Summary: To study reliability and reliable indices of quantitative assessment of right ventricular systolic function by time-intensity curve (TIC) with right ventricular contrast, 5 % sonicated human albumin was injec...Summary: To study reliability and reliable indices of quantitative assessment of right ventricular systolic function by time-intensity curve (TIC) with right ventricular contrast, 5 % sonicated human albumin was injected intravenously at a does of 0.08 ml/kg into 10 dogs at baseline status and cardiac insufficiency. Apical four-chamber view was observed for washin and washout of contrast agent from right ventricle. The parameters of TIC were obtained by curve fitting. The differences of parameters were analyzed in different states of cardiac functions. Among the parameters derived from TIC, the time constant (k) was decreased significantly with decline of cardiac function (P<0.001). But half-time of decent of peak intensity (HT) and mean-transit-time (MTT) of washout were increased significantly (P<0.001). The k was strongly related to cardiac output of right ventricle (CO) and ejection fraction (EF) of left ventricle and fractional shortening (FS) of left ventricle. Right ventricular systolic function could be assessed reliably by the parameters derived from TIC with right ventricular contrast echocardiography. The k, HT and MTT are reliable indices for quantitative assessment of right ventricular systolic function.展开更多
The reliability and reliable indexes of q ua ntitative assessment of coronary flow reserve (CFR) by using time intensity cur ve (TIC) via myocardial contrast echocardiography were investigated. The TIC var iables wer...The reliability and reliable indexes of q ua ntitative assessment of coronary flow reserve (CFR) by using time intensity cur ve (TIC) via myocardial contrast echocardiography were investigated. The TIC var iables were obtained by employing acoustic densitometry (AD) technique before an d after acetylcholine (Ach) injection in 12 dogs. Meanwhile, the correlation be tween these variables and CFR was analyzed. Among the variables derived from TIC , peak intensity (PI), area under the curve (AUC) and descending slope (DS) were increased significantly ( P <0.05) with the increase of coronary blood flow a fter Ach injection. Conversely, time to peak (TP), half time of descent (HT) , and mean transit time (MTT) were decreased remarkably ( P <0.0001). Th e P I and AUC ratios from post to pre Ach injection were strongly associated with CFR with the correlation coefficient (r) being 0.8366 and 0.8824, respectively. It is reliable by using the variables derived from TIC with myocardial contrast echocardiography to quantitatively evaluate regional myocardial CFR. The PI an d AUC ratios from post to pre Ach injection are the reliable indexes for quan titative assessment of CFR.展开更多
Objective/Background: Qualitative assessment of uncertain (type II) time-intensity curves (TICs) in breast DCE-MRI is problematic and operator dependent. The aim of this work is to evaluate if a semi-quantitative asse...Objective/Background: Qualitative assessment of uncertain (type II) time-intensity curves (TICs) in breast DCE-MRI is problematic and operator dependent. The aim of this work is to evaluate if a semi-quantitative assessment of uncertain TICs could improve overall diagnostic performance. Methods: In this study 49 lesions from 44 patients were retrospectively analysed. Per each lesion one region-of-interest (ROI)- averaged TIC was qualitatively evaluated by two radiologists in consensus: all the ROIs resulted in type II (uncertain) TIC. The same TICs were semi-quantitatively re-classified on the basis of the difference between the signal intensities of the last-time-point and of the peak: this difference was classified according to two different cut-off ranges (±5% and ±3%). All patients were cytological or histological biopsy proven. Fisher test and McNemar test were performed to evaluate if results were statistically significant (p < 0.05). Results: Using ±5% cut-off 16 TICs were reclassified as type III and 12 as type I while 21 were reclassified again as type II. Using ±3% 22 TICs were reclassified as type III and 16 as type I while 11 were reclassified again as type II. The semi-quantitative classification was compared to the histological-cytological results: the sensitivity, specificity, positive and negative predictive values obtained with ±3% were 77%, 91%, 91% and 78% respectively while using ±5% were 58%, 96%, 94% and 68% respectively. Using the ±5% cut-off 26/28 (93%) TICs were correctly reclassified while using the ±3% cut-off 34/38 (90%) TICs were correctly reclassified (p < 0.05). Conclusions: Semi-quantitative methods in kinetic curve assessment on DCE-MRI could improve classification of qualitatively uncertain TICs, leading to a more accurate classification of suspicious breast lesions.展开更多
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield...The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.展开更多
This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the pre...This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.展开更多
A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment ...A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.展开更多
Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accura...Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accurate and early diagnosis of HCC is crucial for effective treatment,as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma(ICC)exhibit different prognoses and treatment responses.Traditional diagnostic methods,including liver biopsy and contrast-enhanced ultrasound(CEUS),face limitations in applicability and objectivity.The primary objective of this study was to develop an advanced,lightweighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images.The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions.Methods This retrospective study encompassed a total of 161 patients,comprising 131 diagnosed with HCC and 30 with non-HCC malignancies.To achieve accurate tumor detection,the YOLOX network was employed to identify the region of interest(ROI)on both B-mode ultrasound and CEUS images.A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images.These curves provided critical data for the subsequent analysis and classification process.To analyze the extracted brightness change curves and classify the malignancies,we developed and compared several models.These included one-dimensional convolutional neural networks(1D-ResNet,1D-ConvNeXt,and 1D-CNN),as well as traditional machine-learning methods such as support vector machine(SVM),ensemble learning(EL),k-nearest neighbor(KNN),and decision tree(DT).The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics:area under the receiver operating characteristic(AUC),accuracy(ACC),sensitivity(SE),and specificity(SP).Results The evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM,0.56 for ensemble learning,0.63 for KNN,and 0.72 for the decision tree.These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves.In contrast,the deep learning models demonstrated significantly higher AUCs,with 1D-ResNet achieving an AUC of 0.72,1D-ConvNeXt reaching 0.82,and 1D-CNN obtaining the highest AUC of 0.84.Moreover,under the five-fold cross-validation scheme,the 1D-CNN model outperformed other models in both accuracy and specificity.Specifically,it achieved accuracy improvements of 3.8%to 10.0%and specificity enhancements of 6.6%to 43.3%over competing approaches.The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification.Conclusion The 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies,surpassing both traditional machine-learning methods and other deep learning models.This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’diagnostic capabilities.By improving the accuracy and efficiency of clinical decision-making,this tool has the potential to positively impact patient care and outcomes.Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.展开更多
In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natura...In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.展开更多
On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1...On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.展开更多
Prior to 2012,the integration of designed vertical or horizontal curves into microtunnel alignments was unheard of in Ontario.Straight and relatively short microtunnels,less than 200m long,were the local accepted indu...Prior to 2012,the integration of designed vertical or horizontal curves into microtunnel alignments was unheard of in Ontario.Straight and relatively short microtunnels,less than 200m long,were the local accepted industry standard.Following the release of a large number of infrastructure projects in the suburban Greater Toronto Area(GTA),clients and design consultants encouraged contractors to present value engineered alternatives to proposed project alignments and construction methods.Such an initiative has allowed contractors to develop cost effective solutions,which harnessed the application of state-of-the-art microtunnelling methods and equipment.As a result,several recent projects now feature pre-designed curved microtunnels as part of the tender documents.This paper discusses,in technical detail,three recent projects,whereby,long distance curved microtunnels were successfully constructed.Each of the projects had tunnel drives exceeding 300m in length,ranging in diameter from 1200mm ID to 1500mm ID,incorporating the use of Vertical,Horizontal,and Spatial Curves.Critical parameters such as pre-project planning and engineering are highlighted,while the importance of post-tunnelling assessments is also discussed.展开更多
Accurately predicting battery degradation is crucial for battery system management.However,due to the complexities of aging mechanisms and limitations of historical data,comprehensively indicating battery degradation ...Accurately predicting battery degradation is crucial for battery system management.However,due to the complexities of aging mechanisms and limitations of historical data,comprehensively indicating battery degradation solely through maximum capacity loss assessment is challenging.While machine learning offers promising solutions,it often overlooks domain knowledge,resulting in reduced accu racy,increased computational burden and decreased interpretability.Here,this study proposes a method to predict the voltage-capacity(V-Q) curve during battery degradation with limited historical data.This process is achieved through two physically interpretable components:a lightweight interpretable physical model and a physics-informed neural network.These components incorporate domain knowledge into machine learning to improve V-Q curve prediction performance and enhance interpretability.Extensive validation was conducted on 52 batteries of different types under different testing conditions.The proposed method can accurately predict future V-Q.curves for hundreds of cycles using only one-present-cycle V-Q curve,with root mean square error and mean absolute error basically less than 0.035 Ah and R^(2) basically less than 98.5%.This means that incremental capacity curves can be extracted from the predicted results for a more comprehensive and accurate battery degradation analysis.Furthermore,the method can flexibly adjust prediction length and density to cater to the practical needs of long-cycle prediction and data generation.This study provides a viable method for rapid degradation prediction and is expected to be generalized to in-vehicle implementations.展开更多
This research extends the literature on the environmental Phillips curve(EPC)and environmental Kuznets curve(EKC)by focusing on the 38 member economies of the Organization for Economic Co-operation and Development(OEC...This research extends the literature on the environmental Phillips curve(EPC)and environmental Kuznets curve(EKC)by focusing on the 38 member economies of the Organization for Economic Co-operation and Development(OECD).Using panel data from 2000 to 2021,the study employs several econometric techniques,including fixed effects,feasible generalized least squares,two-stage least squares,and the generalized method of moments.Our primary findings reveal that unemployment has a significant negative impact on CO_(2)emissions,thereby supporting the validity of the EPC hypothesis within OECD countries.This suggests a trade-off between unemployment and reductions in CO_(2)emissions.Similarly,the results validate the EKC hypothesis,with further analysis indicating that the EKC exhibits an N-shaped curve-an important contribution to the literature on environmental dynamics in advanced economies.Additionally,the results show that both trade openness and renewable energy usage have significantly improved environmental quality in OECD economies.Finally,extensive causality testing identifies both one-way and two-way causal relationships among the key variables examined.These findings have important policy implications for the management of environmental quality and macroeconomic variables in the OECD context.展开更多
Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered ext...Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.展开更多
With the increasing construction of port facilities,cross-sea bridges,and offshore engineering projects,uplift piles embedded in marine sedimentary soft soil are becoming increasingly necessary.The load-displacement c...With the increasing construction of port facilities,cross-sea bridges,and offshore engineering projects,uplift piles embedded in marine sedimentary soft soil are becoming increasingly necessary.The load-displacement curve of uplift piles is crucial for evaluating their uplift bearing characteristics,which facilitates the risk evaluation,design,and construction of large infrastructural supports.In this study,a load-displacement curve model based on piezocone penetration test(CPTU)data is proposed via the load transfer method.Experimental tests are conducted to analyze the uplift bearing characteristics and establish a correlation between the proposed model and CPTU data.The results of the proposed load-displacement curve are compared with the results from numerical simulations and those calculated by previous methods.The results show that the proposed curves appropriately evaluated the uplift bearing characteristics and improved the accuracy in comparison with previous methods.展开更多
This study presents a fragility curve to assess explosively induced damage to military vehicle tires based on shock tube experiments.To replicate lateral damage scenarios that may occur in real battlefield environment...This study presents a fragility curve to assess explosively induced damage to military vehicle tires based on shock tube experiments.To replicate lateral damage scenarios that may occur in real battlefield environments involving missile or bomb detonations,extreme overpressure conditions were generated using a shock tube.The influence of explosive charge mass on tire damage was quantitatively evaluated.Experimental results identified two critical failure thresholds:for loss of pressure,the threshold was 354 kPa peak overpressure and 3052 kPa·ms impulse;for rupture,the values were 485 kPa and 4237 kPa-ms,respectively.The same damage profile was reproduced through finite element analysis(FEA),verifying the reliability of the simulation.A Single Degree of Freedom(SDOF)model and Kingery-Bulmash(K-B)chart were employed to generate pressure-impulse data as a function of standoff distance.These data were applied to a finite element tire model using the BLAST ENHANCED keyword in LS-DYNA.The applied peak overpressures were identical to the experimental values with a 24%-27%difference in impulse.The simulation also captured recurring bead rim separation phenomenon,leading to internal pressure loss consistent with high-speed camera observations from the experiments.The resulting fragility curve clearly defines the threshold conditions for tire damage and provides a standardized damage assessment model applicable to various explosive charge masses and stand-off distances.The proposed model offers a quantitative basis for evaluating tire vulnerability,providing foundational reference data for defense applications.Specifically,the findings are expected to serve as a reliable source for weapon effects analysis and target vulnerability assessments involving wheeled military vehicles.展开更多
Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nano...Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.展开更多
This paper deeply explores the application strategies of short-term cost curves in the field of economics.Firstly,it elaborates on the basic theories and constituent elements of short-term cost curves.By drawing and a...This paper deeply explores the application strategies of short-term cost curves in the field of economics.Firstly,it elaborates on the basic theories and constituent elements of short-term cost curves.By drawing and analyzing the shortterm cost curve graphs,it presents the internal relationship between costs and output.Then,it focuses on researching its application strategies in multiple aspects such as enterprise production decisions,market pricing,and industry competition analysis.展开更多
On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation f...On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.展开更多
The high-pressure mercury intrusion (HPMI) experiment is widely used to assess the pore architecture oftight sandstone reservoirs. However, the conventional analysis of the high- pressure mercury intrusionhas always f...The high-pressure mercury intrusion (HPMI) experiment is widely used to assess the pore architecture oftight sandstone reservoirs. However, the conventional analysis of the high- pressure mercury intrusionhas always focused on the mercury injection curves themselves, neglecting the important geologicalinformation conveyed by the mercury ejection curves. This paper quantitatively describes the fractalcharacteristics of ejection curves by using four fractal models, i.e.,. Menger model, Thermodynamicmodel, Sierpinski model, and multi- fractal model. In comparison with mercury injection curves, weexplore the fractal significance of mercury ejection curves and define the applicability of different fractalmodels in characterizing pore architectures. Investigated tight sandstone samples can be divided intofour types (Types A, B, C and D) based on porosity, permeability, and mercury removal efficiency. Type Dsamples are unique in that they have higher permeability (>0.6 mD) but lower mercury removal effi-ciency (<35%). Fractal studies of the mercury injection curve show that it mainly reflects the pore throatcharacteristics, while the mercury ejection curve serves to reveal the pore features, and porosity andpermeability correlate well with the fractal dimension of the injection curve, while mercury removalefficiency correlates only with the Ds' value of the ejection curve. The studies on the mercury ejectioncurves also reveal that the small pores and micropores of the Type C and Type D samples are moredeveloped, with varying pore architecture. The fractal dimension Ds' value of Type D samples is greaterthan that of Type C samples, and the dissolution of Type D samples is more intense than that of Type Csamples, which further indicates that the Type D samples are smaller in pore size, rougher in surface, andwith greater difficulty for the hydrocarbon to enter, resulting in their reservoir capacity probably lessthan that of Type C samples. In this regard, the important information characterized by the mercuryejection curve should be considered in evaluating the tight sandstone reservoirs. Finally, the Menger andThermodynamic models prove to be more suitable for describing the total pore architecture, while theSierpinski model is better for characterizing the variability of the interconnected pores.展开更多
The fracture mechanics theory posits that cracks induce strain energy concentration near their tips in structural components,generating localized flexibility that impedes crack propagation.Theoretically,cracks are rep...The fracture mechanics theory posits that cracks induce strain energy concentration near their tips in structural components,generating localized flexibility that impedes crack propagation.Theoretically,cracks are represented as dimensionless,massless spring models,effectively capturing crack characteristics and cross-sectional properties at the crack location.Leveraging this spring-based representation,this study establishes an open-crack model for a one-dimensional(1D)piezoelectric semiconductor(PSC)curved beam under dynamic loading.This model enables the investigation of vibration characteristics in cracked structures.The analytical solutions for the electromechanical fields of the beam are derived using the differential operator method,and the natural frequencies together with the corresponding generalized mode shapes of the beam are determined analytically.Furthermore,the effects of the crack parameters on the natural vibration characteristics of the PSC curved beam are analyzed.展开更多
文摘Summary: To study reliability and reliable indices of quantitative assessment of right ventricular systolic function by time-intensity curve (TIC) with right ventricular contrast, 5 % sonicated human albumin was injected intravenously at a does of 0.08 ml/kg into 10 dogs at baseline status and cardiac insufficiency. Apical four-chamber view was observed for washin and washout of contrast agent from right ventricle. The parameters of TIC were obtained by curve fitting. The differences of parameters were analyzed in different states of cardiac functions. Among the parameters derived from TIC, the time constant (k) was decreased significantly with decline of cardiac function (P<0.001). But half-time of decent of peak intensity (HT) and mean-transit-time (MTT) of washout were increased significantly (P<0.001). The k was strongly related to cardiac output of right ventricle (CO) and ejection fraction (EF) of left ventricle and fractional shortening (FS) of left ventricle. Right ventricular systolic function could be assessed reliably by the parameters derived from TIC with right ventricular contrast echocardiography. The k, HT and MTT are reliable indices for quantitative assessment of right ventricular systolic function.
文摘The reliability and reliable indexes of q ua ntitative assessment of coronary flow reserve (CFR) by using time intensity cur ve (TIC) via myocardial contrast echocardiography were investigated. The TIC var iables were obtained by employing acoustic densitometry (AD) technique before an d after acetylcholine (Ach) injection in 12 dogs. Meanwhile, the correlation be tween these variables and CFR was analyzed. Among the variables derived from TIC , peak intensity (PI), area under the curve (AUC) and descending slope (DS) were increased significantly ( P <0.05) with the increase of coronary blood flow a fter Ach injection. Conversely, time to peak (TP), half time of descent (HT) , and mean transit time (MTT) were decreased remarkably ( P <0.0001). Th e P I and AUC ratios from post to pre Ach injection were strongly associated with CFR with the correlation coefficient (r) being 0.8366 and 0.8824, respectively. It is reliable by using the variables derived from TIC with myocardial contrast echocardiography to quantitatively evaluate regional myocardial CFR. The PI an d AUC ratios from post to pre Ach injection are the reliable indexes for quan titative assessment of CFR.
文摘Objective/Background: Qualitative assessment of uncertain (type II) time-intensity curves (TICs) in breast DCE-MRI is problematic and operator dependent. The aim of this work is to evaluate if a semi-quantitative assessment of uncertain TICs could improve overall diagnostic performance. Methods: In this study 49 lesions from 44 patients were retrospectively analysed. Per each lesion one region-of-interest (ROI)- averaged TIC was qualitatively evaluated by two radiologists in consensus: all the ROIs resulted in type II (uncertain) TIC. The same TICs were semi-quantitatively re-classified on the basis of the difference between the signal intensities of the last-time-point and of the peak: this difference was classified according to two different cut-off ranges (±5% and ±3%). All patients were cytological or histological biopsy proven. Fisher test and McNemar test were performed to evaluate if results were statistically significant (p < 0.05). Results: Using ±5% cut-off 16 TICs were reclassified as type III and 12 as type I while 21 were reclassified again as type II. Using ±3% 22 TICs were reclassified as type III and 16 as type I while 11 were reclassified again as type II. The semi-quantitative classification was compared to the histological-cytological results: the sensitivity, specificity, positive and negative predictive values obtained with ±3% were 77%, 91%, 91% and 78% respectively while using ±5% were 58%, 96%, 94% and 68% respectively. Using the ±5% cut-off 26/28 (93%) TICs were correctly reclassified while using the ±3% cut-off 34/38 (90%) TICs were correctly reclassified (p < 0.05). Conclusions: Semi-quantitative methods in kinetic curve assessment on DCE-MRI could improve classification of qualitatively uncertain TICs, leading to a more accurate classification of suspicious breast lesions.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078334)the National Key Research and Development Program of China(Grant No.2017YFC0805402)the Tianjin Research Innovation Project for Postgraduate Students(Grant No.2021YJSB141).
文摘The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.
基金Project(4013311)supported by the National Science Foundation of Iran(INSF)。
文摘This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities.
基金supported by the National Social Science Fund of China(Grand No.21XTJ001).
文摘A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.
文摘Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accurate and early diagnosis of HCC is crucial for effective treatment,as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma(ICC)exhibit different prognoses and treatment responses.Traditional diagnostic methods,including liver biopsy and contrast-enhanced ultrasound(CEUS),face limitations in applicability and objectivity.The primary objective of this study was to develop an advanced,lightweighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images.The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions.Methods This retrospective study encompassed a total of 161 patients,comprising 131 diagnosed with HCC and 30 with non-HCC malignancies.To achieve accurate tumor detection,the YOLOX network was employed to identify the region of interest(ROI)on both B-mode ultrasound and CEUS images.A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images.These curves provided critical data for the subsequent analysis and classification process.To analyze the extracted brightness change curves and classify the malignancies,we developed and compared several models.These included one-dimensional convolutional neural networks(1D-ResNet,1D-ConvNeXt,and 1D-CNN),as well as traditional machine-learning methods such as support vector machine(SVM),ensemble learning(EL),k-nearest neighbor(KNN),and decision tree(DT).The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics:area under the receiver operating characteristic(AUC),accuracy(ACC),sensitivity(SE),and specificity(SP).Results The evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM,0.56 for ensemble learning,0.63 for KNN,and 0.72 for the decision tree.These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves.In contrast,the deep learning models demonstrated significantly higher AUCs,with 1D-ResNet achieving an AUC of 0.72,1D-ConvNeXt reaching 0.82,and 1D-CNN obtaining the highest AUC of 0.84.Moreover,under the five-fold cross-validation scheme,the 1D-CNN model outperformed other models in both accuracy and specificity.Specifically,it achieved accuracy improvements of 3.8%to 10.0%and specificity enhancements of 6.6%to 43.3%over competing approaches.The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification.Conclusion The 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies,surpassing both traditional machine-learning methods and other deep learning models.This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’diagnostic capabilities.By improving the accuracy and efficiency of clinical decision-making,this tool has the potential to positively impact patient care and outcomes.Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.
文摘In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.
基金supported by the National Natural Science Foundation of China(11931009,12271495,11971450,and 12071449)Anhui Initiative in Quantum Information Technologies(AHY150200)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(YSBR-001).
文摘On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.
文摘Prior to 2012,the integration of designed vertical or horizontal curves into microtunnel alignments was unheard of in Ontario.Straight and relatively short microtunnels,less than 200m long,were the local accepted industry standard.Following the release of a large number of infrastructure projects in the suburban Greater Toronto Area(GTA),clients and design consultants encouraged contractors to present value engineered alternatives to proposed project alignments and construction methods.Such an initiative has allowed contractors to develop cost effective solutions,which harnessed the application of state-of-the-art microtunnelling methods and equipment.As a result,several recent projects now feature pre-designed curved microtunnels as part of the tender documents.This paper discusses,in technical detail,three recent projects,whereby,long distance curved microtunnels were successfully constructed.Each of the projects had tunnel drives exceeding 300m in length,ranging in diameter from 1200mm ID to 1500mm ID,incorporating the use of Vertical,Horizontal,and Spatial Curves.Critical parameters such as pre-project planning and engineering are highlighted,while the importance of post-tunnelling assessments is also discussed.
基金jointly supported by the National Natural Science Foundation of China(Grant No.52277213,52177210,and 52207229)key project of science and technology research program of Chongqing Education Commission of China (Grant No. KJZD-K202201103,KJZD-K202301108)Chongqing Graduate Research Innovation Project (Grant No.CYS240657).
文摘Accurately predicting battery degradation is crucial for battery system management.However,due to the complexities of aging mechanisms and limitations of historical data,comprehensively indicating battery degradation solely through maximum capacity loss assessment is challenging.While machine learning offers promising solutions,it often overlooks domain knowledge,resulting in reduced accu racy,increased computational burden and decreased interpretability.Here,this study proposes a method to predict the voltage-capacity(V-Q) curve during battery degradation with limited historical data.This process is achieved through two physically interpretable components:a lightweight interpretable physical model and a physics-informed neural network.These components incorporate domain knowledge into machine learning to improve V-Q curve prediction performance and enhance interpretability.Extensive validation was conducted on 52 batteries of different types under different testing conditions.The proposed method can accurately predict future V-Q.curves for hundreds of cycles using only one-present-cycle V-Q curve,with root mean square error and mean absolute error basically less than 0.035 Ah and R^(2) basically less than 98.5%.This means that incremental capacity curves can be extracted from the predicted results for a more comprehensive and accurate battery degradation analysis.Furthermore,the method can flexibly adjust prediction length and density to cater to the practical needs of long-cycle prediction and data generation.This study provides a viable method for rapid degradation prediction and is expected to be generalized to in-vehicle implementations.
文摘This research extends the literature on the environmental Phillips curve(EPC)and environmental Kuznets curve(EKC)by focusing on the 38 member economies of the Organization for Economic Co-operation and Development(OECD).Using panel data from 2000 to 2021,the study employs several econometric techniques,including fixed effects,feasible generalized least squares,two-stage least squares,and the generalized method of moments.Our primary findings reveal that unemployment has a significant negative impact on CO_(2)emissions,thereby supporting the validity of the EPC hypothesis within OECD countries.This suggests a trade-off between unemployment and reductions in CO_(2)emissions.Similarly,the results validate the EKC hypothesis,with further analysis indicating that the EKC exhibits an N-shaped curve-an important contribution to the literature on environmental dynamics in advanced economies.Additionally,the results show that both trade openness and renewable energy usage have significantly improved environmental quality in OECD economies.Finally,extensive causality testing identifies both one-way and two-way causal relationships among the key variables examined.These findings have important policy implications for the management of environmental quality and macroeconomic variables in the OECD context.
基金Project(JQ2022E004)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.
基金supported by the China Postdoctoral Science Foundation(Grant No.2024M760734)National Science Fund for Distinguished Young Scholars(Grant No.42225206)the National Natural Science Foundation of China(Grant Nos.41877231 and 42072299).
文摘With the increasing construction of port facilities,cross-sea bridges,and offshore engineering projects,uplift piles embedded in marine sedimentary soft soil are becoming increasingly necessary.The load-displacement curve of uplift piles is crucial for evaluating their uplift bearing characteristics,which facilitates the risk evaluation,design,and construction of large infrastructural supports.In this study,a load-displacement curve model based on piezocone penetration test(CPTU)data is proposed via the load transfer method.Experimental tests are conducted to analyze the uplift bearing characteristics and establish a correlation between the proposed model and CPTU data.The results of the proposed load-displacement curve are compared with the results from numerical simulations and those calculated by previous methods.The results show that the proposed curves appropriately evaluated the uplift bearing characteristics and improved the accuracy in comparison with previous methods.
基金part of the Agency for Defense Development(ADD)research project on Weapon lethality/effectiveness analysis technology for material targets and grant funded by the korean goverment(511225-912A03301)。
文摘This study presents a fragility curve to assess explosively induced damage to military vehicle tires based on shock tube experiments.To replicate lateral damage scenarios that may occur in real battlefield environments involving missile or bomb detonations,extreme overpressure conditions were generated using a shock tube.The influence of explosive charge mass on tire damage was quantitatively evaluated.Experimental results identified two critical failure thresholds:for loss of pressure,the threshold was 354 kPa peak overpressure and 3052 kPa·ms impulse;for rupture,the values were 485 kPa and 4237 kPa-ms,respectively.The same damage profile was reproduced through finite element analysis(FEA),verifying the reliability of the simulation.A Single Degree of Freedom(SDOF)model and Kingery-Bulmash(K-B)chart were employed to generate pressure-impulse data as a function of standoff distance.These data were applied to a finite element tire model using the BLAST ENHANCED keyword in LS-DYNA.The applied peak overpressures were identical to the experimental values with a 24%-27%difference in impulse.The simulation also captured recurring bead rim separation phenomenon,leading to internal pressure loss consistent with high-speed camera observations from the experiments.The resulting fragility curve clearly defines the threshold conditions for tire damage and provides a standardized damage assessment model applicable to various explosive charge masses and stand-off distances.The proposed model offers a quantitative basis for evaluating tire vulnerability,providing foundational reference data for defense applications.Specifically,the findings are expected to serve as a reliable source for weapon effects analysis and target vulnerability assessments involving wheeled military vehicles.
基金supported by Scientific Research Projects Department of Istanbul Technical University.Project Number:MGA-2018-41546.Grant receiver:E.T.
文摘Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.
文摘This paper deeply explores the application strategies of short-term cost curves in the field of economics.Firstly,it elaborates on the basic theories and constituent elements of short-term cost curves.By drawing and analyzing the shortterm cost curve graphs,it presents the internal relationship between costs and output.Then,it focuses on researching its application strategies in multiple aspects such as enterprise production decisions,market pricing,and industry competition analysis.
基金Projects(51775445,52175435)supported by the National Natural Science Foundation of ChinaProject(CX2023051)supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China。
文摘On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.
基金The research project was co-funded by the National Natural Science Foundation of China(No.42072172,No.41772120)Shandong Province Natural Science Fund for Distinguished Young Scholars(No.JQ201311)the Graduate Scientific and Technological Innovation Project Financially Supported by Shandong University of Science and Technology(No.SDKDYC190313).
文摘The high-pressure mercury intrusion (HPMI) experiment is widely used to assess the pore architecture oftight sandstone reservoirs. However, the conventional analysis of the high- pressure mercury intrusionhas always focused on the mercury injection curves themselves, neglecting the important geologicalinformation conveyed by the mercury ejection curves. This paper quantitatively describes the fractalcharacteristics of ejection curves by using four fractal models, i.e.,. Menger model, Thermodynamicmodel, Sierpinski model, and multi- fractal model. In comparison with mercury injection curves, weexplore the fractal significance of mercury ejection curves and define the applicability of different fractalmodels in characterizing pore architectures. Investigated tight sandstone samples can be divided intofour types (Types A, B, C and D) based on porosity, permeability, and mercury removal efficiency. Type Dsamples are unique in that they have higher permeability (>0.6 mD) but lower mercury removal effi-ciency (<35%). Fractal studies of the mercury injection curve show that it mainly reflects the pore throatcharacteristics, while the mercury ejection curve serves to reveal the pore features, and porosity andpermeability correlate well with the fractal dimension of the injection curve, while mercury removalefficiency correlates only with the Ds' value of the ejection curve. The studies on the mercury ejectioncurves also reveal that the small pores and micropores of the Type C and Type D samples are moredeveloped, with varying pore architecture. The fractal dimension Ds' value of Type D samples is greaterthan that of Type C samples, and the dissolution of Type D samples is more intense than that of Type Csamples, which further indicates that the Type D samples are smaller in pore size, rougher in surface, andwith greater difficulty for the hydrocarbon to enter, resulting in their reservoir capacity probably lessthan that of Type C samples. In this regard, the important information characterized by the mercuryejection curve should be considered in evaluating the tight sandstone reservoirs. Finally, the Menger andThermodynamic models prove to be more suitable for describing the total pore architecture, while theSierpinski model is better for characterizing the variability of the interconnected pores.
基金supported by the National Natural Science Foundation of China(No.12272353)the Postdoctoral Research Grant in Henan Province of China(No.202003091)the Key Scientific Research Projects in Colleges and Universities of Henan Province of China(No.22A130008)。
文摘The fracture mechanics theory posits that cracks induce strain energy concentration near their tips in structural components,generating localized flexibility that impedes crack propagation.Theoretically,cracks are represented as dimensionless,massless spring models,effectively capturing crack characteristics and cross-sectional properties at the crack location.Leveraging this spring-based representation,this study establishes an open-crack model for a one-dimensional(1D)piezoelectric semiconductor(PSC)curved beam under dynamic loading.This model enables the investigation of vibration characteristics in cracked structures.The analytical solutions for the electromechanical fields of the beam are derived using the differential operator method,and the natural frequencies together with the corresponding generalized mode shapes of the beam are determined analytically.Furthermore,the effects of the crack parameters on the natural vibration characteristics of the PSC curved beam are analyzed.