This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that globa...In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.展开更多
We experimentally analyze the effect of the optical power on the time delay signature identification and the random bit generation in chaotic semiconductor laser with optical feedback.Due to the inevitable noise durin...We experimentally analyze the effect of the optical power on the time delay signature identification and the random bit generation in chaotic semiconductor laser with optical feedback.Due to the inevitable noise during the photoelectric detection and analog-digital conversion,the varying of output optical power would change the signal to noise ratio,then impact time delay signature identification and the random bit generation.Our results show that,when the optical power is less than-14 dBm,with the decreasing of the optical power,the actual identified time delay signature degrades and the entropy of the chaotic signal increases.Moreover,the extracted random bit sequence with lower optical power is more easily pass through the randomness testing.展开更多
This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder ma...This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.展开更多
The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantl...The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantly affected by the hysteresis phenomenon in the wave compensation system.To address this issue,a ship heave motion prediction is proposed in this paper on the basis of the Gauss-DeepAR(AR stands for autoregressive recurrent)model and the Hilbert−Huang time-delay compensation control strategy.Initially,the zero upward traveling wave period of the level 4−6 sea state ship heave motion is analyzed,which serves as the input sliding window for the Gauss-DeepAR prediction model,and probability predictions at different wave direction angles are conducted.Next,considering the hysteresis characteristics of the ship heave motion compensation platform,the Hilbert−Huang transform is employed to analyze and calculate the hysteresis delay of the compensation platform.After the optimal control action value is subsequently calculated,simulations and hardware platform tests are conducted.The simulation results demonstrated that the Gauss-DeepAR model outperforms autoregressive integrated moving average model(ARIMA),support vector machine(SVM),and longshort-term memory(LSTM)in predicting non-independent identically distributed datasets at a 90°wave direction angle in the level 4−6 sea states.Furthermore,the model has good predictive performance and generalizability for non-independent and non-uniformly distributed datasets at a 180°wave direction angle.The hardware platform compensation test results revealed that the Hilbert–Huang method has an outstanding effect on determining the hysteretic delay and selecting the optimal control action value,and the compensation efficiency was higher than 90%in the level 4−6 sea states.展开更多
Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the ...Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the authors present a machine learning-based risk prediction approach using routinely available clinical and laboratory parameters.Among the evaluated algorithms,a decision tree model demonstrated excellent discrimination,achieving an area under the curve of 0.951 in the validation set and notably identifying all true cases of delayed wound healing at the Youden index threshold.The inclusion of variables such as drainage duration,preoperative white blood cell and neutrophil counts,alongside age and sex,highlights the pragmatic appeal of the model for early postoperative monitoring.Nevertheless,several aspects warrant critical reflection,including the reliance on a postoperative variable(drainage duration),internal validation only,and certain reporting inconsistencies.This letter underscores both the promise and the limitations of adopting interpretable machine learning models in perioperative care.We advocate for transparent reporting,external validation,and careful consideration of clinically actionable timepoints before integration into practice.Ultimately,this work represents a valuable step toward precision risk stratification in gastric cancer surgery,and sets the stage for multicenter,prospective evaluations.展开更多
The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the rec...The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.展开更多
The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the...The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
Time delays in the feedback control often dete- riorate the control performance or even cause the instability of a dynamic system. This paper presents a control strategy for the dynamic system with a constant or a slo...Time delays in the feedback control often dete- riorate the control performance or even cause the instability of a dynamic system. This paper presents a control strategy for the dynamic system with a constant or a slowly time-varying input delay based on a transformation, which sire-plifies the time-delay system the relation is discussed for into a delay-free one. Firstly, two existing reduction-based linear quadratic controls. One is continuous and the other is discrete. By extending the relation, a new reduction-based control is then developed with a numerical algorithm presented for practical control implementation. The controller suggested by the proposed method has such a promising property that it can be used for the cases of different values of an input time delay without redesign of controller. This property provides the potential for stabilizing the dynamic system with a time-varying input delay. Consequently, the application of the proposed method to the dynamic system with a slowly time-varying delay is discussed. Finally, numerical simulations are given to show the efficacy and the applicability of the method.展开更多
An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control...An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control method based on the observed states. Both the designed observer and controller are independent of time delays. Using an appropriate Lyapunov-Krasovskii functional, the uncertainty of the unknown time delay is compensated, and then the fuzzy logic system in Mamdani type is utilized to approximate the unknown nonlinear functions. Based on the Lyapunov stability theory, the constructed observer-based controller and the closed-loop system are proved to be asymptotically stable. The designed control law is independent of the time delays and has a simple form with only one adaptive parameter vector, which is to be updated on-line. Simulation results are presented to demonstrate the effectiveness of the proposed approach.展开更多
This paper considers the problem of delay-dependent robust stability for uncertain systems with interval time-varying delays. By using the direct Lyapunov method, a new Lyapunov-Krasovskii(L-K) functional is introduce...This paper considers the problem of delay-dependent robust stability for uncertain systems with interval time-varying delays. By using the direct Lyapunov method, a new Lyapunov-Krasovskii(L-K) functional is introduced based on decomposition approach, when dealing with the time derivative of L-K functional, a new tight integral inequality is adopted for bounding the cross terms. Then, a new less conservative delay-dependent stability criterion is formulated in terms of linear matrix inequalities(LMIs),which can be easily solved by optimization algorithms. Numerical examples are given to show the effectiveness and the benefits of the proposed method.展开更多
Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for...Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for high-dimensiona multi-agent systems with time-varying delays, where a cos function is defined based on state errors among neighboring agents and control inputs of all the agents. By the state space decomposition approach and the linear matrix inequality(LMI)sufficient conditions for guaranteed cost consensus and consensu alization are given. Moreover, a guaranteed cost upper bound o the cost function is determined. It should be mentioned that these LMI criteria are dependent on the change rate of time delays and the maximum time delay, the guaranteed cost upper bound is only dependent on the maximum time delay but independen of the Laplacian matrix. Finally, numerical simulations are given to demonstrate theoretical results.展开更多
Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-...Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.展开更多
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backsteppi...This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.展开更多
One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay.The first contribution of this paper is to establish...One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay.The first contribution of this paper is to establish a necessary and sufficient condition on a matrix-valued polynomial inequality over a certain closed interval.The degree of such a matrix-valued polynomial can be an arbitrary finite positive integer.The second contribution of this paper is to introduce a novel LyapunovKrasovskii functional,which includes a cubic polynomial on a time-varying delay,in stability analysis of time-delay systems.Based on the novel Lyapunov-Krasovskii functional and the necessary and sufficient condition on matrix-valued polynomial inequalities,two stability criteria are derived for two cases of the time-varying delay.A well-studied numerical example is given to show that the proposed stability criteria are of less conservativeness than some existing ones.展开更多
Dear Editor,This letter studies the problem of sliding mode control(SMC)design for recurrent neural networks(RNNs)with impulsive disturbances and time-varying transmission delays.To this end,an appropriate integral sl...Dear Editor,This letter studies the problem of sliding mode control(SMC)design for recurrent neural networks(RNNs)with impulsive disturbances and time-varying transmission delays.To this end,an appropriate integral sliding surface function and SMC law are adopted for use under impulsive disturbances and time-varying delays.展开更多
A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov f...A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.展开更多
This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed c...This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.展开更多
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
基金supported by the Zhejiang Provincial Natural Science Foundation(LY24F030011,LY23F030005)the National Natural Science Foundation of China(62373131).
文摘In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.62005129 and 62175116)。
文摘We experimentally analyze the effect of the optical power on the time delay signature identification and the random bit generation in chaotic semiconductor laser with optical feedback.Due to the inevitable noise during the photoelectric detection and analog-digital conversion,the varying of output optical power would change the signal to noise ratio,then impact time delay signature identification and the random bit generation.Our results show that,when the optical power is less than-14 dBm,with the decreasing of the optical power,the actual identified time delay signature degrades and the entropy of the chaotic signal increases.Moreover,the extracted random bit sequence with lower optical power is more easily pass through the randomness testing.
基金supported by the Autonomous Innovation Team Foundation for“20 Items of the New University”of Jinan City(202228087)the National Natural Science Foundation of China(62073190).
文摘This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.
基金supported by the National Natural Science Foundation of China(Grant No.52105466).
文摘The prediction and compensation control of marine ship motion is crucial for ensuring the safety of offshore wind turbine loading and unloading operations.However,the accuracy of prediction and control is significantly affected by the hysteresis phenomenon in the wave compensation system.To address this issue,a ship heave motion prediction is proposed in this paper on the basis of the Gauss-DeepAR(AR stands for autoregressive recurrent)model and the Hilbert−Huang time-delay compensation control strategy.Initially,the zero upward traveling wave period of the level 4−6 sea state ship heave motion is analyzed,which serves as the input sliding window for the Gauss-DeepAR prediction model,and probability predictions at different wave direction angles are conducted.Next,considering the hysteresis characteristics of the ship heave motion compensation platform,the Hilbert−Huang transform is employed to analyze and calculate the hysteresis delay of the compensation platform.After the optimal control action value is subsequently calculated,simulations and hardware platform tests are conducted.The simulation results demonstrated that the Gauss-DeepAR model outperforms autoregressive integrated moving average model(ARIMA),support vector machine(SVM),and longshort-term memory(LSTM)in predicting non-independent identically distributed datasets at a 90°wave direction angle in the level 4−6 sea states.Furthermore,the model has good predictive performance and generalizability for non-independent and non-uniformly distributed datasets at a 180°wave direction angle.The hardware platform compensation test results revealed that the Hilbert–Huang method has an outstanding effect on determining the hysteretic delay and selecting the optimal control action value,and the compensation efficiency was higher than 90%in the level 4−6 sea states.
文摘Delayed wound healing following radical gastrectomy remains an important yet underappreciated complication that prolongs hospitalization,increases costs,and undermines patient recovery.In An et al’s recent study,the authors present a machine learning-based risk prediction approach using routinely available clinical and laboratory parameters.Among the evaluated algorithms,a decision tree model demonstrated excellent discrimination,achieving an area under the curve of 0.951 in the validation set and notably identifying all true cases of delayed wound healing at the Youden index threshold.The inclusion of variables such as drainage duration,preoperative white blood cell and neutrophil counts,alongside age and sex,highlights the pragmatic appeal of the model for early postoperative monitoring.Nevertheless,several aspects warrant critical reflection,including the reliance on a postoperative variable(drainage duration),internal validation only,and certain reporting inconsistencies.This letter underscores both the promise and the limitations of adopting interpretable machine learning models in perioperative care.We advocate for transparent reporting,external validation,and careful consideration of clinically actionable timepoints before integration into practice.Ultimately,this work represents a valuable step toward precision risk stratification in gastric cancer surgery,and sets the stage for multicenter,prospective evaluations.
基金The National Natural Science Foundation of China(No.60835001,60875035,60905009,61004032,61004064,11071001)China Postdoctoral Science Foundation(No.201003546)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20093401110001)the Major Program of Higher Education of Anhui Province(No.KJ2010ZD02)the Natural Science Research Project of Higher Education of Anhui Province(No.KJ2011A020)
文摘The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.
基金The National Natural Science Foundation of China(No.60874030,60574006,60404006)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB510125)
文摘The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金supported by the National Natural Science Foundation of China ( 10532050, 10702024 and 10702025) the Doctoral Fund of MOE of China (20070287029)
文摘Time delays in the feedback control often dete- riorate the control performance or even cause the instability of a dynamic system. This paper presents a control strategy for the dynamic system with a constant or a slowly time-varying input delay based on a transformation, which sire-plifies the time-delay system the relation is discussed for into a delay-free one. Firstly, two existing reduction-based linear quadratic controls. One is continuous and the other is discrete. By extending the relation, a new reduction-based control is then developed with a numerical algorithm presented for practical control implementation. The controller suggested by the proposed method has such a promising property that it can be used for the cases of different values of an input time delay without redesign of controller. This property provides the potential for stabilizing the dynamic system with a time-varying input delay. Consequently, the application of the proposed method to the dynamic system with a slowly time-varying delay is discussed. Finally, numerical simulations are given to show the efficacy and the applicability of the method.
文摘An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control method based on the observed states. Both the designed observer and controller are independent of time delays. Using an appropriate Lyapunov-Krasovskii functional, the uncertainty of the unknown time delay is compensated, and then the fuzzy logic system in Mamdani type is utilized to approximate the unknown nonlinear functions. Based on the Lyapunov stability theory, the constructed observer-based controller and the closed-loop system are proved to be asymptotically stable. The designed control law is independent of the time delays and has a simple form with only one adaptive parameter vector, which is to be updated on-line. Simulation results are presented to demonstrate the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China(No.61074072)
文摘This paper considers the problem of delay-dependent robust stability for uncertain systems with interval time-varying delays. By using the direct Lyapunov method, a new Lyapunov-Krasovskii(L-K) functional is introduced based on decomposition approach, when dealing with the time derivative of L-K functional, a new tight integral inequality is adopted for bounding the cross terms. Then, a new less conservative delay-dependent stability criterion is formulated in terms of linear matrix inequalities(LMIs),which can be easily solved by optimization algorithms. Numerical examples are given to show the effectiveness and the benefits of the proposed method.
基金supported by Shaanxi Province Natural Science Foundation of Research Projects(2016JM6014)the Innovation Foundation of High-Tech Institute of Xi’an(2015ZZDJJ03)the Youth Foundation of HighTech Institute of Xi’an(2016QNJJ004)
文摘Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for high-dimensiona multi-agent systems with time-varying delays, where a cos function is defined based on state errors among neighboring agents and control inputs of all the agents. By the state space decomposition approach and the linear matrix inequality(LMI)sufficient conditions for guaranteed cost consensus and consensu alization are given. Moreover, a guaranteed cost upper bound o the cost function is determined. It should be mentioned that these LMI criteria are dependent on the change rate of time delays and the maximum time delay, the guaranteed cost upper bound is only dependent on the maximum time delay but independen of the Laplacian matrix. Finally, numerical simulations are given to demonstrate theoretical results.
基金supported by the Fundamental Research Funds for the Central Universities(JUSRP11020)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090093120006)
文摘Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.
基金This work was supported by the National Natural Science Foundation of China (No. 60374015) and Shaanxi Province Nature Science Foundation(No. 2003A15).
文摘This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.
基金supported in part by the Australian Research Council Discovery Project(Grant No.DP160103567)。
文摘One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay.The first contribution of this paper is to establish a necessary and sufficient condition on a matrix-valued polynomial inequality over a certain closed interval.The degree of such a matrix-valued polynomial can be an arbitrary finite positive integer.The second contribution of this paper is to introduce a novel LyapunovKrasovskii functional,which includes a cubic polynomial on a time-varying delay,in stability analysis of time-delay systems.Based on the novel Lyapunov-Krasovskii functional and the necessary and sufficient condition on matrix-valued polynomial inequalities,two stability criteria are derived for two cases of the time-varying delay.A well-studied numerical example is given to show that the proposed stability criteria are of less conservativeness than some existing ones.
文摘Dear Editor,This letter studies the problem of sliding mode control(SMC)design for recurrent neural networks(RNNs)with impulsive disturbances and time-varying transmission delays.To this end,an appropriate integral sliding surface function and SMC law are adopted for use under impulsive disturbances and time-varying delays.
文摘A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(No.60674050,60736022,10972002,60774089,60704039)
文摘This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.