Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composit...Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composite nanostructures under small scale,rotor,and temperature coupling effects are investigated.The nanotube is composed of functionally graded materials(FGMs),and different volume fraction functions are utilized to control the distribution of material properties.Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling,and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained.By conducting dimensionless analysis,it is found that compared to the Timoshenko nano-beam model,the conventional Euler–Bernoulli(E-B)model holds the same flutter frequency in the supercritical region,while it usually overestimates the higher-order precession frequencies.The nonlocal,thermal,and flowing effects all can lead to buckling or different kinds of coupled flutter in the system.The material distribution of the P-type FGM nanotube can also induce coupled flutter,while that of the S-type FGM nanotube has no impact on the stability of the system.This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices.展开更多
This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived u...This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived using Hamilton's principle under the assumptions of the classical Timoshenko beam theory. The effects of the transverse shear deformation and rotary inertia are also considered within the framework of the mentioned theory. The separation of variables approach is employed to discretize the governing equa- tions which are then solved by an analytical method to obtain the natural frequencies of the alumina nanobeams. The results show that the surface effects lead to an increase in the natural frequency of nanobeams as compared with the classical Timoshenko beam model. In addition, for nanobeams with large diameters, the surface effects may increase the natural frequencies by increasing the thermal effects. Moreover, with regard to the Pasternak elastic foundation, the natural frequencies are increased slightly. The results of the present model are compared with the literature, showing that the present model can capture correctly the surface effects in thermal vibration of nanobeams.展开更多
Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately he...Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.展开更多
Beam flexure hinges can achieve accurate motion and force control through the elastic deformation. This paper presents a nonlinear model for uniform and circular cross-section spatial beam flexure hinges which are com...Beam flexure hinges can achieve accurate motion and force control through the elastic deformation. This paper presents a nonlinear model for uniform and circular cross-section spatial beam flexure hinges which are commonly employed in compliant parallel mechanisms. The proposed beam model takes shear deformations into consideration and hence is applicable to both slender and thick beam flexure hinges. Starting from the first principles, the nonlinear strain measure is derived using beam kinematics and expressed in terms of translational displacements and rotational angles. Second-order approximation is employed in order to make the nonlinear strain within acceptable accuracy. The natural boundary conditions and nonlinear governing equations are derived in terms of rotational Euler angles and subsequently solved for combined end loads. The resulting end load-displacement model, which is compact and closed-form, is proved to be accurate for both slender and thick beam flexure using nonlinear finite element analysis. This beam model can provide designers with more design insight of the spatial beam flexure and thus will benefit the structural design and optimization of compliant manipulators.展开更多
基金National Natural Science Foundation of China,12372025,Feng Liang,12072311,Feng Liang.
文摘Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composite nanostructures under small scale,rotor,and temperature coupling effects are investigated.The nanotube is composed of functionally graded materials(FGMs),and different volume fraction functions are utilized to control the distribution of material properties.Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling,and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained.By conducting dimensionless analysis,it is found that compared to the Timoshenko nano-beam model,the conventional Euler–Bernoulli(E-B)model holds the same flutter frequency in the supercritical region,while it usually overestimates the higher-order precession frequencies.The nonlocal,thermal,and flowing effects all can lead to buckling or different kinds of coupled flutter in the system.The material distribution of the P-type FGM nanotube can also induce coupled flutter,while that of the S-type FGM nanotube has no impact on the stability of the system.This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices.
文摘This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived using Hamilton's principle under the assumptions of the classical Timoshenko beam theory. The effects of the transverse shear deformation and rotary inertia are also considered within the framework of the mentioned theory. The separation of variables approach is employed to discretize the governing equa- tions which are then solved by an analytical method to obtain the natural frequencies of the alumina nanobeams. The results show that the surface effects lead to an increase in the natural frequency of nanobeams as compared with the classical Timoshenko beam model. In addition, for nanobeams with large diameters, the surface effects may increase the natural frequencies by increasing the thermal effects. Moreover, with regard to the Pasternak elastic foundation, the natural frequencies are increased slightly. The results of the present model are compared with the literature, showing that the present model can capture correctly the surface effects in thermal vibration of nanobeams.
基金supported by the National Natural Science Foundation of China (Grants 11472191, 11272230, and 11372100)
文摘Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.
基金supported by the National Natural Science Foundation of China (No. 51305013)
文摘Beam flexure hinges can achieve accurate motion and force control through the elastic deformation. This paper presents a nonlinear model for uniform and circular cross-section spatial beam flexure hinges which are commonly employed in compliant parallel mechanisms. The proposed beam model takes shear deformations into consideration and hence is applicable to both slender and thick beam flexure hinges. Starting from the first principles, the nonlinear strain measure is derived using beam kinematics and expressed in terms of translational displacements and rotational angles. Second-order approximation is employed in order to make the nonlinear strain within acceptable accuracy. The natural boundary conditions and nonlinear governing equations are derived in terms of rotational Euler angles and subsequently solved for combined end loads. The resulting end load-displacement model, which is compact and closed-form, is proved to be accurate for both slender and thick beam flexure using nonlinear finite element analysis. This beam model can provide designers with more design insight of the spatial beam flexure and thus will benefit the structural design and optimization of compliant manipulators.