This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used...This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.展开更多
Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing...Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.展开更多
Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were ex...Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were examined to find out the control factors and formation mechanisms of the salt structures. By using the three-dimensional discrete element numerical simulation method, the formation mechanisms of typical salt structures of western Kuqa foreland thrust belt in Keshen and Dabei work areas were comprehensively analyzed. The simulation results show that the salt deformation in Keshen and Dabei work areas is of forward spread type, with deformation concentrated in the piedmont zone;the salt deformation is affected by the early uplift near the compression end, pre-existing basement faults, synsedimentary process and the initial salt depocenter;in the direction perpendicular to the compression direction, salt rocks near the compression end have strong lateral mobility with the velocity component moving towards the middle part, and the closer to the middle, the larger the velocity will be, so that salt rocks will aggregate towards the middle and deform intensely, forming complex folds and separation of salt structures from salt source, and local outcrop with thrust faults. Compared with 2 D simulation, 3 D simulation can analyze salt structures in the principal stress direction and direction perpendicular to the principal stress, give us a full view of the formation mechanisms of salt structures, and guide the exploration of oil and gas reservoirs related to salt structures.展开更多
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i...The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.展开更多
The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divid...The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divided into two parts:the vertically-intopated equations (external mode) and the vertical structure equations(internal mace). The first set of equations being the propagation of the tidal weves and the ADI numerical scheme has ben chosen to solve them. Conerning the vertical structure equations, they are solved by means of leapfrog stepping procedure.The main features of the tide and associated tidal current in the Bohai Sea are examined with this 3-D model.To have a good reproduction of vertical structure, the column is divided into 10 layers and the M2 tidal current is computed in detail. The simulation reveal the spetial structure and some important characteristics of the tidal current of the Bohai Sea. The application of the 3-D madel to forecasting of the tidal current in the Bobal Sea has been Performed as an illustration.展开更多
By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical so...By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.展开更多
In the present paper, a three-dimensional (3D) Eulerian technique for the 3D numerical simulation of high-velocity impact problems is proposed. In the Eulerian framework, a complete 3D conservation element and solut...In the present paper, a three-dimensional (3D) Eulerian technique for the 3D numerical simulation of high-velocity impact problems is proposed. In the Eulerian framework, a complete 3D conservation element and solution element scheme for conservative hyperbolic governing equations with source terms is given. A modified ghost fluid method is proposed for the treatment of the boundary conditions. Numerical simulations of the Taylor bar problem and the ricochet phenomenon of a sphere impacting a plate target at an angle of 60~ are carried out. The numerical results are in good agreement with the corresponding experimental observations. It is proved that our computational technique is feasible for analyzing 3D high-velocity impact problems.展开更多
To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique o...To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS.展开更多
Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistanc...Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results.展开更多
The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to ...The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.展开更多
Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wa...Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wave-field simulation in the porous medium is limited to two-dimensions and two-components (2D2C) or two-dimensions and three-components (2D3C). There is no previous report on wave simulation in three- dimensions and three-components. Only through three dimensional numerical simulations can we have an overall understanding of wave field coupling relations and the spatial distribution characteristics between the solid and fluid phases in the dual-phase anisotropic medium. In this paper, based on the BISQ equation, we present elastic wave propagation in a three dimensional dual-phase anisotropic medium simulated by the staggered-grid high-order finite-difference method. We analyze the resulting wave fields and show that the results are an improvement.展开更多
In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement wa...In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement was simulated based on actual meteorological data of Nanjing. 24-hour rutting development under a transient temperature field was calculated in each month. The rutting depth accumulated under the static temperature field was also estimated and the relationship between constant temperature parameters was analyzed. Then the effective temperature for pavement rutting was determined based on the rutting equivalence principle. The results show that the monthly effective temperature is above 40 t in July and August, while in June and September it ranges from 30 to 40 Rutting development can be ignored when the monthly effective temperature is less than 30 t. The yearly effective temperature for rutting in Nanjing is around 38. 5 t. The long-term rutting prediction model based on the effective temperature can reflect the influences of meteorological factors and traffic time distribution.展开更多
To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS proce...To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS.展开更多
In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images ...In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed threedimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosingdiseases related to anatomical structure and function of the upper airway.展开更多
Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines.The rock masses of Tangdan copper mine of China are fractured,wh...Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines.The rock masses of Tangdan copper mine of China are fractured,which needs much reinforcement and support prior to mining.Cement-sodium silicate grout technology was selected,then its related parameters such as grout pressure,diffusion radius and time were calculated and proposed.In order to test the effect of the pressured grout in the fractured No.4 ore block,field experiments were conducted.To optimize stoping configuration,three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed.The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously.After grout,ore recovery rate is increased by 10.2%employing the newly designed stoping configuration compared with the previous.Last,analyzed from the surface movements,roof subsidence and the maximum principal stress of the pillars,the mining safety is probable of being ensured.展开更多
The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-die...The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures. And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed. Combined with the distribution of surface wave excitation and experimental results, the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.展开更多
A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevo...A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.展开更多
The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, ma...The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, many islands, moveable boundary, and submerged dyke, therefore, σ 3-D numerical model oil an unstructured triangular grid has been degeloped. The σ coordinate transforination, the moveable boundary and submerged dyke treatment techniques were employed in the model so it is suitable for the tidal simulations in the Oujing Estuary with submerged dyke and moveable boundary problems. The model is evaluated with the in situ data, and the results show that the calculated water elevations at 19 stations and currents at 19 profiler stations are in good agreement with measured data both in magnitude and phase. This numerical model is applied to the 3-D tidal circulation simulations of experiments in stopping flow transport through the South Branch of the Oujiang Estuary, and the feasibility to cutoff the flow in the South Branch of the Oujiang Estuary is demonstrated by numerical simulation experiments. The developed numerical model simulated the 3-D tidal current circulations in complicated coastal and estuarine waters very well.展开更多
The Global and Regional Assimilation and Prediction System (GRAPES), a limited-area regional model, was used to simulate the onset of South China Sea summer monsoon. In view of the relatively insufficient information ...The Global and Regional Assimilation and Prediction System (GRAPES), a limited-area regional model, was used to simulate the onset of South China Sea summer monsoon. In view of the relatively insufficient information about the initial field in simulation predictions, the Advanced Microwave Sounding Unit-B (AMSU-B) data from a NOAA satellite were introduced to improve the initial values. By directly using the 3-dimensional variational data assimilation system of GRAPES, two schemes for assimilation tests were designed. In the design, Test 1 (T1) assimilates both sounding and AMSU-B data, and Test 2 (T2) assimilates only the conventional sounding data, before applying the model in simulation forecasts. Comparative experiments showed that the model was very sensitive to initial fields and successful in reproducing the monsoon onset, allocation of high- and low-level wind fields during the pentad of onset, and the northward advancement of the monsoon and monsoon rain bands. The scheme, however, simulated rainfall and the location of the subtropical high with deviations from observations. The simulated location of the subtropical high was more westward and northward and the simulated rainfall for the South China Sea was larger and covered a broader area.展开更多
To study on the numerical simulation calculation reliability of sea-crossing bridge under complex wave forces,the paper applied GPS deformation monitoring and numerical simulation calculation by researching Qingdao Ji...To study on the numerical simulation calculation reliability of sea-crossing bridge under complex wave forces,the paper applied GPS deformation monitoring and numerical simulation calculation by researching Qingdao Jiaozhou Bay Sea-Crossing Bridge.The db3 wavelet three-layer decomposition was used on the horizontal movement of the sea-crossing bridge and the wind speed of the waves to analyze their correlation.The complex wave forces value of Qingdao Jiaozhou Bay Sea-Crossing Bridge was loaded on FLAC3D software successfully to make numerical simulation calculation of bridge deformation.Since the accuracy of the GPS deformation monitoring reaches millimeter level,it was used to monitor the exact value of the bridge deformation to judge the reliability of numerical simulation.The relative errors of displacement in X,Y and Z directions were between 33%and 41%through comparison.It could be seen that the numerical simulation error was relatively large,which was mainly due to various environmental factors and the deviation of applied wave forces.However,numerical simulation generally reflects the deformation law of the sea-crossing bridge under complex wave forces,providing an effectively technical support for the safe operation assessment of the sea-crossing bridge.展开更多
文摘This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.
文摘Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an im-portant tool for resolving the complex aerodynamic behavior in motorcycle engines.
基金Supported by the China National Science and Technology Major Project(2016ZX05033002,2016ZX05033001).
文摘Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were examined to find out the control factors and formation mechanisms of the salt structures. By using the three-dimensional discrete element numerical simulation method, the formation mechanisms of typical salt structures of western Kuqa foreland thrust belt in Keshen and Dabei work areas were comprehensively analyzed. The simulation results show that the salt deformation in Keshen and Dabei work areas is of forward spread type, with deformation concentrated in the piedmont zone;the salt deformation is affected by the early uplift near the compression end, pre-existing basement faults, synsedimentary process and the initial salt depocenter;in the direction perpendicular to the compression direction, salt rocks near the compression end have strong lateral mobility with the velocity component moving towards the middle part, and the closer to the middle, the larger the velocity will be, so that salt rocks will aggregate towards the middle and deform intensely, forming complex folds and separation of salt structures from salt source, and local outcrop with thrust faults. Compared with 2 D simulation, 3 D simulation can analyze salt structures in the principal stress direction and direction perpendicular to the principal stress, give us a full view of the formation mechanisms of salt structures, and guide the exploration of oil and gas reservoirs related to salt structures.
基金supported by the National Natural Science Foundation of China(No.41174157)
文摘The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.
文摘The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divided into two parts:the vertically-intopated equations (external mode) and the vertical structure equations(internal mace). The first set of equations being the propagation of the tidal weves and the ADI numerical scheme has ben chosen to solve them. Conerning the vertical structure equations, they are solved by means of leapfrog stepping procedure.The main features of the tide and associated tidal current in the Bohai Sea are examined with this 3-D model.To have a good reproduction of vertical structure, the column is divided into 10 layers and the M2 tidal current is computed in detail. The simulation reveal the spetial structure and some important characteristics of the tidal current of the Bohai Sea. The application of the 3-D madel to forecasting of the tidal current in the Bobal Sea has been Performed as an illustration.
基金financially supported by the the National Natural Science Foundation of China(Grant No.51709054)the Public Science and Technology Research Funds Projects of Ocean(Grant Nos.201405025 and 201505019)
文摘By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10732010,10972010,and 11332002)
文摘In the present paper, a three-dimensional (3D) Eulerian technique for the 3D numerical simulation of high-velocity impact problems is proposed. In the Eulerian framework, a complete 3D conservation element and solution element scheme for conservative hyperbolic governing equations with source terms is given. A modified ghost fluid method is proposed for the treatment of the boundary conditions. Numerical simulations of the Taylor bar problem and the ricochet phenomenon of a sphere impacting a plate target at an angle of 60~ are carried out. The numerical results are in good agreement with the corresponding experimental observations. It is proved that our computational technique is feasible for analyzing 3D high-velocity impact problems.
文摘To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS.
文摘Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results.
文摘The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.
基金National Natural Science Foundation (Project number 40604013).
文摘Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wave-field simulation in the porous medium is limited to two-dimensions and two-components (2D2C) or two-dimensions and three-components (2D3C). There is no previous report on wave simulation in three- dimensions and three-components. Only through three dimensional numerical simulations can we have an overall understanding of wave field coupling relations and the spatial distribution characteristics between the solid and fluid phases in the dual-phase anisotropic medium. In this paper, based on the BISQ equation, we present elastic wave propagation in a three dimensional dual-phase anisotropic medium simulated by the staggered-grid high-order finite-difference method. We analyze the resulting wave fields and show that the results are an improvement.
基金The National Natural Science Foundation of China(No.51378121)the Fok Ying Tung Education Foundation(No.141076)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0164)
文摘In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement was simulated based on actual meteorological data of Nanjing. 24-hour rutting development under a transient temperature field was calculated in each month. The rutting depth accumulated under the static temperature field was also estimated and the relationship between constant temperature parameters was analyzed. Then the effective temperature for pavement rutting was determined based on the rutting equivalence principle. The results show that the monthly effective temperature is above 40 t in July and August, while in June and September it ranges from 30 to 40 Rutting development can be ignored when the monthly effective temperature is less than 30 t. The yearly effective temperature for rutting in Nanjing is around 38. 5 t. The long-term rutting prediction model based on the effective temperature can reflect the influences of meteorological factors and traffic time distribution.
文摘To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS.
基金The project supported by the National Natural Science Foundation of China(10672036,10472025 and 10421002)the Natural Science Foundation of Liaoning Province(20032109)
文摘In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed threedimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosingdiseases related to anatomical structure and function of the upper airway.
基金Projects(51374034,51674012)supported by the National Natural Science Foundation of ChinaProject(2013BAB02B05)supported by the China National Science and Technology Support Program during the 12th Five-Year Plan Period
文摘Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines.The rock masses of Tangdan copper mine of China are fractured,which needs much reinforcement and support prior to mining.Cement-sodium silicate grout technology was selected,then its related parameters such as grout pressure,diffusion radius and time were calculated and proposed.In order to test the effect of the pressured grout in the fractured No.4 ore block,field experiments were conducted.To optimize stoping configuration,three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed.The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously.After grout,ore recovery rate is increased by 10.2%employing the newly designed stoping configuration compared with the previous.Last,analyzed from the surface movements,roof subsidence and the maximum principal stress of the pillars,the mining safety is probable of being ensured.
基金supported by the Foundation for Returned Scholars,the Ministry of Education of China
文摘The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures. And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed. Combined with the distribution of surface wave excitation and experimental results, the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.
基金Supported by Marie Curie International Incoming Fellowship (No. PIIF-GA-2009-253453)
文摘A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.
基金The Natural Science Foundation of Tianjin, China under contract No.08JCZDZT00200
文摘The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, many islands, moveable boundary, and submerged dyke, therefore, σ 3-D numerical model oil an unstructured triangular grid has been degeloped. The σ coordinate transforination, the moveable boundary and submerged dyke treatment techniques were employed in the model so it is suitable for the tidal simulations in the Oujing Estuary with submerged dyke and moveable boundary problems. The model is evaluated with the in situ data, and the results show that the calculated water elevations at 19 stations and currents at 19 profiler stations are in good agreement with measured data both in magnitude and phase. This numerical model is applied to the 3-D tidal circulation simulations of experiments in stopping flow transport through the South Branch of the Oujiang Estuary, and the feasibility to cutoff the flow in the South Branch of the Oujiang Estuary is demonstrated by numerical simulation experiments. The developed numerical model simulated the 3-D tidal current circulations in complicated coastal and estuarine waters very well.
基金National 863 Special Project (2006AA01A123)Research on Interpretation Techniques for High-Resolution Numerical Prediction of Hunan ProvinceResearch on Rainstorm Forecast System with GRAPES and Its Application and Accessment in Hunan and Key Project of Science in Hunan (2008FJ1006)
文摘The Global and Regional Assimilation and Prediction System (GRAPES), a limited-area regional model, was used to simulate the onset of South China Sea summer monsoon. In view of the relatively insufficient information about the initial field in simulation predictions, the Advanced Microwave Sounding Unit-B (AMSU-B) data from a NOAA satellite were introduced to improve the initial values. By directly using the 3-dimensional variational data assimilation system of GRAPES, two schemes for assimilation tests were designed. In the design, Test 1 (T1) assimilates both sounding and AMSU-B data, and Test 2 (T2) assimilates only the conventional sounding data, before applying the model in simulation forecasts. Comparative experiments showed that the model was very sensitive to initial fields and successful in reproducing the monsoon onset, allocation of high- and low-level wind fields during the pentad of onset, and the northward advancement of the monsoon and monsoon rain bands. The scheme, however, simulated rainfall and the location of the subtropical high with deviations from observations. The simulated location of the subtropical high was more westward and northward and the simulated rainfall for the South China Sea was larger and covered a broader area.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2020MD024)。
文摘To study on the numerical simulation calculation reliability of sea-crossing bridge under complex wave forces,the paper applied GPS deformation monitoring and numerical simulation calculation by researching Qingdao Jiaozhou Bay Sea-Crossing Bridge.The db3 wavelet three-layer decomposition was used on the horizontal movement of the sea-crossing bridge and the wind speed of the waves to analyze their correlation.The complex wave forces value of Qingdao Jiaozhou Bay Sea-Crossing Bridge was loaded on FLAC3D software successfully to make numerical simulation calculation of bridge deformation.Since the accuracy of the GPS deformation monitoring reaches millimeter level,it was used to monitor the exact value of the bridge deformation to judge the reliability of numerical simulation.The relative errors of displacement in X,Y and Z directions were between 33%and 41%through comparison.It could be seen that the numerical simulation error was relatively large,which was mainly due to various environmental factors and the deviation of applied wave forces.However,numerical simulation generally reflects the deformation law of the sea-crossing bridge under complex wave forces,providing an effectively technical support for the safe operation assessment of the sea-crossing bridge.