Wing design is a critical factor in the aerodynamic performance of flapping-wing(FW)robots.Inspired by the natural wing structures of insects,bats,and birds,we explored how bio-mimetic wing vein morphologies,combined ...Wing design is a critical factor in the aerodynamic performance of flapping-wing(FW)robots.Inspired by the natural wing structures of insects,bats,and birds,we explored how bio-mimetic wing vein morphologies,combined with a bio-inspired double wing clap-and-fling mechanism,affect thrust generation.This study focused on increasing vertical force and payload capacity.Through systematic experimentation with various vein configurations and structural designs,we developed innovative wings optimized for thrust production.Comprehensive tests were conducted to measure aerodynamic forces,power consumption,and wing kinematics across a range of flapping frequencies.Additionally,wings with different aspect ratios,a key factor in wing design,were fabricated and extensively evaluated.The study also examined the role of bio-inspired vein layouts on wing flexibility,a critical component in improving flight efficiency.Our findings demonstrate that the newly developed wing design led to a 20%increase in thrust,achieving up to 30 g-force(gf).This research sheds light on the clap-and-fling effect and establishes a promising framework for bio-inspired wing design,offering significant improvements in both performance and payload capacity for FW robots.展开更多
This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from...This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from the Dahei River prior to DNA extraction and 16S rRNA gene sequencing,it generates standard curves to convert sequencing data into absolute microbial copy numbers.The method,which is proved highly accurate(R^(2)>0.99),reveals a clear contrast between the river sites:the upstream community has not only a significantly higher total microbial load but also a completely different makeup of species compared to the downstream site.This approach effectively overcomes the limitations of relative abundance analysis,providing a powerful tool for environmental monitoring,and proposes key steps for future standardization to ensure data comparability and integration.展开更多
Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion...Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.展开更多
Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common c...Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common collision or impact methods.A moving load can generate flexural-gravity waves(FGWs),under the influence of which the ice sheet undergoes deformation and may even experience structural damage.Moving loads can be divided into above-ice loads and underwater loads.For the above-ice loads,we discuss the characteristics of the FGWs generated by a moving load acting on a complete ice sheet,an ice sheet with a crack,and an ice sheet with a lead of open water.For underwater loads,we discuss the influence on the ice-breaking characteristics of FGWs of the mode of motion,the geometrical features,and the trajectory of motion of the load.In addition to discussing the status of current research and the technical challenges of ice-breaking by moving loads,this paper also looks ahead to future research prospects and presents some preliminary ideas for consideration.展开更多
The frontal edge of the Makran accretionary wedge is characterized by the development of multiple imbricate thrust faults trending E-W and relatively parallel.However,the mechanisms underlying their formation and the ...The frontal edge of the Makran accretionary wedge is characterized by the development of multiple imbricate thrust faults trending E-W and relatively parallel.However,the mechanisms underlying their formation and the factors controlling their development remain subjects of debate.This paper,based on seismic profile analysis,employs physical simulation experiments to establish a'wedge'type subduction model.The study explores the influence of the initial wedge angle,horizontal sand layer thickness,and the presence or absence of a decollement layer on the structural styles of the thrust wedge.Experimental results indicate that as the initial wedge angle decreases from 11°to 8°,the lateral growth of the thrust wedge increases,whereas vertical growth diminishes.When the horizontal sand layer thickness is reduced from 4.5 cm to 3.0 cm,the spacing between the frontal thrusts decreases and the number of thrust faults increases.Both lateral and vertical growth are relatively reduced,resulting in a smaller thrust wedge.When a decollement layer is present,the structural style exhibits layered deformation.The decollement layer constrains the development of back thrusts and promotes the localized formation of frontal thrusts.In conclusion,the imbricate thrust faults at the frontal edge of the Makran accretionary wedge are primarily controlled by the characteristics of the wedge itself and the presence of the decollement layer.展开更多
Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective meas...Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To addre...The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation.展开更多
Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters.This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propul...Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters.This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propulsion(In-FEEP)micro-thruster using three methods based on a pendulum:direct thrust measurement,indirect plume momentum transfer and beam current diagnostics.The experimental setup utilized capacitive displacement sensors for force detection and a voice coil motor as a feedback actuator,achieving a resolution better than 0.1μN.Key performance factors such as ionization and plume divergence of ejected charged particles were also examined.The study reveals that the high applied voltage induces significant electrostatic interference,becoming the dominant source of error in direct thrust measurements.Beam current diagnostics and indirect plume momentum measurements were conducted simultaneously,showing strong agreement within a deviation of less than 0.2N across the operational thrust range.The results from all three methods are consistent within the error margins,verifying the reliability of the indirect measurement approach and the theoretical thrust model based on the electrical parameters of In-FEEP.展开更多
In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads...In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances.展开更多
This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the in...This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the interpretability of impulsive thrust strategy by integrating it within the framework of differential game in traditional continuous systems.First,this paper introduces an impulse-like constraint,with periodical changes in thrust amplitude,to characterize the impulsive thrust control.Then,the game with the impulse-like constraint is converted into the two-point boundary value problem,which is solved by the combined shooting and deep learning method proposed in this paper.Deep learning and numerical optimization are employed to obtain the guesses for unknown terminal adjoint variables and the game terminal time.Subsequently,the accurate values are solved by the shooting method to yield the optimal continuous thrust strategy with the impulse-like constraint.Finally,the shooting method is iteratively employed at each impulse decision moment to derive the impulsive thrust strategy guided by the optimal continuous thrust strategy.Numerical examples demonstrate the convergence of the combined shooting and deep learning method,even if the strongly nonlinear impulse-like constraint is introduced.The effect of the impulsive thrust strategy guided by the optimal continuous thrust strategy is also discussed.展开更多
Imbalanced loads in freight railway vehicles pose significant risks to vehicle running safety as well as track integrity,increasing the likelihood of derailments and increasing track wear rate.This study presents a ro...Imbalanced loads in freight railway vehicles pose significant risks to vehicle running safety as well as track integrity,increasing the likelihood of derailments and increasing track wear rate.This study presents a robust machine learning-based methodology designed to detect and classify transverse imbalances in freight vehicles using dynamic rail responses.The proposed approach employs wayside monitoring systems with accelerometers and strain gauges,integrating advanced feature extraction methods,including principal component analysis,log-mel spectrograms,and multi-feature-based techniques.The methodology enhances detection accuracy by normalizing features to eliminate environmental and operational variations and employing data fusion for sensitive index creation.It is capable of distinguishing between different severity levels of imbalanced loads across various wagon types.By simulating scenarios with typical European freight wagons,the study demonstrates the effectiveness of the approach,offering a valuable tool for railway infrastructure managers to mitigate risks associated with imbalanced loads.This research contributes to the field by providing a scalable,non-invasive solution for real-time monitoring and safety enhancement in freight rail operations.展开更多
This paper establishes a method for identifying and locating dynamic loads in time-varying systems.The proposed method linearizes time-varying parameters within small time units and uses the Wilson-θ inverse analysis...This paper establishes a method for identifying and locating dynamic loads in time-varying systems.The proposed method linearizes time-varying parameters within small time units and uses the Wilson-θ inverse analysis method to solve modal loads of each order at each time step.It then uses an exhaustive method to determine the load position.Finally,it calculates the time history of the load.Simulation examples demonstrate how the number of measuring points and step size affect load identi-fication accuracy,verifying that this algorithm achieves good identification accuracy for loads under resonance conditions.Additionally,it explores how noise affects load position and recognition accuracy,while providing a solution.Simulation examples and experimental results demonstrate that the proposed method can identify both the time history and position of loads simultaneously with high identification accuracy.展开更多
Current fatigue damage analysis of various components(e.g.aircraft parts)focuses on effects of High-Cycle-Fatigue(HCF)loads while overlooking effects of Very-High-Cycle-Fatigue(VHCF)loads,thereby introducing a substan...Current fatigue damage analysis of various components(e.g.aircraft parts)focuses on effects of High-Cycle-Fatigue(HCF)loads while overlooking effects of Very-High-Cycle-Fatigue(VHCF)loads,thereby introducing a substantial bias.The crux of decreasing this bias lies in how to reasonably consider the threshold effect and nonlinear effect of VHCF loads'fatigue damage evolution.This problem is addressed in this paper from the perspective of Residual Fatigue Quality(RFQ,represent residual S-N^(*)curve and residual fatigue limitσ_(-1)^(*)).Fatigue tests were conducted on AA2024-T4 under various constant/variable-amplitude loads to reveal the evolution characteristics of RFQ and measure the equivalent fatigue damage of VHCF loads block loaded with various number of pre-loading HCF loads.Corresponding mechanisms were analysed in view of evolution of extrusions/intrusions along persistent slip bands.Theoretical analysis was conducted to reveal the relationship between RFQ and fatigue damage of VHCF loads block.Based on the above results,an isodamage curve-based fatigue damage analysis method was proposed,where bilinear-isodamage curves(consist of S-N^(*)curves intersecting at a point and corresponding_(σ-1)^(*))were adopted to consider the RFQ degeneration and its effect.This method reduces analysis bias to 1/3 of previous methods for typical variable-amplitude loads in HCF and HCF-VHCF regime.展开更多
Exploring solid propellants for electric thrusters can simplify the propellant storage and supply units in propulsion systems.In this study,polytetrafluoroethylene(PTFE),commonly used as a propellant in pulsed plasma ...Exploring solid propellants for electric thrusters can simplify the propellant storage and supply units in propulsion systems.In this study,polytetrafluoroethylene(PTFE),commonly used as a propellant in pulsed plasma thrusters,was embedded in the discharge chamber of a radio frequency ion thruster(RIT-4)to investigate the performance of an ablation-type RIT.Experimental results indicate that PTFE can decompose and ionize stably under plasma ablation within the discharge chamber,producing-C-F-and F-ion clusters that form a stable plasma.By adjusting the length of the PTFE propellant,it was observed that its decomposition rate influences the ion beam current of the thruster.Compared with xenon,PTFE generates an ion plume with a larger divergence angle,ranging from 16.05°to 22.74°at an ion beam current of 25 mA,with a floating potential distribution of 8‒56 V.Assuming that the proportion of neutral gas in the vacuum chamber matches the ion species ratio in the ion plume,thrust,specific impulse and efficiency parameters were calculated for the RIT-4 with embedded PTFE.Under 50 W RF power,the thrust was approximately 1.02 mN,the specific impulse was around 1236 s and the power-to-thrust ratio was approximately 93.14 W/mN.All results indicate that PTFE is a viable propellant for RIT,but the key is to control the rate of decomposition.展开更多
Strong tectonic activities and diagenetic evolution encourage the development of natural fractures as typical features in deep tight sandstone reservoirs of foreland thrust belts.This study focused on the Jurassic in ...Strong tectonic activities and diagenetic evolution encourage the development of natural fractures as typical features in deep tight sandstone reservoirs of foreland thrust belts.This study focused on the Jurassic in the southern Junggar Basin to comprehensively analyze the fracture characteristics and differential distribution and,ultimately,addressed the controlling mechanisms of tectonism and diagenesis on fracture effectiveness.Results revealed that the intensity of tectonic activities determines the complexity of tectonic fracture systems to create various fracture orientations when they have been stronger.The intense tectonic deformation would impact the stratum occurrence,which results in a wide range of fracture dip angles.Moreover,as the intensity of tectonic activities and deformations weakens,the scale and degree of tectonic fractures would decrease continuously.The control of tectonism on fracture effectiveness is reflected in the notable variations in the filling of multiple group fractures developed during different tectonic activity periods.Fractures formed in the early stages are more likely to be filled with minerals,causing their effectiveness to deteriorate significantly.Additionally,the strong cementation in the diagenetic evolution can cause more fractures to be filled with minerals and become barriers to fluid flow,which is detrimental to fracture effectiveness.However,dissolution is beneficial in improving their effectiveness by increasing fracture aperture and their connectivity to the pores.These insights can refine the development pattern of natural fractures and contribute to revealing the evolutionary mechanisms of fracture effectiveness in deep tight sandstone reservoirs of foreland thrust belts.展开更多
Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic c...Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic consumption and better real-time performance. In this paper,a direct thrust controller design approach for gas turbine engine based on parameter dependent model is proposed. In order to ensure the stability of DTC control system based on parameter dependent model, there are usually conservatism detects. For the purpose of reducing the conservatism in the solution process of filter and controller, an Equilibrium Manifold Expansion(EME) model with bounded parameter variation of engine is established. The design conditions of Kalman filter for discrete-time EME system are introduced, and the proposed conditions have a certain suppression effect on the input noise of the system with bounded parameter variation.The engine thrust estimator stability and H∞filtering problems are solved by the polytopic quadratic Lyapunov function based on the Linear Matrix Inequalities(LMIs). To meet the performance requirements of thrust control, the Grey Wolf Optimization(GWO) algorithm is applied to optimize the PID control parameters. The proposed method is verified on a Hardware-in-Loop(HIL) platform. The simulation results demonstrate that the DTC framework can ensure the stability of engine closed-loop system in large range deviation tests. The filter and controller solution method considering the parameter variation boundary can obtain a solution that makes the system have better performance parameters. Moreover, the proposed filter has better thrust estimation performance than the traditional Kalman filter under the condition of sensor noise. Compared with Augmented Linear Quadratic Regulator(ALQR) controller, the PID controller optimized by GWO has a faster response in simulation.展开更多
Rotating machinery in the aviation industry is increasingly embracing high speeds and miniaturization,and foil dynamic pressure gas bearing has great application value due to its self-lubrication and self-adaptive def...Rotating machinery in the aviation industry is increasingly embracing high speeds and miniaturization,and foil dynamic pressure gas bearing has great application value due to its self-lubrication and self-adaptive deformation characteristics.This study explores the interaction mechanism between micro-scale variable-sectional shearing flow with hyper-rotation speeds and a three-layer elastic foil assembly through bidirectional aero-elastic coupling in a Multi-layer Thrust Gas Foil Bearing(MTGFB).The bearing capacity of the MTGFB varies non-linearly with the decrease of gas film clearance,while the collaborative deformation of the three-layer elastic foil assembly can deal with different load conditions.As the load capacity increases,the enhanced dynamic pressure effect causes the top foil to evolve from a single arch to multiple arches.The hydrodynamic effects in the gas film evolve to form multiple segmented wedges with different pitch ratios,while the peak pressure of the gas film always occurs near the vaults of the top foil.As the rotational speed frequency approaches the natural frequency,the resonance of the gas film and elastic foil assembly system occurs,and a phase delay occurs between the pressure pulsation and the vibration of foils.The load capacity of the MTGFB also depends on the elastic moduli of the elastic foil assembly.Increasing the elastic modulus decreases the deformation amplitude of the top foil,whereas it increases those of the backboard and middle foil,increasing the load capacity.展开更多
Linear flux-switching permanent magnet motors(LFSPMs) have been proposed for long stator applications such as rail transit. However, the conventional linear permanent magnet synchronous motor(LPMSM) suffers from thrus...Linear flux-switching permanent magnet motors(LFSPMs) have been proposed for long stator applications such as rail transit. However, the conventional linear permanent magnet synchronous motor(LPMSM) suffers from thrust ripple, which degrades the motor performance. The thrust ripple in LFSPMs is mainly caused by detent force and asymmetric electromagnetic parameters, excluding external disturbances. Moreover, the 12/13 slot-pole LFSPM exhibits unique inductance characteristics, which lead to different effects on thrust ripple. First, the detent force in the LFSPM is analyzed through finite element method(FEM). In addition, new finite element(FE) models are proposed for further analysis of the cogging force in LFSPMs. Second, the unique inductance characteristics of the 12/13 slot-pole LFSPM are investigated, and then the thrust ripple caused by asymmetric electromagnetic parameters is calculated by the virtual displacement method. Third, the mathematical model considering the thrust ripple is established for the LFSPM, which provides a foundation for subsequent research on thrust ripple suppression control strategies. Finally, the thrust ripple analysis is validated by comparing FEM results, modeling simulations, and experimental data.展开更多
In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension...In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension bridge were taken as the research object.Based on the S-N curve and linear fatigue damage theory,a standard segment model was established.Accordingly,the welding position of the secondary longitudinal beam was identified as the focus fatigue point,and the stress time course calculation was done for the point.The results showed that when the vehicle mass increases from 50 t to 100 t,the amount of fatigue damage will increase by more than 5 times in the same period of time,and the increase in the vehicle mass will reduce the fatigue life of the bridge structure.The fatigue damage of bridge structures increases with the increase of vehicle speed.The increase rate of fatigue damage is greater at low speeds,and the increase rate of fatigue damage slows down at high speeds.展开更多
基金Nguyen Tat Thanh University,Ho Chi Minh City,Vietnam for supporting this study。
文摘Wing design is a critical factor in the aerodynamic performance of flapping-wing(FW)robots.Inspired by the natural wing structures of insects,bats,and birds,we explored how bio-mimetic wing vein morphologies,combined with a bio-inspired double wing clap-and-fling mechanism,affect thrust generation.This study focused on increasing vertical force and payload capacity.Through systematic experimentation with various vein configurations and structural designs,we developed innovative wings optimized for thrust production.Comprehensive tests were conducted to measure aerodynamic forces,power consumption,and wing kinematics across a range of flapping frequencies.Additionally,wings with different aspect ratios,a key factor in wing design,were fabricated and extensively evaluated.The study also examined the role of bio-inspired vein layouts on wing flexibility,a critical component in improving flight efficiency.Our findings demonstrate that the newly developed wing design led to a 20%increase in thrust,achieving up to 30 g-force(gf).This research sheds light on the clap-and-fling effect and establishes a promising framework for bio-inspired wing design,offering significant improvements in both performance and payload capacity for FW robots.
基金supported by the National Natural Science Foundation of China(Grant No.32160172)the Key Science-Technology Project of Inner Mongolia(2023KYPT0010)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN03006)the 2023 Inner Mongolia Public Institution High-level Talent Introduction Scientific Research Support Project.
文摘This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from the Dahei River prior to DNA extraction and 16S rRNA gene sequencing,it generates standard curves to convert sequencing data into absolute microbial copy numbers.The method,which is proved highly accurate(R^(2)>0.99),reveals a clear contrast between the river sites:the upstream community has not only a significantly higher total microbial load but also a completely different makeup of species compared to the downstream site.This approach effectively overcomes the limitations of relative abundance analysis,providing a powerful tool for environmental monitoring,and proposes key steps for future standardization to ensure data comparability and integration.
基金performed at large-scale research facility"Beam-M"of Bauman Moscow State Technical University following the government task by the Ministry of Science and Higher Education of the Russian Federation(No.FSFN-2024-0007).
文摘Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.
基金Supported by the National Natural Science Foundation of China(Nos.52192693,52192690,52371270,U20A20327)the National Key Research and Development Program of China(Nos.2021YFC2803400).
文摘Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common collision or impact methods.A moving load can generate flexural-gravity waves(FGWs),under the influence of which the ice sheet undergoes deformation and may even experience structural damage.Moving loads can be divided into above-ice loads and underwater loads.For the above-ice loads,we discuss the characteristics of the FGWs generated by a moving load acting on a complete ice sheet,an ice sheet with a crack,and an ice sheet with a lead of open water.For underwater loads,we discuss the influence on the ice-breaking characteristics of FGWs of the mode of motion,the geometrical features,and the trajectory of motion of the load.In addition to discussing the status of current research and the technical challenges of ice-breaking by moving loads,this paper also looks ahead to future research prospects and presents some preliminary ideas for consideration.
基金the National Natural Science Foundation of China(No.42076069)。
文摘The frontal edge of the Makran accretionary wedge is characterized by the development of multiple imbricate thrust faults trending E-W and relatively parallel.However,the mechanisms underlying their formation and the factors controlling their development remain subjects of debate.This paper,based on seismic profile analysis,employs physical simulation experiments to establish a'wedge'type subduction model.The study explores the influence of the initial wedge angle,horizontal sand layer thickness,and the presence or absence of a decollement layer on the structural styles of the thrust wedge.Experimental results indicate that as the initial wedge angle decreases from 11°to 8°,the lateral growth of the thrust wedge increases,whereas vertical growth diminishes.When the horizontal sand layer thickness is reduced from 4.5 cm to 3.0 cm,the spacing between the frontal thrusts decreases and the number of thrust faults increases.Both lateral and vertical growth are relatively reduced,resulting in a smaller thrust wedge.When a decollement layer is present,the structural style exhibits layered deformation.The decollement layer constrains the development of back thrusts and promotes the localized formation of frontal thrusts.In conclusion,the imbricate thrust faults at the frontal edge of the Makran accretionary wedge are primarily controlled by the characteristics of the wedge itself and the presence of the decollement layer.
基金supported by the National Natural Science Founion of China(U2241285).
文摘Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金supported by National Natural Science Foundation of China(No.52302472)。
文摘The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFC2201001)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)+1 种基金the National Natural Science Foundation of China(Grant Nos.12105373,12105374,and 11927812)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.GJJ2402105).
文摘Accurate thrust assessment is crucial for characterizing the performance of micro-thrusters.This paper presents a comprehensive evaluation of the thrust generated by a needle-type indium field emission electric propulsion(In-FEEP)micro-thruster using three methods based on a pendulum:direct thrust measurement,indirect plume momentum transfer and beam current diagnostics.The experimental setup utilized capacitive displacement sensors for force detection and a voice coil motor as a feedback actuator,achieving a resolution better than 0.1μN.Key performance factors such as ionization and plume divergence of ejected charged particles were also examined.The study reveals that the high applied voltage induces significant electrostatic interference,becoming the dominant source of error in direct thrust measurements.Beam current diagnostics and indirect plume momentum measurements were conducted simultaneously,showing strong agreement within a deviation of less than 0.2N across the operational thrust range.The results from all three methods are consistent within the error margins,verifying the reliability of the indirect measurement approach and the theoretical thrust model based on the electrical parameters of In-FEEP.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52174092 and 51904290)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220157).
文摘In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances.
基金funded by the National Natural Science Foundation of China(No.U21B6001)。
文摘This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the interpretability of impulsive thrust strategy by integrating it within the framework of differential game in traditional continuous systems.First,this paper introduces an impulse-like constraint,with periodical changes in thrust amplitude,to characterize the impulsive thrust control.Then,the game with the impulse-like constraint is converted into the two-point boundary value problem,which is solved by the combined shooting and deep learning method proposed in this paper.Deep learning and numerical optimization are employed to obtain the guesses for unknown terminal adjoint variables and the game terminal time.Subsequently,the accurate values are solved by the shooting method to yield the optimal continuous thrust strategy with the impulse-like constraint.Finally,the shooting method is iteratively employed at each impulse decision moment to derive the impulsive thrust strategy guided by the optimal continuous thrust strategy.Numerical examples demonstrate the convergence of the combined shooting and deep learning method,even if the strongly nonlinear impulse-like constraint is introduced.The effect of the impulsive thrust strategy guided by the optimal continuous thrust strategy is also discussed.
基金CNPq (Brazilian Ministry of Science and Technology Agency), CAPES (Higher Education Improvement Agency), FAPESP (São Paulo Research Foundation) for financial support under grant #2022/130451, VALE Catedra Under Railfinancially supported by Base Funding-UIDB/04708/2020 with https://doi.org/https://doi.org/10.54499/UIDB/04708/2020 and Programmatic Funding-UIDP/04708/2020 with https://doi. org/https://doi.org/10.54499/UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES (PIDDAC)
文摘Imbalanced loads in freight railway vehicles pose significant risks to vehicle running safety as well as track integrity,increasing the likelihood of derailments and increasing track wear rate.This study presents a robust machine learning-based methodology designed to detect and classify transverse imbalances in freight vehicles using dynamic rail responses.The proposed approach employs wayside monitoring systems with accelerometers and strain gauges,integrating advanced feature extraction methods,including principal component analysis,log-mel spectrograms,and multi-feature-based techniques.The methodology enhances detection accuracy by normalizing features to eliminate environmental and operational variations and employing data fusion for sensitive index creation.It is capable of distinguishing between different severity levels of imbalanced loads across various wagon types.By simulating scenarios with typical European freight wagons,the study demonstrates the effectiveness of the approach,offering a valuable tool for railway infrastructure managers to mitigate risks associated with imbalanced loads.This research contributes to the field by providing a scalable,non-invasive solution for real-time monitoring and safety enhancement in freight rail operations.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘This paper establishes a method for identifying and locating dynamic loads in time-varying systems.The proposed method linearizes time-varying parameters within small time units and uses the Wilson-θ inverse analysis method to solve modal loads of each order at each time step.It then uses an exhaustive method to determine the load position.Finally,it calculates the time history of the load.Simulation examples demonstrate how the number of measuring points and step size affect load identi-fication accuracy,verifying that this algorithm achieves good identification accuracy for loads under resonance conditions.Additionally,it explores how noise affects load position and recognition accuracy,while providing a solution.Simulation examples and experimental results demonstrate that the proposed method can identify both the time history and position of loads simultaneously with high identification accuracy.
基金the support from National Key Laboratory of Strength and Structural Integrity independent research project“Failure law and fatigue life prediction method of Metal Materials based on Material property degradation”。
文摘Current fatigue damage analysis of various components(e.g.aircraft parts)focuses on effects of High-Cycle-Fatigue(HCF)loads while overlooking effects of Very-High-Cycle-Fatigue(VHCF)loads,thereby introducing a substantial bias.The crux of decreasing this bias lies in how to reasonably consider the threshold effect and nonlinear effect of VHCF loads'fatigue damage evolution.This problem is addressed in this paper from the perspective of Residual Fatigue Quality(RFQ,represent residual S-N^(*)curve and residual fatigue limitσ_(-1)^(*)).Fatigue tests were conducted on AA2024-T4 under various constant/variable-amplitude loads to reveal the evolution characteristics of RFQ and measure the equivalent fatigue damage of VHCF loads block loaded with various number of pre-loading HCF loads.Corresponding mechanisms were analysed in view of evolution of extrusions/intrusions along persistent slip bands.Theoretical analysis was conducted to reveal the relationship between RFQ and fatigue damage of VHCF loads block.Based on the above results,an isodamage curve-based fatigue damage analysis method was proposed,where bilinear-isodamage curves(consist of S-N^(*)curves intersecting at a point and corresponding_(σ-1)^(*))were adopted to consider the RFQ degeneration and its effect.This method reduces analysis bias to 1/3 of previous methods for typical variable-amplitude loads in HCF and HCF-VHCF regime.
基金supported by the National Key R&D Program of China(No.2021YFC2202800)the Youth Innovation Promotion Association CAS(No.2023022)Institute of Mechanics Outstanding Young Talent Training Program(No.E1Z1030201).
文摘Exploring solid propellants for electric thrusters can simplify the propellant storage and supply units in propulsion systems.In this study,polytetrafluoroethylene(PTFE),commonly used as a propellant in pulsed plasma thrusters,was embedded in the discharge chamber of a radio frequency ion thruster(RIT-4)to investigate the performance of an ablation-type RIT.Experimental results indicate that PTFE can decompose and ionize stably under plasma ablation within the discharge chamber,producing-C-F-and F-ion clusters that form a stable plasma.By adjusting the length of the PTFE propellant,it was observed that its decomposition rate influences the ion beam current of the thruster.Compared with xenon,PTFE generates an ion plume with a larger divergence angle,ranging from 16.05°to 22.74°at an ion beam current of 25 mA,with a floating potential distribution of 8‒56 V.Assuming that the proportion of neutral gas in the vacuum chamber matches the ion species ratio in the ion plume,thrust,specific impulse and efficiency parameters were calculated for the RIT-4 with embedded PTFE.Under 50 W RF power,the thrust was approximately 1.02 mN,the specific impulse was around 1236 s and the power-to-thrust ratio was approximately 93.14 W/mN.All results indicate that PTFE is a viable propellant for RIT,but the key is to control the rate of decomposition.
基金supported by the CNPC Innovation Found(No.2023DQ02-0103)National Major Science and Technology Projects of China(No.2016ZX05003-001).
文摘Strong tectonic activities and diagenetic evolution encourage the development of natural fractures as typical features in deep tight sandstone reservoirs of foreland thrust belts.This study focused on the Jurassic in the southern Junggar Basin to comprehensively analyze the fracture characteristics and differential distribution and,ultimately,addressed the controlling mechanisms of tectonism and diagenesis on fracture effectiveness.Results revealed that the intensity of tectonic activities determines the complexity of tectonic fracture systems to create various fracture orientations when they have been stronger.The intense tectonic deformation would impact the stratum occurrence,which results in a wide range of fracture dip angles.Moreover,as the intensity of tectonic activities and deformations weakens,the scale and degree of tectonic fractures would decrease continuously.The control of tectonism on fracture effectiveness is reflected in the notable variations in the filling of multiple group fractures developed during different tectonic activity periods.Fractures formed in the early stages are more likely to be filled with minerals,causing their effectiveness to deteriorate significantly.Additionally,the strong cementation in the diagenetic evolution can cause more fractures to be filled with minerals and become barriers to fluid flow,which is detrimental to fracture effectiveness.However,dissolution is beneficial in improving their effectiveness by increasing fracture aperture and their connectivity to the pores.These insights can refine the development pattern of natural fractures and contribute to revealing the evolutionary mechanisms of fracture effectiveness in deep tight sandstone reservoirs of foreland thrust belts.
基金supported by the National Natural Science Foundation of China(No.52372371)the Science Center for Gas Turbine Project,China(Nos.P2022-B-V-002-001,P2022-B-V-001-001).
文摘Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic consumption and better real-time performance. In this paper,a direct thrust controller design approach for gas turbine engine based on parameter dependent model is proposed. In order to ensure the stability of DTC control system based on parameter dependent model, there are usually conservatism detects. For the purpose of reducing the conservatism in the solution process of filter and controller, an Equilibrium Manifold Expansion(EME) model with bounded parameter variation of engine is established. The design conditions of Kalman filter for discrete-time EME system are introduced, and the proposed conditions have a certain suppression effect on the input noise of the system with bounded parameter variation.The engine thrust estimator stability and H∞filtering problems are solved by the polytopic quadratic Lyapunov function based on the Linear Matrix Inequalities(LMIs). To meet the performance requirements of thrust control, the Grey Wolf Optimization(GWO) algorithm is applied to optimize the PID control parameters. The proposed method is verified on a Hardware-in-Loop(HIL) platform. The simulation results demonstrate that the DTC framework can ensure the stability of engine closed-loop system in large range deviation tests. The filter and controller solution method considering the parameter variation boundary can obtain a solution that makes the system have better performance parameters. Moreover, the proposed filter has better thrust estimation performance than the traditional Kalman filter under the condition of sensor noise. Compared with Augmented Linear Quadratic Regulator(ALQR) controller, the PID controller optimized by GWO has a faster response in simulation.
基金the financial support from the National Natural Science Foundation of China(No.52206091)the Aeronautical Science Foundation of China(No.201928052008)the Natural Science Foundation of Jiangsu Province,China(No.BK20210303)。
文摘Rotating machinery in the aviation industry is increasingly embracing high speeds and miniaturization,and foil dynamic pressure gas bearing has great application value due to its self-lubrication and self-adaptive deformation characteristics.This study explores the interaction mechanism between micro-scale variable-sectional shearing flow with hyper-rotation speeds and a three-layer elastic foil assembly through bidirectional aero-elastic coupling in a Multi-layer Thrust Gas Foil Bearing(MTGFB).The bearing capacity of the MTGFB varies non-linearly with the decrease of gas film clearance,while the collaborative deformation of the three-layer elastic foil assembly can deal with different load conditions.As the load capacity increases,the enhanced dynamic pressure effect causes the top foil to evolve from a single arch to multiple arches.The hydrodynamic effects in the gas film evolve to form multiple segmented wedges with different pitch ratios,while the peak pressure of the gas film always occurs near the vaults of the top foil.As the rotational speed frequency approaches the natural frequency,the resonance of the gas film and elastic foil assembly system occurs,and a phase delay occurs between the pressure pulsation and the vibration of foils.The load capacity of the MTGFB also depends on the elastic moduli of the elastic foil assembly.Increasing the elastic modulus decreases the deformation amplitude of the top foil,whereas it increases those of the backboard and middle foil,increasing the load capacity.
基金partly supported by the CAS Project for Young Scientists in Basic Research under Grant YSBR-045the National Natural Science Foundation of China under Grant 52307071。
文摘Linear flux-switching permanent magnet motors(LFSPMs) have been proposed for long stator applications such as rail transit. However, the conventional linear permanent magnet synchronous motor(LPMSM) suffers from thrust ripple, which degrades the motor performance. The thrust ripple in LFSPMs is mainly caused by detent force and asymmetric electromagnetic parameters, excluding external disturbances. Moreover, the 12/13 slot-pole LFSPM exhibits unique inductance characteristics, which lead to different effects on thrust ripple. First, the detent force in the LFSPM is analyzed through finite element method(FEM). In addition, new finite element(FE) models are proposed for further analysis of the cogging force in LFSPMs. Second, the unique inductance characteristics of the 12/13 slot-pole LFSPM are investigated, and then the thrust ripple caused by asymmetric electromagnetic parameters is calculated by the virtual displacement method. Third, the mathematical model considering the thrust ripple is established for the LFSPM, which provides a foundation for subsequent research on thrust ripple suppression control strategies. Finally, the thrust ripple analysis is validated by comparing FEM results, modeling simulations, and experimental data.
文摘In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension bridge were taken as the research object.Based on the S-N curve and linear fatigue damage theory,a standard segment model was established.Accordingly,the welding position of the secondary longitudinal beam was identified as the focus fatigue point,and the stress time course calculation was done for the point.The results showed that when the vehicle mass increases from 50 t to 100 t,the amount of fatigue damage will increase by more than 5 times in the same period of time,and the increase in the vehicle mass will reduce the fatigue life of the bridge structure.The fatigue damage of bridge structures increases with the increase of vehicle speed.The increase rate of fatigue damage is greater at low speeds,and the increase rate of fatigue damage slows down at high speeds.