low impedance,and good integration compatibility at the same time is central for high-per... The development of magnetic heterostructures with strong perpendicular magnetic anisotropy(PMA),strong spin-orbit torques(SOTs),low impedance,and good integration compatibility at the same time is central for high-performance spintronic memory and computing applications.Here,we report the development of the PMA superlattice[Pt/Co/W]_(n)that can be sputtered-deposited on commercial oxidized silicon substrates and has giant SOTs,strong uniaxial PMA of≈9.2 Merg/cm^(3),and rigid macrospin performance.The damping-like and field-like SOTs of the[Pt/Co/W]_(n)superlattices exhibit a linear increase with the repeat number n and reach the giant values of 225%and-33%(two orders of magnitude greater than that in clean-limit Pt)at n=12,respectively.The damping-like SOT is also of the opposite sign and much greater in magnitude than the field-like SOT,regardless of the number n.These results clarify that the spin current that generates SOTs in the[Pt/Co/W]_(n)superlattices arises predominantly from the spin Hall effect rather than bulk Rashba spin splitting,providing a unified understanding of the SOTs in these superlattices.We also demonstrate deterministic switching in thickerthan-50-nm PMA[Pt/Co/W]_(12)superlattices at a low current density.This work establishes the[Pt/Co/W]_(n)superlattice as a compelling material candidate for ultra-fast,low-power,long-retention nonvolatile spintronic memory and computing technologies. 展开更多
关键词 development magnetic heterostructures perpendicular magnetic anisotropy oxidized silicon substrates perpendicular magnetic anisotropy pma strong spin orbit torque spin Hall effect Pt Co W superlattice macrospin performance
原文传递
High-Velocity Magnetic Domain Wall Motion Driven by Acoustic Spin Transfer Torque
12
作者 Jiacheng Lu Fa Chen +6 位作者 Yiming Shu Yukang Wen Hang Zou Yuhao Liu Shiheng Liang Wei Luo Yue Zhang 《Chinese Physics Letters》 2025年第6期229-238,共10页
We predict high-velocity magnetic domain wall(DW)motion driven by out-of-plane acoustic spin in surface acoustic waves(SAWs).We demonstrate that the SAW propagating at a 30-degree angle relative to the x-axis of a 128... We predict high-velocity magnetic domain wall(DW)motion driven by out-of-plane acoustic spin in surface acoustic waves(SAWs).We demonstrate that the SAW propagating at a 30-degree angle relative to the x-axis of a 128∘Y-LiNbO_(3) substrate exhibits uniform out-of-plane spin angular momentum.This acoustic spin triggers the DW motion at a velocity exceeding 50 m/s in a way that is similar to the spin-transfer-torque effect.This phenomenon highlights the potential of acoustic spin in enabling rapid DW displacement,offering an innovative approach to developing energy-efficient spintronic devices. 展开更多
关键词 acoustic spin rapid dw displacemen high velocity magnetic domain wall motion acoustic spin transfer torque plane spin angular momentum energy efficient spintronic devices surface acoustic waves
原文传递
Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets
13
作者 Haodong Fan Zhongshu Feng +11 位作者 Tingwei Chen Xiaofeng Han Xinyu Shu Mingzhang Wei Shiqi Liu Mengxi Wang Shengru Chen Xuejian Tang Menghao Jin Yungui Ma Bo Liu Tiejun Zhou 《Chinese Physics B》 2025年第9期654-661,共8页
Interlayer exchange coupling(IEC)plays a critical role in spin-orbit torque(SOT)switching in synthetic magnets.This work establishes a fundamental correlation between IEC and SOT dynamics within Co/Pt-based synthetic ... Interlayer exchange coupling(IEC)plays a critical role in spin-orbit torque(SOT)switching in synthetic magnets.This work establishes a fundamental correlation between IEC and SOT dynamics within Co/Pt-based synthetic antiferromagnets and synthetic ferromagnets.The antiferromagnetic and ferromagnetic coupling states are precisely engineered through Ruderman-Kittel-Kasuya-Yosida(RKKY)interactions by modulating the Ir spacer thickness.Experimental results reveal that the critical switching current density exhibits a strong positive correlation with the IEC strength,regardless of the coupling type.A comprehensive theoretical framework based on the Landau-Lifshitz-Gilbert equation elucidates how IEC contributes to the effective energy barrier that must be overcome during SOT-induced magnetization switching.Significantly,the antiferromagnetically coupled samples demonstrate enhanced SOT efficiency,with the spin Hall angle being directly proportional to the antiferromagnetic exchange coupling field.These insights establish a coherent physical paradigm for understanding IEC-dependent SOT dynamics and provide strategic design principles for the development of energy-efficient next-generation spintronic devices. 展开更多
关键词 interlayer exchange coupling spin-orbit torque synthetic antiferromagnet
原文传递
Toroidal torques due to n=1 magnetic perturbations in ITER baseline scenario
14
作者 Jingwei LI Li LI +5 位作者 Yueqiang LIU Yunfeng LIANG Yanfei WANG Lu TIAN Zhongqing LIU Fangchuan ZHONG 《Plasma Science and Technology》 2025年第1期39-51,共13页
Toroidal torques,generated by the resonant magnetic perturbation(RMP)and acting on the plasma column,are numerically systematically investigated for an ITER baseline scenario.The neoclassical toroidal viscosity(NTV),i... Toroidal torques,generated by the resonant magnetic perturbation(RMP)and acting on the plasma column,are numerically systematically investigated for an ITER baseline scenario.The neoclassical toroidal viscosity(NTV),in particular the resonant portion,is found to provide the dominant contribution to the total toroidal torque under the slow plasma flow regime in ITER.While the electromagnetic torque always opposes the plasma flow,the toroidal torque associated with the Reynolds stress enhances the plasma flow independent of the flow direction.A peculiar double-peak structure for the net NTV torque is robustly computed for ITER,as the toroidal rotation frequency is scanned near the zero value.This structure is found to be ultimately due to a non-monotonic behavior of the wave-particle resonance integral(over the particle pitch angle)in the superbanana plateau NTV regime in ITER.These findings are qualitatively insensitive to variations of a range of factors including the wall resistivity,the plasma pedestal flow and the assumed frequency of the rotating RMP field. 展开更多
关键词 toroidal torques resonant magnetic perturbation fieds plasma flow ITER baseline scenario
在线阅读 下载PDF
Harmonics in the Squirrel Cage Induction Motor Analytic Calculation Part III: Influence on the Torque-speed Characteristic 被引量:4
15
作者 G.Kovács 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期86-102,共17页
The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an... The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end. 展开更多
关键词 Asynchronous parasitic torques Induction motor Squirrel cage rotor Space harmonics Synchronous parasitic torques
在线阅读 下载PDF
Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin–orbit torque efficiency
16
作者 赵乾 张腾飞 +6 位作者 何斌 李子木 张森富 于国强 王建波 刘青芳 魏晋武 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期688-694,共7页
Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncoll... Antiferromagnet(AFM)/ferromagnet(FM)heterostructure is a popular system for studying the spin–orbit torque(SOT)of AFMs.However,the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field,namely the magnetic moment drag effect,which further influences the characteristic of SOT efficiency.In this work,we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance(ST-FMR)method.A full analysis on the AFM/FM systems with exchange bias is performed,and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy.The ST-FMR results can be well fitted by this model.We obtained the relative accurate SOT efficiencyξ_(DL)=0.058 for the IrMn film.This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias. 展开更多
关键词 ANTIFERROMAGNETS spin-orbit torque exchange bias spin torque ferromagnetic resonance
原文传递
Identification method of shoulder torque of screw-on curve of premium threaded connections for OCTG
17
作者 PENG Zhiniu WANG Minghua 《Baosteel Technical Research》 CAS 2024年第3期29-32,共4页
The meaning of each part of the screw-on curve,the definition of shoulder torque,and the common characteristics of the screw-on curve are introduced.Moreover,the principle and shortcomings of the commonly used method ... The meaning of each part of the screw-on curve,the definition of shoulder torque,and the common characteristics of the screw-on curve are introduced.Moreover,the principle and shortcomings of the commonly used method of curve curvature radius are discussed.A new method of sealing surface deformation is proposed based on the requirements of shoulder torque recognition.The calculation method and principle of PW value are elucidated and the advantages of this method are summarized.The proposed method considers the difference value of tightening torque and calculates the elastic deformation of the sealing surface,accurately reflecting the state of the thread compound and the correlation between torque change and elastic deformation of the sealing surface after compression. 展开更多
关键词 screw-on shoulder torque identification method smooth torque curve
在线阅读 下载PDF
Design and calibration of spoke piezoelectric six-dimensional force/torque sensor for space manipulator 被引量:2
18
作者 Yingjun LI Guicong WANG +3 位作者 Shuai ZHANG Yuanqin ZHOU Hongyu LI Zhenguang QI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期218-235,共18页
The large manipulator outside the space cabin is a multi-degree of freedom actuator for space operations.In order to realize the automatic control and flexible operation of the space manipulator,a novel spoke structur... The large manipulator outside the space cabin is a multi-degree of freedom actuator for space operations.In order to realize the automatic control and flexible operation of the space manipulator,a novel spoke structure piezoelectric six-dimensional force/torque sensor with redundancy ability,high stiffness and good decoupling performance is innovatively proposed.Based on the deformation coordination relationship,the redundancy measurement mechanism is revealed.The mathematical models of the sensor with and without branch fault are established respectively.The finite element model is established to verify the feasibility of structure and redundancy measuring principle of the sensor.Depending on the theoretical analysis and simulation analysis,the prototype of the sensor is developed.Static and dynamic calibration experiments are carried out.The actual output voltage signal of the six-dimensional force/torque sensor is collected to establish the equation between the standard input applied load and the actual output voltage signal.Based on ant colony optimized BP algorithm,performance indexes of the sensor with and without branch fault are analyzed respectively.The experimental results show that the spoke piezoelectric sixdimensional force/torque sensor with the eight-point support structure has good accuracy and reliability.Meanwhile,it has strong decoupling characteristic that can effectively shield the coupling between dimensions.The nonlinear errors and maximum interference errors of decoupled data with and without branch faults are less than 1% and 2%,respectively.The natural frequency of the sixdimensional force sensor can reach 2856.45 Hz and has good dynamic characteristics.The research content lays a theoretical and experimental foundation for the design,development and application of the new six-dimensional force/torque sensors with redundancy.Meanwhile,it will significantly improve the research level in this field,and provide a strong guarantee for the smooth implementation of force feedback control of the space station manipulator project. 展开更多
关键词 Decoupling algorithm PIEZOELECTRIC REDUNDANCY Six-dimensional force/torque sensor Space manipulator
原文传递
Analysis of secondary makeup characteristics of drill collar joint and prediction of downhole equivalent impact torque of Well SDTK1 被引量:2
19
作者 WANG Chunsheng MING Chuanzhong +4 位作者 ZHANG Hao CHEN Jialei QU Hao WANG Wenchang DI Qinfeng 《Petroleum Exploration and Development》 SCIE 2024年第3期697-705,共9页
Based on the three-dimensional elastic-plastic finite element analysis of the 8"(203.2 mm)drill collar joint,this paper studies the mechanical characteristics of the pin and box of NC56 drill collar joints under ... Based on the three-dimensional elastic-plastic finite element analysis of the 8"(203.2 mm)drill collar joint,this paper studies the mechanical characteristics of the pin and box of NC56 drill collar joints under complex load conditions,as well as the downhole secondary makeup features,and calculates the downhole equivalent impact torque with the relative offset at the shoulder of internal and external threads.On the basis of verifying the correctness of the calculation results by using measured results in Well GT1,the prediction model of the downhole equivalent impact torque is formed and applied in the first extra-deep well with a depth over 10000 m in China(Well SDTK1).The results indicate that under complex loads,the stress distribution in drill collar joints is uneven,with relatively higher von Mises stress at the shoulder and the threads close to the shoulder.For 203.2 mm drill collar joints pre-tightened according to the make-up torque recommended by American Petroleum Institute standards,when the downhole equivalent impact torque exceeds 65 kN·m,the preload balance of the joint is disrupted,leading to secondary make-up of the joint.As the downhole equivalent impact torque increases,the relative offset at the shoulder of internal and external threads increases.The calculation results reveal that there exists significant downhole impact torque in Well SDTK1 with complex loading environment.It is necessary to use double shoulder collar joints to improve the impact torque resistance of the joint or optimize the operating parameters to reduce the downhole impact torque,and effectively prevent drilling tool failure. 展开更多
关键词 Well SDTK1 drill tool threaded joint secondary makeup relative offset equivalent impact torque
在线阅读 下载PDF
Laboratory Implementation of Direct Torque Controller based Speed Loop Pseudo Derivative Feedforward Controller for PMSM Drive 被引量:3
20
作者 Prabhakaran Koothu Kesavan Umashankar Subramaniam Dhafer J.Almakhles 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期12-21,共10页
This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-... This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype. 展开更多
关键词 Direct torque control Pseudo derivative feedforward controller Permanent magnet synchronous motor(PMSM)
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部