This study presents a novel nanostructural electrode made of 20-nm-diameter nanoparticles, which orderly decorated with 2-μm TiO2 particles, deposited by a new gel process. The decorated electrode (DE) is better th...This study presents a novel nanostructural electrode made of 20-nm-diameter nanoparticles, which orderly decorated with 2-μm TiO2 particles, deposited by a new gel process. The decorated electrode (DE) is better than the non-decorated electrode (NE) in both light scattering and light harvesting, as confirmed by diffuse reflectance spectroscopy. X-ray diffraction reveals that both electrodes have a mixture of anatase and rutile phases. The dye-sensitized solar cell based on the decorated electrode shows the highest power conversion efficiency of 7.80% as a result of less recombination demonstrated by electrochemical impedance spectroscopy. From internal power conversion efficiency measurement, the external quantum efficiency of DE cell at 530 nm is 89%, which is higher than that of NE cell (77%).展开更多
Using polystyrene (PSt) particles as template, PSt/TiO2 composite particles with AgCl incorporation were prepared through hydrolysis of tetrabutyl titanate in the presence of AgNO3 and NaCl. AgCl doped TiO2 hollow p...Using polystyrene (PSt) particles as template, PSt/TiO2 composite particles with AgCl incorporation were prepared through hydrolysis of tetrabutyl titanate in the presence of AgNO3 and NaCl. AgCl doped TiO2 hollow particles were successfully prepared with the PSt/TiO2 composite microspheres pretreated at 180 ℃ followed by calcination. The morphology of PSt/TiO2 particles and the crystal structures of the AgCl doped TiO2 hollow particles were characterized. The photocatalytic activity of the doped TiO2 hollow particles in degradation of Rhodamine B was tested under UV and visible lights and compared to that with Ag doped TiO2 particles. The results showed that TiO2 hollow particles, either doped with Ag or AgCl, demonstrated higher photocatalytic activity than the pure TiO2 particles. This enhancement in photocatalytic activity was more significant with AgCl doped TiO2 than that with Ag doped, and more distinct when the degradation was done under visible light than that under UV light.展开更多
This work aimed to use oyster shell powder (OSP) as the partial replacement of Ag/TiO2 particle to obtain multifunctional β-hemihydrate gypsum.Thus,the β-hemihydrate gypsum was mixed with different contents of OSP a...This work aimed to use oyster shell powder (OSP) as the partial replacement of Ag/TiO2 particle to obtain multifunctional β-hemihydrate gypsum.Thus,the β-hemihydrate gypsum was mixed with different contents of OSP and Ag/TiO2 particle.Antibacterial and MB removal experiments were conducted to assess the antibacterial characteristic and photocatalytic activity of β-hemihydrate gypsum with Ag/TiO2 particle and OSP.Besides,the formaldehyde degradation test was carried out to evaluate its formaldehyde removal ratio.Moreover,their setting times,compressive and flexural strengths at 1,3,and 28 days were comparatively analyzed.The experimental results prove that the composite use of OSP and Ag/TiO2 particle provide feasible multifunction for the β-hemihydrate gypsum.They can further improve the bactericidal rates and exhibit extra MB removal ratios compared with the gypsum plasters with single Ag/TiO2 particle.Besides,they can increase the formaldehyde degradation ratios,and this promotion is related to the introduction of Ag/TiO2 particle.However,OSP delays the initial setting time but promotes the final setting time of β-hemihydrate gypsum,and Ag/TiO2 particle hardly affects the setting times.Furthermore,OSP reduces the strengths of plasters at 1,3,and 28 days.But in general,the composite addition of OSP and Ag/TiO2 particle increase the compressive and flexural strengths of gypsum plasters at 1,3,and 28 days.These results provide theoretical guidance for the recycling of OSP and the preparation of gypsum-based products with antibacterial and formaldehyde degradation capabilities.展开更多
The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particl...The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particles on the surface of TiO2 electrode extends the optical absorptionspectrum and photocurrent action specmim into visible region. In addition, compared with RuS2 bulknlaterials- a blue shifi in both absorption spectrum and photocurrent action speCtrum of RuS2rriO2elcctrode is obserived and explained in terms of quantum sized effect.展开更多
TiO2 thin film was prepared on Si substrate by plasma chemical vapor deposition (PCVD) system and the morphologies of ZiO2 thin film were controlled by adjusting the initial precursor concentration. As the initial t...TiO2 thin film was prepared on Si substrate by plasma chemical vapor deposition (PCVD) system and the morphologies of ZiO2 thin film were controlled by adjusting the initial precursor concentration. As the initial titanium tetra-isopropoxide (TTIP) concentration increases in PCVD reactor, the shapes of TiO2 particles generated in PCVD reactor change from the spherical small-sized particles around 20 nm and spherical large-sized particles around 60 nm to aggregate particles around 100 nm. The TiO2 particles with different shapes deposit on the substrate and become the main building blocks of resulting TiO2 thin film. We observed the TiO2 thin film with smooth morphology at low initial TTIP concentration, granular morphology at medium initial TTIP concentration, and columnar morphology at high initial TTIP concentration. It is proposed that we can prepare the TiO2 thin film with controlled morphologies in one-step process just by adjusting the initial precursor concentration in PCVD .展开更多
Since the prototype of a dye-sensitized solar cell(DSSC)was reported in 1991 by M. Gratzel,it has aroused intensive interest over the past decade due to its low cost and simple preparation procedure.The typical cell c...Since the prototype of a dye-sensitized solar cell(DSSC)was reported in 1991 by M. Gratzel,it has aroused intensive interest over the past decade due to its low cost and simple preparation procedure.The typical cell consists of a dye-coated mesoporous nanocrystalline TiO_2 film sandwiched between two transparent electroldes.A liquid electrolyte,traditionally containing the trioidide/iodide redox couple,fills the pores of the mesoporous nanocrystalline TiO_2 film and contacts the nanoparticles.Photoexcite...展开更多
Titania nanotubular arrays (TNA) synthesized via electrochemical anodization is a stable and versatile material, widely studied for photocatalytic and sensing applications, whereas nano-sized gold particles are a kn...Titania nanotubular arrays (TNA) synthesized via electrochemical anodization is a stable and versatile material, widely studied for photocatalytic and sensing applications, whereas nano-sized gold particles are a known plasmonic material. Semiconductor-metal nanocomposites in isolated, embedded, or encapsulated form, when irradiated with proper light frequency can exhibit localized surface plasmon resonance (LSPR) effect. This effect can result in improved light adsorption and electrical properties of a material. In this study, we report the enhanced visible light photo-response of LSPR induced volatile organic biomarker vapor sensing at room temperature using a Au-embedded TNA electrochemical sensor. Two mechanisms are proposed. One based on classical physics (band theory), which explains operation under non-irradiated conditions. The second mechanism is based on the coupling of classical and quantum physics (molecular orbitals), and explains sensor operation under irradiated conditions.展开更多
Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu an...Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu and TiO2)are used in power law nano fluid.Strongly implicit procedure,(SIP)is used to simulate the discretized coupled algebraic equations.It has been observed that volume fraction of nano particles,ϕand magnetic field parameter,Ha are favourable for the heat transfer rate,however,both resist the fluid flow.Impact of applied uniform transverse magnetic field exceeds in the case of shear thickening fluids(i.e.n>1)by increasing the value of Ha as compared to that in shear thinning fluids(i.e.n<1).Therefore,enhancement in heat transfer rate is comparably more in shear thickening fluid.Furthermore,comparable limiting case study with published result is also carried out in this research paper.展开更多
文摘This study presents a novel nanostructural electrode made of 20-nm-diameter nanoparticles, which orderly decorated with 2-μm TiO2 particles, deposited by a new gel process. The decorated electrode (DE) is better than the non-decorated electrode (NE) in both light scattering and light harvesting, as confirmed by diffuse reflectance spectroscopy. X-ray diffraction reveals that both electrodes have a mixture of anatase and rutile phases. The dye-sensitized solar cell based on the decorated electrode shows the highest power conversion efficiency of 7.80% as a result of less recombination demonstrated by electrochemical impedance spectroscopy. From internal power conversion efficiency measurement, the external quantum efficiency of DE cell at 530 nm is 89%, which is higher than that of NE cell (77%).
文摘Using polystyrene (PSt) particles as template, PSt/TiO2 composite particles with AgCl incorporation were prepared through hydrolysis of tetrabutyl titanate in the presence of AgNO3 and NaCl. AgCl doped TiO2 hollow particles were successfully prepared with the PSt/TiO2 composite microspheres pretreated at 180 ℃ followed by calcination. The morphology of PSt/TiO2 particles and the crystal structures of the AgCl doped TiO2 hollow particles were characterized. The photocatalytic activity of the doped TiO2 hollow particles in degradation of Rhodamine B was tested under UV and visible lights and compared to that with Ag doped TiO2 particles. The results showed that TiO2 hollow particles, either doped with Ag or AgCl, demonstrated higher photocatalytic activity than the pure TiO2 particles. This enhancement in photocatalytic activity was more significant with AgCl doped TiO2 than that with Ag doped, and more distinct when the degradation was done under visible light than that under UV light.
基金Funded by the National Natural Science Foundation of China(51878479)。
文摘This work aimed to use oyster shell powder (OSP) as the partial replacement of Ag/TiO2 particle to obtain multifunctional β-hemihydrate gypsum.Thus,the β-hemihydrate gypsum was mixed with different contents of OSP and Ag/TiO2 particle.Antibacterial and MB removal experiments were conducted to assess the antibacterial characteristic and photocatalytic activity of β-hemihydrate gypsum with Ag/TiO2 particle and OSP.Besides,the formaldehyde degradation test was carried out to evaluate its formaldehyde removal ratio.Moreover,their setting times,compressive and flexural strengths at 1,3,and 28 days were comparatively analyzed.The experimental results prove that the composite use of OSP and Ag/TiO2 particle provide feasible multifunction for the β-hemihydrate gypsum.They can further improve the bactericidal rates and exhibit extra MB removal ratios compared with the gypsum plasters with single Ag/TiO2 particle.Besides,they can increase the formaldehyde degradation ratios,and this promotion is related to the introduction of Ag/TiO2 particle.However,OSP delays the initial setting time but promotes the final setting time of β-hemihydrate gypsum,and Ag/TiO2 particle hardly affects the setting times.Furthermore,OSP reduces the strengths of plasters at 1,3,and 28 days.But in general,the composite addition of OSP and Ag/TiO2 particle increase the compressive and flexural strengths of gypsum plasters at 1,3,and 28 days.These results provide theoretical guidance for the recycling of OSP and the preparation of gypsum-based products with antibacterial and formaldehyde degradation capabilities.
文摘The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particles on the surface of TiO2 electrode extends the optical absorptionspectrum and photocurrent action specmim into visible region. In addition, compared with RuS2 bulknlaterials- a blue shifi in both absorption spectrum and photocurrent action speCtrum of RuS2rriO2elcctrode is obserived and explained in terms of quantum sized effect.
基金supported by the Regional Innovation Center for Environmental Technology of Thermal Plasma(ETTP) at Inha University, designated by MKE(2009)supported from the Central Laboratory of Kangwon National University
文摘TiO2 thin film was prepared on Si substrate by plasma chemical vapor deposition (PCVD) system and the morphologies of ZiO2 thin film were controlled by adjusting the initial precursor concentration. As the initial titanium tetra-isopropoxide (TTIP) concentration increases in PCVD reactor, the shapes of TiO2 particles generated in PCVD reactor change from the spherical small-sized particles around 20 nm and spherical large-sized particles around 60 nm to aggregate particles around 100 nm. The TiO2 particles with different shapes deposit on the substrate and become the main building blocks of resulting TiO2 thin film. We observed the TiO2 thin film with smooth morphology at low initial TTIP concentration, granular morphology at medium initial TTIP concentration, and columnar morphology at high initial TTIP concentration. It is proposed that we can prepare the TiO2 thin film with controlled morphologies in one-step process just by adjusting the initial precursor concentration in PCVD .
文摘Since the prototype of a dye-sensitized solar cell(DSSC)was reported in 1991 by M. Gratzel,it has aroused intensive interest over the past decade due to its low cost and simple preparation procedure.The typical cell consists of a dye-coated mesoporous nanocrystalline TiO_2 film sandwiched between two transparent electroldes.A liquid electrolyte,traditionally containing the trioidide/iodide redox couple,fills the pores of the mesoporous nanocrystalline TiO_2 film and contacts the nanoparticles.Photoexcite...
基金supported in part by NSF-STTR Award#IIP-13211530 subcontracted from Nano Synth Materials and Sensors LLC and Utah Government of Economic Development fundsSupport and facilities provided by the Dawn and Roger Crus Renewable Energy Center
文摘Titania nanotubular arrays (TNA) synthesized via electrochemical anodization is a stable and versatile material, widely studied for photocatalytic and sensing applications, whereas nano-sized gold particles are a known plasmonic material. Semiconductor-metal nanocomposites in isolated, embedded, or encapsulated form, when irradiated with proper light frequency can exhibit localized surface plasmon resonance (LSPR) effect. This effect can result in improved light adsorption and electrical properties of a material. In this study, we report the enhanced visible light photo-response of LSPR induced volatile organic biomarker vapor sensing at room temperature using a Au-embedded TNA electrochemical sensor. Two mechanisms are proposed. One based on classical physics (band theory), which explains operation under non-irradiated conditions. The second mechanism is based on the coupling of classical and quantum physics (molecular orbitals), and explains sensor operation under irradiated conditions.
文摘Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu and TiO2)are used in power law nano fluid.Strongly implicit procedure,(SIP)is used to simulate the discretized coupled algebraic equations.It has been observed that volume fraction of nano particles,ϕand magnetic field parameter,Ha are favourable for the heat transfer rate,however,both resist the fluid flow.Impact of applied uniform transverse magnetic field exceeds in the case of shear thickening fluids(i.e.n>1)by increasing the value of Ha as compared to that in shear thinning fluids(i.e.n<1).Therefore,enhancement in heat transfer rate is comparably more in shear thickening fluid.Furthermore,comparable limiting case study with published result is also carried out in this research paper.