A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with re...A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with receiver antenna selection (ZFBF-AS) achieves considerable throughput improvement over the ZFBF scheme with single receiver antenna. The results also show that, with multi-user diversity, the ZFBF-AS scheme approaches the throughput performance of the ZFBF scheme using all receiver antennas (ZFBF-WO-AS) when the base station adopts semi-orthogonal user selection (SUS) algorithm, and achieves larger throughput when the base station adopts the Round-robin scheduling algorithm. Compared with ZFBF-WO-AS, the proposed ZFBF-AS scheme can reduce the cost of user equipments and the channel state information requirement at the transmitter (CSIT) as well as the multiuser scheduling complexity at the transmitter.展开更多
Efficient anti-jamming rateless coding based on cognitive Orthogonal Frequency Division Multiplexing (OFDM) modulation in Cognitive Radio Network (CRN) is mainly discussed. Rateless coding with small redundancy and lo...Efficient anti-jamming rateless coding based on cognitive Orthogonal Frequency Division Multiplexing (OFDM) modulation in Cognitive Radio Network (CRN) is mainly discussed. Rateless coding with small redundancy and low complexity is presented, and the optimal design methods of building rateless codes are also proposed. In CRN, anti-jamming rateless coding could recover the lost packets in parallel channels of cognitive OFDM, thus it protects Secondary Users (SUs) from the in-terference by Primary Users (PUs) efficiently. Frame Error Rate (FER) and throughput performance of SU employing anti-jamming rateless coding are analyzed in detail. Performance comparison between rateless coding and piecewise coding are also presented. It is shown that, anti-jamming rateless coding provides low FER and Word Error Rate (WER) performance with uniform sub-channel selection. Meanwhile, it is also verified that, in higher jamming rate and longer code redundancy scenario, rateless coding method could achieve better FER and throughput performance than another anti-jamming coding schemes.展开更多
基金supported by the National Natural Science Foundation of China (60496314)the National High Technology Research and Development Program of China (2006AA01Z266).
文摘A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with receiver antenna selection (ZFBF-AS) achieves considerable throughput improvement over the ZFBF scheme with single receiver antenna. The results also show that, with multi-user diversity, the ZFBF-AS scheme approaches the throughput performance of the ZFBF scheme using all receiver antennas (ZFBF-WO-AS) when the base station adopts semi-orthogonal user selection (SUS) algorithm, and achieves larger throughput when the base station adopts the Round-robin scheduling algorithm. Compared with ZFBF-WO-AS, the proposed ZFBF-AS scheme can reduce the cost of user equipments and the channel state information requirement at the transmitter (CSIT) as well as the multiuser scheduling complexity at the transmitter.
基金Supported by the National Natural Science Foundation of China (No. 60972039)the Scientific Planning Project of Zhejiang Province entitled "Research and Development of Smart Antenna for the Next Generation Mobile Com-munications Based on TDD"the Young Staff Startup Research Foundation of Hangzhou Dianzi University entitled "Research on Key Technologies of Resource Allocation in Cognitive Radio Networks Based on Multicarrier Modulation"
文摘Efficient anti-jamming rateless coding based on cognitive Orthogonal Frequency Division Multiplexing (OFDM) modulation in Cognitive Radio Network (CRN) is mainly discussed. Rateless coding with small redundancy and low complexity is presented, and the optimal design methods of building rateless codes are also proposed. In CRN, anti-jamming rateless coding could recover the lost packets in parallel channels of cognitive OFDM, thus it protects Secondary Users (SUs) from the in-terference by Primary Users (PUs) efficiently. Frame Error Rate (FER) and throughput performance of SU employing anti-jamming rateless coding are analyzed in detail. Performance comparison between rateless coding and piecewise coding are also presented. It is shown that, anti-jamming rateless coding provides low FER and Word Error Rate (WER) performance with uniform sub-channel selection. Meanwhile, it is also verified that, in higher jamming rate and longer code redundancy scenario, rateless coding method could achieve better FER and throughput performance than another anti-jamming coding schemes.