期刊文献+
共找到12,021篇文章
< 1 2 250 >
每页显示 20 50 100
Ecological Dynamics of a Logistic Population Model with Impulsive Age-selective Harvesting
1
作者 DAI Xiangjun JIAO Jianjun 《应用数学》 北大核心 2026年第1期72-79,共8页
In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy... In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting. 展开更多
关键词 The logistic population model Selective harvesting Asymptotic stability EXTINCTION
在线阅读 下载PDF
基于logistic回归、决策树和神经网络构建成人慢性肾脏病合并活动性结核病的风险预测模型与应用
2
作者 陈德盼 李翔 +5 位作者 张开义 李敏 夏加伟 高楚伊 杨亚涛 张乐 《中国防痨杂志》 北大核心 2026年第1期94-105,共12页
目的:探究logistic回归模型、决策树模型和神经网络模型在预测慢性肾脏病(chronic kidney disease,CKD)患者合并活动性结核病中的应用价值。方法:回顾性分析2021年1月至2024年1月昆明市第三人民医院收治的CKD患者392例,其中合并活动性... 目的:探究logistic回归模型、决策树模型和神经网络模型在预测慢性肾脏病(chronic kidney disease,CKD)患者合并活动性结核病中的应用价值。方法:回顾性分析2021年1月至2024年1月昆明市第三人民医院收治的CKD患者392例,其中合并活动性结核病患者266例,为观察组,未合并活动性结核病患者126例,为对照组。收集两组患者的临床资料及实验室指标,采用logistic回归、决策树和神经网络三种模型筛选影响因素并构建风险预测模型,通过受试者工作特征(receiver operating characteristic,ROC)曲线比较模型的预测效能。结果:logistic回归模型的ROC曲线下面积(AUC)为0.726(95%CI:0.676~0.777),敏感度为45.1%,特异度为92.1%,同时识别出饮酒、咯血、低淋巴细胞计数、低红细胞压积、高尿酸、高纤维蛋白原降解产物和低白细胞介素10(IL-10)水平为独立预测因子(P值均<0.05)。决策树模型的AUC为0.825(95%CI:0.783~0.868),敏感度为62.0%,特异度为82.5%,该模型以纤维蛋白原降解产物为首要分层变量,进一步纳入CD4^(+)T淋巴细胞、淋巴细胞计数、红细胞压积、食欲不振和尿酸等变量构建决策路径。神经网络模型的预测效能最优,其AUC为0.876(95%CI:0.843~0.909),敏感度为60.9%,特异度高达98.4%,其特征重要性分析显示,IL-10、红细胞压积、纤维蛋白原降解产物和CD4^(+)T淋巴细胞为排名前4的预测因子。结论:神经网络模型对CKD患者合并活动性结核病的预测能力最佳。本研究识别出的关键预测因子,如低淋巴细胞计数、低CD4^(+)T淋巴细胞计数、高纤维蛋白原降解产物等有助于界定筛查重点人群。三种模型优势互补,可协同应用于临床:对于存在免疫功能抑制(如淋巴细胞、CD4^(+)T淋巴细胞计数低下)、凝血纤溶激活(如纤维蛋白原降解产物升高)及咯血等特征的CKD患者,应加强结核病筛查。 展开更多
关键词 结核 肾脏病学 logistic模型 决策树 神经网络(计算机) 预测
暂未订购
Comparative Study of the Malthusian Population Model and the Logistic Population Model for Bangladesh
3
作者 Md. Showkat Akber Khandoker Nasrin Ismet Ara Md. Sabbir Alam 《Applied Mathematics》 2025年第2期169-182,共14页
Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming year... Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming years may be useful for national planning. To predict Bangladesh’s future population, this study compares the estimated populations of two popular population models, the Malthusian and the logistic population models, with the country’s census population published by BBS. We also tried to find out which model gives a better approximation for forecasting the past, present, and future population between these two models. 展开更多
关键词 Malthusian Population model logistic Population model Population Growth Carrying Capacity
在线阅读 下载PDF
A new damage constitutive model for rock strain softening based on an improved Logistic function
4
作者 GUO Yun-peng LIU Dong-qiao +1 位作者 YANG Sheng-kai LI Jie-yu 《Journal of Central South University》 2025年第8期3070-3094,共25页
This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening ... This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening and damage process.Simultaneously,it established a constitutive model capable of describing the entire process of rock pre-peak compaction and post-peak strain softening deformation,considering the nonlinear effects of the initial compaction stage of rocks,combined with damage mechanics theory and effective medium theory.In addition,this research verified the rationality of the constructed damage constitutive model using results from uniaxial and conventional triaxial compression tests on Miluo granite,yellow sandstone,mudstone,and glutenite.The results indicate that based on the improved Logistic function,the theoretical damage model accurately describes the entire evolution of damage characteristics during rock compression deformation,from maintenance through gradual onset,accelerated development to deceleration and termination,in a simple and unified expression.At the same time,the constructed constitutive model can accurately simulate the stress-strain process of different rock types under uniaxial and conventional triaxial compression,and the theoretical model curve closely aligns with experimental data.Compared to existing constitutive models,the proposed model has significant advantages.The damage model parameters a,r and β have clear physical meanings and interact competitively,where the three parameters collectively determine the shape of the theoretical stress−strain curve. 展开更多
关键词 rock mechanics strain softening improved logistic function S-shaped model damage evolution constitutive model
在线阅读 下载PDF
Modeling of CO_(2)Emission for Light-Duty Vehicles:Insights from Machine Learning in a Logistics and Transportation Framework
5
作者 Sahbi Boubaker Sameer Al-Dahidi Faisal S.Alsubaei 《Computer Modeling in Engineering & Sciences》 2025年第6期3583-3614,共32页
The transportation and logistics sectors are major contributors to Greenhouse Gase(GHG)emissions.Carbon dioxide(CO_(2))from Light-Duty Vehicles(LDVs)is posing serious risks to air quality and public health.Understandi... The transportation and logistics sectors are major contributors to Greenhouse Gase(GHG)emissions.Carbon dioxide(CO_(2))from Light-Duty Vehicles(LDVs)is posing serious risks to air quality and public health.Understanding the extent of LDVs’impact on climate change and human well-being is crucial for informed decisionmaking and effective mitigation strategies.This study investigates the predictability of CO_(2)emissions from LDVs using a comprehensive dataset that includes vehicles from various manufacturers,their CO_(2)emission levels,and key influencing factors.Specifically,sixMachine Learning(ML)algorithms,ranging fromsimple linearmodels to complex non-linear models,were applied under identical conditions to ensure a fair comparison and their performance metrics were calculated.The obtained results showed a significant influence of variables such as engine size on CO_(2)emissions.Although the six algorithms have provided accurate forecasts,the Linear Regression(LR)model was found to be sufficient,achieving a Mean Absolute Percentage Error(MAPE)below 0.90%and a Coefficient of Determination(R2)exceeding 99.7%.These findings may contribute to a deeper understanding of LDVs’role in CO_(2)emissions and offer actionable insights for reducing their environmental impact.In fact,vehicle manufacturers can leverage these insights to target key emission-related factors,while policymakers and stakeholders in logistics and transportation can use the models to estimate the CO_(2)emissions of new vehicles before their market deployment or to project future emissions from current and expected LDV fleets. 展开更多
关键词 CO_(2)emission machine learning modeling prediction performance metrics light-duty vehicles climate change transportation and logistics
在线阅读 下载PDF
Logistic regression-based risk prediction of aortic adverse remodeling following thoracic endovascular aortic repair in patients with aortic dissection
6
作者 Lian-Feng Wang Hong-Jiang Zhu +2 位作者 Cong Wang Feng Yan Chang-Zhen Qu 《World Journal of Cardiology》 2025年第12期94-102,共9页
BACKGROUND Aortic adverse remodeling remains a critical complication following thoracic endovascular aortic repair(TEVAR)for Stanford type B aortic dissection(TBAD),significantly impacting long-term survival.Accurate ... BACKGROUND Aortic adverse remodeling remains a critical complication following thoracic endovascular aortic repair(TEVAR)for Stanford type B aortic dissection(TBAD),significantly impacting long-term survival.Accurate risk prediction is essential for optimized clinical management.AIM To develop and validate a logistic regression-based risk prediction model for aortic adverse remodeling following TEVAR in patients with TBAD.METHODS This retrospective observational cohort study analyzed 140 TBAD patients undergoing TEVAR at a tertiary center(2019–2024).Based on European guidelines,patients were categorized into adverse remodeling(aortic growth rate>2.9 mm/year,n=45)and favorable remodeling groups(n=95).Comprehensive variables(clinical/imaging/surgical)were analyzed using multivariable logistic regression to develop a predictive model.Model performance was assessed via receiver operating characteristic-area under the curve(AUC)and Hosmer-Lemeshow tests.RESULTS Multivariable analysis identified several strong independent predictors of negative aortic remodeling.Larger false lumen diameter at the primary entry tear[odds ratio(OR):1.561,95%CI:1.197–2.035;P=0.001]and patency of the false lumen(OR:5.639,95%CI:4.372-8.181;P=0.004)were significant risk factors.False lumen involvement extending to the thoracoabdominal aorta was identified as the strongest predictor,significantly increasing the risk of adverse remodeling(OR:11.751,95%CI:9.841-15.612;P=0.001).Conversely,false lumen involvement confined to the thoracic aorta demonstrated a significant protective effect(OR:0.925,95%CI:0.614–0.831;P=0.015).The prediction model exhibited excellent discrimination(AUC=0.968)and calibration(Hosmer-Lemeshow P=0.824).CONCLUSION This validated risk prediction model identifies aortic adverse remodeling with high accuracy using routinely available clinical parameters.False lumen involvement thoracoabdominal aorta is the strongest predictor(11.751-fold increased risk).The tool enables preoperative risk stratification to guide tailored TEVAR strategies and improve long-term outcomes. 展开更多
关键词 Thoracic endovascular aortic repair Aortic dissection Adverse remodeling Risk prediction model False lumen Thoracoabdominal involvement Endovascular repair logistic regression
暂未订购
Impulsive Logistic Model for Gray Leaf Spots Caused by Cercospora zeae-maydi 被引量:1
7
作者 王新一 李丽梅 李海春 《Plant Diseases and Pests》 CAS 2010年第3期9-10,43,共3页
[ Objectlve] Impulsive Logistic Model was used to simulate epidemic process of Gray Leaf Spots caused by C. zeae-maydi. [ Method] The pathogen was inoculated in different maize varieties, and the incidence were observ... [ Objectlve] Impulsive Logistic Model was used to simulate epidemic process of Gray Leaf Spots caused by C. zeae-maydi. [ Method] The pathogen was inoculated in different maize varieties, and the incidence were observed and recorded. Impulsive Logistic Model was used to simulate the development process of the disease, which was compared with actual incidence. [ Result] Artificial inoculation tests showed that impulsive Logistic Model could reflect time dynamic of C. zeae-maydi. Through derivation, exponential growth phase was from maize seedling emergence to eady July in each year, logistic phase was from early July to late August, terminal phase was from eady September to the end of maize growth stage. [ Conclusion] The derivation result from model was consistent with the development biological laws of C. zeae-maydi. 展开更多
关键词 C. zeae-maydi Impulsive logistic model Epidemic phase Control time
在线阅读 下载PDF
基于LASSO-Logistic回归的儿童重症腺病毒肺炎死亡的临床预警模型构建与验证 被引量:1
8
作者 段晴晴 李双双 赵婷 《中国急救复苏与灾害医学杂志》 2025年第5期650-653,666,共5页
目的构建基于LASSO-Logistic回归的儿童重症腺病毒肺炎(SAP)死亡的临床预警模型,并进行验证。方法选取2021年5月—2023年4月商洛市中心医院儿科收治的115例SAP患儿,以二八定律随机分为训练集(n=92)与验证集(n=23),随访至患儿出院,以患... 目的构建基于LASSO-Logistic回归的儿童重症腺病毒肺炎(SAP)死亡的临床预警模型,并进行验证。方法选取2021年5月—2023年4月商洛市中心医院儿科收治的115例SAP患儿,以二八定律随机分为训练集(n=92)与验证集(n=23),随访至患儿出院,以患儿预后将其分为存活组与死亡组。对比训练集死亡组与存活组的临床资料,采用LASSO回归法筛选预测变量,构建并验证SAP患儿死亡的预测模型。结果随访至出院,训练集92例患儿中病死率为32.61%(30/92),验证集23例患儿中病死率为30.43%(7/23)。训练集死亡组入儿童重症监护室(PICU)后发热时间长于存活组(t=7.953,P<0.05),训练集死亡组合并先天性心脏病、并发急性呼吸窘迫综合征(ARDS)、白细胞介素-6(IL-6)≥100 ng/L、氧合指数<300 mm/Hg、乳酸脱氢酶(LDH)≥1500 U/L、铁蛋白≥1000μg/L、肺叶受累个数≥5个、有严重肺外并发症比例高于存活组(均P<0.05)。根据LASSO回归法筛选的4个结果变量与预测变量构建Logistic回归模型,结果表明,严重肺外并发症、IL-6、并发ARDS、合并先天性心脏病为SAP患儿死亡的危险因素(均P<0.05)。训练集列线图模型预测SAP患儿死亡的灵敏度为86.67%(95%CI:0.683~0.956),特异度为93.55%(95%CI:0.835~0.979),曲线下面积(AUC)为0.904(95%CI:0.837~0.968);验证集列线图模型预测SAP患儿死亡的灵敏度为85.71%(95%CI:0.420~0.992),特异度为87.50%(95%CI:0.604~0.978),AUC为0.887(95%CI:0.812~0.943)。结论IL-6、合并先天性心脏病、严重肺外并发症、并发ARDS与SAP患儿死亡有关,基于上述指标构建列线图预测模型有助于早期甄别SAP患儿死亡风险。 展开更多
关键词 重症腺病毒肺炎 LASSO回归 logistic回归 儿童 死亡 预测模型
暂未订购
基于血小板参数及白细胞衍生炎症指标的Logistic模型对下肢骨科术后患者下肢深静脉血栓发生风险的预测价值 被引量:1
9
作者 张腾飞 王占启 +3 位作者 王晓娜 何楠 孙明耀 陈忠 《陕西医学杂志》 2025年第6期780-784,共5页
目的:探讨基于血小板参数及白细胞衍生炎症指标的Logistic模型对下肢骨科术后患者下肢深静脉血栓(LEDVT)发生风险的预测价值。方法:选取接受下肢骨科手术的患者208例,根据是否发生LEDVT分为LEDVT组(57例)和非LEDVT组(151例)。收集患者... 目的:探讨基于血小板参数及白细胞衍生炎症指标的Logistic模型对下肢骨科术后患者下肢深静脉血栓(LEDVT)发生风险的预测价值。方法:选取接受下肢骨科手术的患者208例,根据是否发生LEDVT分为LEDVT组(57例)和非LEDVT组(151例)。收集患者临床资料,骨科手术后检测患者血小板计数(PLT)、血小板分布宽度(PDW)、血小板平均体积(MPV),计算中性粒细胞与淋巴细胞比值(NLR)、单核细胞与淋巴细胞比值(MLR)、血小板与淋巴细胞比值(PLR)。比较两组一般资料、血小板参数和白细胞衍生炎症指标;分析血小板参数、白细胞衍生炎症指标与LEDVT发生的相关性;Logistic回归分析骨科手术后LEDVT发生的危险因素;受试者工作特征(ROC)曲线评估血小板参数及白细胞衍生炎症指标对LEDVT发生的预测价值。结果:LEDVT组患者年龄、体重指数(BMI)、吸烟比例高于非LEDVT组(均P<0.05)。LEDVT组血小板参数PLT、PDW、MPV高于非LEDVT组,白细胞衍生炎症指标NLR、MLR、PLR高于非LEDVT组(均P<0.05)。血小板参数PLT、PDW、MPV及白细胞衍生炎症指标NLR、MLR、PLR与LEDVT发生呈正相关(均P<0.05)。Logistic回归分析结果显示,年龄、吸烟、PLT、PDW、NLR、MLR为骨科手术后LEDVT发生的危险因素(均P<0.05)。PLT、PDW、NLR、MLR预测LEDVT发生的曲线下面积(AUC)分别为0.706、0.744、0.737、0.693。基于上述危险因素建立的Logistic模型预测LEDVT发生风险的AUC为0.940。结论:血小板参数及白细胞衍生炎症指标与LEDVT发生相关,对LEDVT发生风险具有一定预测价值,采用Logistic模型预测价值更高。 展开更多
关键词 下肢深静脉血栓 血小板参数 白细胞 炎症指标 logistic模型 预测价值
暂未订购
基于频率比和Logistic回归耦合模型的台风暴雨型滑坡危险性评价
10
作者 孙强 史绪山 +1 位作者 张泰丽 史洪峰 《应用基础与工程科学学报》 北大核心 2025年第5期1262-1272,共11页
台风暴雨在浙江省泰顺地区频繁引起滑坡,造成巨大经济损失和人员伤亡,准确评价滑坡危险性并定量解释孕灾因子与滑坡危险性关系,对于滑坡风险管控有重要意义.以2016年“莫兰蒂”台风期间浙江泰顺县1 241处滑坡为研究对象,分析了滑坡发育... 台风暴雨在浙江省泰顺地区频繁引起滑坡,造成巨大经济损失和人员伤亡,准确评价滑坡危险性并定量解释孕灾因子与滑坡危险性关系,对于滑坡风险管控有重要意义.以2016年“莫兰蒂”台风期间浙江泰顺县1 241处滑坡为研究对象,分析了滑坡发育分布规律,选取坡度、坡向、地形曲率、工程地质岩组和降雨等12项评价因子构建危险性评价体系.通过频率比(FR)分析实现孕灾因子数值的单调化处理,结合Logistic回归建立了耦合模型并开展了泰顺县滑坡危险性评价.结果显示:泰顺县台风暴雨型滑坡以小型土质滑坡为主,频率比和Logistic回归耦合模型预测率曲线(ROC)值为0.955.泰顺县滑坡极高/高危险区主要分布在竹里镇、司前镇和乌岩岭自然保护区等西北部地区.Logistic回归系数显示地形曲率、坡度、坡向和植被类型对滑坡危险性影响最大,其解释了孕灾因子数值变化对滑坡发生概率的影响.如地形曲率值与滑坡危险性为负相关,Logistic回归系数为3.479,FR分析揭示曲率值每降低0.1,滑坡发生的概率将增加24.4%. 展开更多
关键词 台风暴雨型滑坡 危险性评价 频率比 logistic回归 耦合模型
原文传递
基于LASSO-Logistic回归分析构建风险列线图模型评估妊娠糖尿病孕妇早期肾损伤的风险
11
作者 高海燕 王国华 《中国妇产科临床杂志》 北大核心 2025年第3期235-238,共4页
目的基于LASSO-logistic回归分析构建妊娠糖尿病(GDM)孕妇早期肾损伤风险列线图模型,并评估该列线图模型预测效能。方法对2022年1月至2023年12月于连云港市第一人民医院产检并在孕24周筛查出的125例GDM孕妇进行病例对照研究。依据是否... 目的基于LASSO-logistic回归分析构建妊娠糖尿病(GDM)孕妇早期肾损伤风险列线图模型,并评估该列线图模型预测效能。方法对2022年1月至2023年12月于连云港市第一人民医院产检并在孕24周筛查出的125例GDM孕妇进行病例对照研究。依据是否并发早期肾损伤分为发生组和未发生组,并从医院电子病例系统调取入组孕妇临床资料。LASSO-Logistic回归分析法筛选影响GDM孕妇早期肾损伤发生危险因素,据此建立列线图模型,并评估列线图模型的预测效能。结果发生组伴高血压疾病比例、尿微量白蛋白/尿肌酐及同型半胱氨酸、血尿酸、血肌酐、胱抑素C水平均高于未发生组,差异有统计学意义(P<0.05)。LASSO-Logistic回归分析结果显示,有高血压疾病(OR=1.722)、尿微量白蛋白/尿肌酐(OR=1.899)、同型半胱氨酸(OR=1.774)、血尿酸(OR=1.790)、血肌酐(OR=1.794)、胱抑素C(OR=1.824)是影响GDM孕妇并发早期肾损伤的独立危险因素(P<0.05)。基于上述危险因素构建GDM孕妇并发早期肾损伤风险列线图模型,结果显示:列线图模型实测值与预测值基本一致(χ^(2)=1.751,P=0.284),C-index指数为0.895(95%CI:0.825~0.972),具有临床有效性。结论基于LASSO-Logistic回归分析筛选出影响GDM孕妇并发早期肾损伤的危险因素(高血压、尿微量白蛋白/尿肌酐、同型半胱氨酸、血尿酸、血肌酐、胱抑素C)构建的列线图模型预测效能较高,具有临床有效性。 展开更多
关键词 妊娠糖尿病 早期肾损伤 LASSO-logistic回归分析 列线图模型
原文传递
基于函数型Logistic模型的企业财务困境预警研究
12
作者 王德青 薛守聪 +2 位作者 芦智昊 郭梦霞 侯伊雯 《运筹与管理》 北大核心 2025年第9期46-52,I0013-I0020,共15页
财务困境是恶化的企业经营状况长期累积结果,基于离散数据的传统预警方法侧重于静态视角测度财务指标引致财务困境的平均作用,忽略了企业财务困境形成的连续演变过程。针对财务指标预警作用的连续时变本征,本文在财务指标函数化基础上,... 财务困境是恶化的企业经营状况长期累积结果,基于离散数据的传统预警方法侧重于静态视角测度财务指标引致财务困境的平均作用,忽略了企业财务困境形成的连续演变过程。针对财务指标预警作用的连续时变本征,本文在财务指标函数化基础上,系统拓展融合变量选择的函数型Logistic模型,旨在从过程视角识别有效财务预警指标,并测度其引致企业财务困境形成的时变影响。基于中国A股上市公司的实证分析发现,困境预警的众多财务指标并不都具有显著的预警作用,不同财务指标的预警作用呈现出显著的时段差异。预警效果比较方面,融合变量选择的函数型Logistic模型相较传统预警方法具有显著优势。本文融合变量选择系统拓展了函数型Logistic模型,能够为时变视角预警企业财务困境提供方法支持。 展开更多
关键词 财务困境 函数型logistic模型 风险预警 变量选择
在线阅读 下载PDF
基于NGDR和Logistic模型的高速公路图像雾浓度检测算法
13
作者 温立民 杨睿 +1 位作者 聂磊 吴锋 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第3期119-128,共10页
提出了基于Logistic函数拟合S型散点图的雾浓度评定算法。首先,提取LIVE标准图集归一化灰度差-比散点图先验;基于散点曲线与视场雾浓度的一一对应关系,引入Logistic函数并推导出适合回归分析的模型。其次,采用迭代搜索法确定纵向高斯分... 提出了基于Logistic函数拟合S型散点图的雾浓度评定算法。首先,提取LIVE标准图集归一化灰度差-比散点图先验;基于散点曲线与视场雾浓度的一一对应关系,引入Logistic函数并推导出适合回归分析的模型。其次,采用迭代搜索法确定纵向高斯分布的最佳回代样本点,以提高检测精度。最后,建立参数估计(β̂,γ̂)的查找表,采用计算相关系数和遍历搜索查找的方法实现雾浓度等级评定。同场景不同浓度图像样本1的测试表明,真实图像的PM2.5与查找表PM2.5的相关系数达0.99,检测误差小于2.9%;近似场景不同浓度高速公路图像样本2的测试表明,真实图像PM2.5与查找表PM2.5值的相关系数达0.98,检测误差小于1.8;执行效率对比测试表明,本文算法对于300 kB样本图像的处理时间为19.8 s,低于同精度数据驱动的深度视觉算法;检测精度对比测试表明,本文算法优于其它典型算法。 展开更多
关键词 高速公路 图像 雾浓度检测 NGDR logistic模型 回归分析 查找表
在线阅读 下载PDF
基于Logistic回归和随机森林算法构建全身麻醉患者复苏延迟模型研究
14
作者 梅伟乐 姜红莹 +3 位作者 朱莉娜 冯晓丽 张玉坤 夏桦 《齐齐哈尔医学院学报》 2025年第18期1794-1800,共7页
目的基于Logistic回归和随机森林算法构建全身麻醉复苏延迟的预判模型并验证。方法选择2021—2023年浙江某三甲医院复苏室收治的1177例全麻患者作为研究对象,按7︰3的比例随机分为训练组和验证组两组,采用Logistic单因素+多因素回归分析... 目的基于Logistic回归和随机森林算法构建全身麻醉复苏延迟的预判模型并验证。方法选择2021—2023年浙江某三甲医院复苏室收治的1177例全麻患者作为研究对象,按7︰3的比例随机分为训练组和验证组两组,采用Logistic单因素+多因素回归分析,构建全身麻醉复苏延迟的预判模型并用列线图展示。利用随机森林算法筛选全身麻醉患者复苏延迟的影响因素并按重要性排序。采用受试者操作特征曲线(Receiver operating characteristic curve,ROC)下面积(Area of the under curve,AUC)检验模型的预测效果,采用校准曲线以及决策曲线综合评价模型的预测性能。结果1177例患者复苏延迟发生99例,发生率为8.41%。Logistic回归显示性别、ASA分级、年龄、手术时间、手术种类、输液量是全麻患者复苏延迟的独立危险因素。随机森林算法结果显示复苏延迟各变量的重要性排序为手术种类、年龄、手术时间、输液量、ASA分级、性别。Logistic回归模型的训练组AUC为0.87(95%CI 0.83~0.91),验证组为0.86(95%CI 0.81~0.91)。随机森林模型训练组AUC为0.85(95%CI 0.49~1.00),验证组AUC为0.76(95%CI 0.26~1.00)。提示模型具有良好的区分能力,预测能力较高,具有一定的临床价值。结论手术种类、年龄、手术时间、输液量、ASA分级、性别是全麻患者复苏延迟的独立危险因素,根据此构建预判模型的区分度与校准度较高,有助于预测全麻患者苏醒延迟的发生,可以为临床护理干预措施的制定与实施提供参考。 展开更多
关键词 全身麻醉 复苏延迟 预测模型 列线图 随机森林算法 逻辑回归
暂未订购
建筑机器人产业生态系统共生演化模式:基于Logistic模型和Lotka-Volterra模型
15
作者 毛超 袁佳音 马睿阳 《科技管理研究》 2025年第4期135-146,共12页
建筑机器人产业生态系统是指以建筑机器人的生产和应用为核心,通过产品和服务联系起来的相关附属产业、配套企业、政府等共同组成,具有能量和信息流动等特定规律的复杂系统。然而,建筑机器人产业链尚不明晰,产业生态也相对混乱。因此,... 建筑机器人产业生态系统是指以建筑机器人的生产和应用为核心,通过产品和服务联系起来的相关附属产业、配套企业、政府等共同组成,具有能量和信息流动等特定规律的复杂系统。然而,建筑机器人产业链尚不明晰,产业生态也相对混乱。因此,从产业生态系统的视角出发,基于Logistic方程和Lotka-Volterra方程构建建筑机器人产业生态系统共生演化模型,对各类共生演化模式下的建筑机器人产业主体进行模拟仿真,同时对中国建筑机器人产业生态系统内制造主体和应用主体的共生演化情况进行实例分析。结果发现:中国建筑机器人产业生态系统正处于发展初期,具有巨大的发展潜力;共生系数的大小对建筑机器人制造主体和应用主体的共生演化均衡结果产生影响,当处于互惠共生模式时,二者相互促进,可以实现“1+1>2”的效果,而目前中国建筑机器人制造主体和应用主体正处于寄生共生模式,这并非最佳的共生格局,需要更多的资源融合和价值共创才能实现最理想的互惠共生模式。建筑机器人产业是技术融合产业,未来发展应促进人机协同、加强上下游协作,集合各方技术、市场优势,以进行产品创新和行业开拓。 展开更多
关键词 建筑机器人 产业生态系统 产业链 共生演化 logistic模型 LOTKA-VOLTERRA模型
在线阅读 下载PDF
基于改进Logistic迭代可靠度算法的地下转露天矿边坡稳定性研究
16
作者 蒋权 《黄金》 2025年第12期47-51,共5页
地下转露天开采形成的复合矿山边坡受历史井巷工程扰动及复杂地质构造影响,岩体结构呈现显著非均质性,传统稳定性分析方法难以精确表征其失效概率。针对复杂可靠度函数求解困难的问题,创新性地提出一种基于Logistic迭代方程的可靠度指... 地下转露天开采形成的复合矿山边坡受历史井巷工程扰动及复杂地质构造影响,岩体结构呈现显著非均质性,传统稳定性分析方法难以精确表征其失效概率。针对复杂可靠度函数求解困难的问题,创新性地提出一种基于Logistic迭代方程的可靠度指标β计算方法。该方法通过动态优化迭代步长与收敛阈值,显著提升梯度下降算法的计算效率与稳定性,有效解决了高维非线性极限状态方程的可靠度求解难题。以典型地下转露天矿山柿竹园矿为研究对象,根据其工程地质条件,进行了地下转露天边坡地质分区,构建了最终境界边坡简化Bishop法和Janbu分析法极限状态超平面模型,精确地计算了边坡的可靠度。研究结果表明,柿竹园矿地下转露天开采各边坡的可靠度均大于2.42,满足公路边坡国家标准,获得最终境界边坡稳定的研究结论。 展开更多
关键词 地下转露天开采 可靠度分析 边坡稳定性 logistic迭代方程 极限状态超平面模型
在线阅读 下载PDF
基于Logistic回归与决策树模型的不育男性辅助生殖助孕结局的影响因素分析 被引量:3
17
作者 王珂 徐燕 +4 位作者 秦宁馨 郑锦霞 郭毅 白洁 黄鑫 《同济大学学报(医学版)》 2025年第1期71-79,共9页
目的探究接受辅助生殖助孕的不育男性助孕结局的影响因素。方法选取2023年1—6月至同济大学附属妇产科医院辅助生殖医学科拟行IVF/ICSI-ET助孕的1037例不育男性作为研究对象,采用Logistic回归和分类决策树模型对不育男性的影响因素进行... 目的探究接受辅助生殖助孕的不育男性助孕结局的影响因素。方法选取2023年1—6月至同济大学附属妇产科医院辅助生殖医学科拟行IVF/ICSI-ET助孕的1037例不育男性作为研究对象,采用Logistic回归和分类决策树模型对不育男性的影响因素进行研究,使用受试者工作特征(ROC)曲线评价2种预测模型的效果。结果2种模型均显示A级精子百分数、精子DFI、是否吸烟、是否饮酒是不育男性助孕结局的影响因素;Logistic回归模型显示,年龄、文化程度、每日运动时间、精子存活率、有无焦虑、抑郁和失眠是影响不育男性助孕结局的影响因素;其中,A级精子百分数是不育男性的主要影响因素。2种模型的分析结果比较显示,Logistic回归模型的灵敏度为91.3%,特异度为88.4%;决策树模型的灵敏度为80.6%,特异度为64.2%。结论Logistic回归和决策树模型均具有一定的分类预测价值,其中,Logistic回归模型预测能力优于决策树模型,临床医护人员可根据预测结果制定预见性方案,尽早改善精子质量,缓解负性情绪,以改善辅助生殖技术的助孕结局。 展开更多
关键词 不育男性 辅助生殖 logistic回归 决策树模型 影响因素
暂未订购
心脏超声结合血清指标检查构建Logistic模型评估心律失常患者心功能分级的研究 被引量:2
18
作者 李勉 詹小林 +1 位作者 黄磊 张超学 《河北医学》 2025年第2期330-335,共6页
目的:探究心脏超声结合血清指标检查构建Logistic模型评估心律失常(AR)患者心功能分级的研究。方法:选取2021年2月至2024年4月本院收治的105例AR患者为研究对象(AR组),根据心功能分级标准,将AR患者分为Ⅰ~Ⅱ级组(n=45例)和Ⅲ~Ⅳ级组(n=6... 目的:探究心脏超声结合血清指标检查构建Logistic模型评估心律失常(AR)患者心功能分级的研究。方法:选取2021年2月至2024年4月本院收治的105例AR患者为研究对象(AR组),根据心功能分级标准,将AR患者分为Ⅰ~Ⅱ级组(n=45例)和Ⅲ~Ⅳ级组(n=60例)。同期选取在本院健康体检的志愿者为对照组(30例)。收集AR患者的临床资料,比较AR组和对照组、Ⅰ~Ⅱ级组和Ⅲ~Ⅳ级组的血清脑钠肽(BNP)、超敏C反应蛋白(hs-CRP)水平及心脏超声参数[左心室射血分数(LVEF)、左室舒张末期内径(LVEDD)和左室收缩末期内径(LVESD)]。采用Logistic回归分析筛选影响心功能分级的危险因素,并构建Logistic模型评估心脏超声参数及血清BNP、hs-CRP对心功能分级的诊断价值。结果:与对照组相比,AR组LVEF明显下降,AR组LVEDD和LVESD明显升高,差异均有统计学意义(P<0.05)。AR组血清BNP和hs-CRP水平较对照组明显升高(P<0.05)。单因素分析显示,Ⅰ~Ⅱ级组和Ⅲ~Ⅳ级组在LVEF、LVEDD、LVESD、血清BNP和hs-CRP方面差异具有统计学意义(P<0.05)。Logistic多因素回归分析显示,LVEF水平降低,LVEDD、LVESD、BNP、hs-CRP水平升高均是影响心功能分级的危险因素(P<0.05)。ROC曲线分析显示,心脏超声指标联合血清BNP、hs-CRP构建的Logistic模型的AUC为0.907,敏感度为88.89%,特异度为78.33%,95%CI为0.913~0.977(P<0.05)。结论:心脏超声联合血清BNP、hs-CRP构建Logistic模型对心律失常患者的心功能分级有较高的临床诊断价值,为临床评估心功能分级提供可靠依据。 展开更多
关键词 心脏超声 超敏C反应蛋白 脑钠肽 心律失常 心功能分级 logistic模型
暂未订购
Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed,Gansu Province,China 被引量:23
19
作者 DU Guo-liang ZHANG Yong-shuang +2 位作者 IQBAL Javed YANG Zhi-hua YAO Xin 《Journal of Mountain Science》 SCIE CSCD 2017年第2期249-268,共20页
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence... Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation. 展开更多
关键词 Landslide susceptibility Integrated model Information value method logistic regression Bailongjiang watershed
原文传递
Evaluation of Inference Adequacy in Cumulative Logistic Regression Models:An Empirical Validation of ISW-Ridge Relationships 被引量:3
20
作者 Cheng-Wu CHEN Hsien-Chueh Peter YANG +2 位作者 Chen-Yuan CHEN Alex Kung-Hsiung CHANG Tsung-Hao CHEN 《China Ocean Engineering》 SCIE EI 2008年第1期43-56,共14页
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ri... Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model. 展开更多
关键词 binary logistic regression cumulative logistic regression model GOODNESS-OF-FIT internal solitary wave amplitude-based transmission rate
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部