This paper proposes a novel method for analyzing a textile fabric structure to extract positional information regarding each yarn using three-dimensional X-ray computed tomography(3D CT) image.Positional relationship ...This paper proposes a novel method for analyzing a textile fabric structure to extract positional information regarding each yarn using three-dimensional X-ray computed tomography(3D CT) image.Positional relationship among the yarns can be reconstructed using the extracted yarn positional information.In this paper,a sequence of points on the center line of each yarn of the sample is defined as the yarn positional information,since the sequence can be regarded as the representative position of the yarn.The sequence is extracted by tracing the yarn.The yarn is traced by estimating the yarn center and direction and correlating the yarn part of the 3D CT image with a 3D yarn model,which is moved along the estimated yarn direction.The trajectory of the center of the yarn model corresponds to the positional information of the yarn.The application of the proposed method is shown by experimentally applying the proposed method to a 3D CT image of a double-layered woven fabric.Furthermore,the experimental results for a plain knitted fabric show that this method can be applied to even knitted fabrics.展开更多
The anatomic relationship of oral and maxillofacial region is very com-plex,due to the large number of sinuses,cavities and spaces,and also closely related to the brain.The diagnosis of oral and maxillofacial lesions ...The anatomic relationship of oral and maxillofacial region is very com-plex,due to the large number of sinuses,cavities and spaces,and also closely related to the brain.The diagnosis of oral and maxillofacial lesions usually depends on the imaging examination.The conventional imaging methods are common CT and X-ray plain films.In recent years,with the rapid development of medical science and technology,more intuitive and vivid three-dimensional images have been applied in the diagnosis and treatment of oral and maxillofacial diseases.Therefore,CT three-dimensional imaging technology has been widely used in clinical practice.This paper reviews this topic.展开更多
Objective: To evaluate the importance of 3D-CTA with volume rendering for the diagnosis of multiple intracranial aneurysms. Methods: Axial source images were obtained by helical CT scanning and reconstruction of 3D-CT...Objective: To evaluate the importance of 3D-CTA with volume rendering for the diagnosis of multiple intracranial aneurysms. Methods: Axial source images were obtained by helical CT scanning and reconstruction of 3D-CTA images was done by volume rendering technique in conjunction with multiplanar reformation. Results: In the past one year, there were 10 patients diagnosed as having multiple intracranial a-neurysms by 3D-CTA and altogether 24 aneurysms were visualized, including 10 small aneurysms (≤ 5mm. Three-dimensional CT angiography with volume rendering demonstrated aneurysms very well and provided useful information concerning the site, shape, size and spatial relationship with the surrounding vessels and bone anatomy. Conclusion: Three-dimensional CT angiography with volume rendering is a quick, reliable, and relatively noninvasive method for diagnosing multiple intracranial aneurysms. It delineates detailed aneurysmal morphology, and provides useful information for planning microsurgical approaches.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne...BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.展开更多
In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understandin...In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.展开更多
To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an...To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.展开更多
Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems....Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.展开更多
BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonanc...BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonance imaging(MRI),although helpful,fail to provide three-dimensional(3D)relationships of these structures,which are critical for planning and executing complicated surgeries.AIM To explore the use of 3D imaging and virtual surgical planning(VSP)technologies to improve surgical accuracy,reduce complications,and enhance patient recovery in hepatobiliary surgeries.METHODS A comprehensive review of studies published between 2017 and 2024 was conducted through PubMed,Scopus,Google Scholar,and Web of Science.Studies selected focused on 3D imaging and VSP applications in hepatobiliary surgery,assessing surgical precision,complications,and patient outcomes.Thirty studies,including randomized controlled trials,cohort studies,and case reports,were included in the final analysis.RESULTS Various 3D imaging modalities,including multidetector CT,MRI,and 3D rotational angiography,provide high-resolution views of the liver’s vascular and biliary anatomy.VSP allows surgeons to simulate complex surgeries,improving preoperative planning and reducing complications like bleeding and bile leaks.Several studies have demonstrated improved surgical precision,reduced complications,and faster recovery times when 3D imaging and VSP were used in complex surgeries.CONCLUSION 3D imaging and VSP technologies significantly enhance the accuracy and outcomes of hepatobiliary surgeries by providing individualized preoperative planning.While promising,further research,particularly randomized controlled trials,is needed to standardize protocols and evaluate long-term efficacy.展开更多
BACKGROUND Fracture is one of the most pervasive injuries in the musculoskeletal system,and there is a complex interaction between macrophages and adipose tissue-derived stem cells(ADSCs)in fracture healing.However,tw...BACKGROUND Fracture is one of the most pervasive injuries in the musculoskeletal system,and there is a complex interaction between macrophages and adipose tissue-derived stem cells(ADSCs)in fracture healing.However,two-dimensional(2D)coculture of macrophages and ADSCs can not accurately mimic the in vivo cell microenvironment.AIM To establish both 2D and 3D osteogenic coculture models to investigate the interaction between macrophages and ADSCs.METHODS After obtaining ADSCs from surgery and inducing differentiation of the THP1 cell line,we established 2D and 3D osteogenic coculture models.To assess the level of osteogenic differentiation,we used alizarin red staining and measured the relative expression levels of osteogenic differentiation markers osteocalcin,Runt-related transcription factor 2,and alkaline phosphatase through polymerase chain reaction.Verification was conducted by analyzing the expression changes of N-cadherin and the activation of the Wnt/β-catenin signaling pathway using western blotting.RESULTS In this study,it was discovered that macrophages in 3D culture inhibited osteogenic differentiation of ADSCs,contrary to the effect in 2D culture.This observation confirmed the significance of intricate intercellular connections in the 3D culture environment.Additionally,the 3D culture group exhibited significantly higher N-cadherin expression and showed reducedβ-catenin and Wnt1 protein levels compared to the 2D culture group.CONCLUSION Macrophages promoted ADSC osteogenic differentiation in 2D culture conditions but inhibited it in 3D culture.The 3D culture environment might inhibit the Wnt/β-catenin signaling pathway by upregulating N-cadherin expression,ultimately hindering the osteogenic differentiation of ADSCs.By investigating the process of osteogenesis in ADSCs,this study provides novel ideas for exploring 3D osteogenesis in ADSCs,fracture repair,and other bone trauma repair.展开更多
The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transitio...The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transition metal sulfide electrocatalysts have been widely recognized as efficient catalysts for water splitting in alkaline media.In this work,an original and efficient synthesis strategy is proposed for the fabrication of asymmetric anode(N-(Co-Cu)S_(x))and cathode(N-CoS/Cu_(2)S).Impressively,these electrodes exhibit superior performance,benefiting from the construction of three-dimensional(3D)structures and the electronic structure adjustment caused by N-doping with increased active sites,improved mass/charge transport and enhanced evolution and release of gas bubbles.Hence,N-(Co-Cu)S_(x)anode exhibits excellent OER performance with only 217 mV overpotential at 10 mA·cm^(-2),while N-CoS/Cu_(2)S cathode possesses excellent HER performance with only 67 mV overpotential at 10 mA·cm^(-2).N-(Co-Cu)S_(x)||N-CoS/Cu_(2)S electrolyzer presents a low cell voltage of 1.53 V at 10 mA·cm^(-2)toward overall water splitting,which is superior to most recently reported transition metal sulfide-based catalysts.展开更多
BACKGROUND Percutaneous transhepatic biliary drainage(PTBD)is one of the primary clinical treatment options for patients with obstructive jaundice.In recent years,PTBD assisted by three-dimensional(3D)reconstruction t...BACKGROUND Percutaneous transhepatic biliary drainage(PTBD)is one of the primary clinical treatment options for patients with obstructive jaundice.In recent years,PTBD assisted by three-dimensional(3D)reconstruction technology has been widely implemented,but its advantages over traditional methods remains inconclusive.Thus,a discussion is warranted.AIM To explore the safety and efficacy of 3D reconstruction technology-assisted PTBD.METHODS We systematically searched the databases including the Cochrane Library,PubMed,EMBASE,Web of Science and China National Knowledge Infrastructure.The search period extended from the establishment of each database to November,2024.We screened the literature according to predefined inclusion and exclusion criteria,assessed the quality of the studies,and extracted data.Meta-analysis was performed using Revman 5.4.1 software.RESULTS A total of 15 studies were included,involving 1434 patients.The results of the meta-analysis showed that compared with the traditional group,the overall post-operative complications rate in the 3D reconstruction technology group was significantly lower[odds ratio=0.25;95%confidence interval(CI):0.17-0.36,P<0.00001].The overall puncture success rate in the 3D reconstruction group was better than those in the traditional group(odds ratio=3.61;95%CI:1.98-6.55,P<0.0001).However,there was no significant difference between the two groups in the reduction levels of postoperative total bilirubin(mean difference=-1.38;95%CI:-3.29 to 0.53,P=0.16).Subgroup analysis were conducted on the surgery time according to guidance stages of the 3D reconstruction,3D reconstruction imaging modalities,and types of studies.The results were stable,with no significant changes observed.CONCLUSION 3D reconstruction technology significantly improves the puncture success rate and safety of PTBD.However,it has no significant advantage in bile drainage effectiveness.Continued research is warranted to further explore its clinical value and optimize its application.展开更多
Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstructi...Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.展开更多
We theoretically investigate the extended Bose-Hubbard model using a three-dimensional cubic lattice.In the framework of the dynamical Gutzwiller mean-field theory,we identify a checkerboard supersolid phase.By consid...We theoretically investigate the extended Bose-Hubbard model using a three-dimensional cubic lattice.In the framework of the dynamical Gutzwiller mean-field theory,we identify a checkerboard supersolid phase.By considering the repulsive interactions between next-nearest-neighbor lattice sites,we further discover an exotic type of supersolid state,whose site occupancies show a stereoscopically arrayed and staggered distribution rather than checkerboard ordering.Intriguingly,if the physical observations of two neighboring layers were superimposed,they would give rise to a checkerboard configuration.This novel structure is convincingly induced by the simultaneous existence of nearest-neighbor and nextnearest-neighbor interactions.We also identify arrayed stripes in the ground state,as well as arrayed holes in the pattern of occupancies.展开更多
Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca...Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.展开更多
基金Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science(2006-No.18800064)
文摘This paper proposes a novel method for analyzing a textile fabric structure to extract positional information regarding each yarn using three-dimensional X-ray computed tomography(3D CT) image.Positional relationship among the yarns can be reconstructed using the extracted yarn positional information.In this paper,a sequence of points on the center line of each yarn of the sample is defined as the yarn positional information,since the sequence can be regarded as the representative position of the yarn.The sequence is extracted by tracing the yarn.The yarn is traced by estimating the yarn center and direction and correlating the yarn part of the 3D CT image with a 3D yarn model,which is moved along the estimated yarn direction.The trajectory of the center of the yarn model corresponds to the positional information of the yarn.The application of the proposed method is shown by experimentally applying the proposed method to a 3D CT image of a double-layered woven fabric.Furthermore,the experimental results for a plain knitted fabric show that this method can be applied to even knitted fabrics.
文摘The anatomic relationship of oral and maxillofacial region is very com-plex,due to the large number of sinuses,cavities and spaces,and also closely related to the brain.The diagnosis of oral and maxillofacial lesions usually depends on the imaging examination.The conventional imaging methods are common CT and X-ray plain films.In recent years,with the rapid development of medical science and technology,more intuitive and vivid three-dimensional images have been applied in the diagnosis and treatment of oral and maxillofacial diseases.Therefore,CT three-dimensional imaging technology has been widely used in clinical practice.This paper reviews this topic.
文摘Objective: To evaluate the importance of 3D-CTA with volume rendering for the diagnosis of multiple intracranial aneurysms. Methods: Axial source images were obtained by helical CT scanning and reconstruction of 3D-CTA images was done by volume rendering technique in conjunction with multiplanar reformation. Results: In the past one year, there were 10 patients diagnosed as having multiple intracranial a-neurysms by 3D-CTA and altogether 24 aneurysms were visualized, including 10 small aneurysms (≤ 5mm. Three-dimensional CT angiography with volume rendering demonstrated aneurysms very well and provided useful information concerning the site, shape, size and spatial relationship with the surrounding vessels and bone anatomy. Conclusion: Three-dimensional CT angiography with volume rendering is a quick, reliable, and relatively noninvasive method for diagnosing multiple intracranial aneurysms. It delineates detailed aneurysmal morphology, and provides useful information for planning microsurgical approaches.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.
基金Supported by the 2022 Provincial Quality Engineering Project for Higher Education Institutions,No.2022sx031the 2023 Provincial Quality Engineering Project for Higher Education Institutions,No.2023jyxm1071.
文摘BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.
基金support of the Fundamental Research Funds for the Central Universities(No.E2ET0411X2).
文摘In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.
基金financially supported by the National Natural Science Foundation of China(Nos.21876164 and U2030203)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.
基金supported by the Central Guiding Local Science and Technology Development Fund of Shandong-Yellow River Basin(No.YDZX2023019)Shandong Natural Science Foundation of China(Nos.ZR2020QF067 and ZR2023QD073)+6 种基金the Discipline Cluster Research Project of Qingdao University“Deep mining and intelligent prediction of multimodal big data for marine ecological disasters”(No.20240604)sourced from the International Argo Program and the national programs that contribute to it(https://argo.ucsd.edu)the CMEMS(http://marine.copernicus.eu/)the CDS(https://cds.climate.copernicus.eu/)the EMODnet(https://www.emodnet-chemistry.eu/)obtained from the ERA5(https://www.ecmwf.int)derived from the Glob Colour Project(http://globcolour.info).
文摘Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.
文摘BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonance imaging(MRI),although helpful,fail to provide three-dimensional(3D)relationships of these structures,which are critical for planning and executing complicated surgeries.AIM To explore the use of 3D imaging and virtual surgical planning(VSP)technologies to improve surgical accuracy,reduce complications,and enhance patient recovery in hepatobiliary surgeries.METHODS A comprehensive review of studies published between 2017 and 2024 was conducted through PubMed,Scopus,Google Scholar,and Web of Science.Studies selected focused on 3D imaging and VSP applications in hepatobiliary surgery,assessing surgical precision,complications,and patient outcomes.Thirty studies,including randomized controlled trials,cohort studies,and case reports,were included in the final analysis.RESULTS Various 3D imaging modalities,including multidetector CT,MRI,and 3D rotational angiography,provide high-resolution views of the liver’s vascular and biliary anatomy.VSP allows surgeons to simulate complex surgeries,improving preoperative planning and reducing complications like bleeding and bile leaks.Several studies have demonstrated improved surgical precision,reduced complications,and faster recovery times when 3D imaging and VSP were used in complex surgeries.CONCLUSION 3D imaging and VSP technologies significantly enhance the accuracy and outcomes of hepatobiliary surgeries by providing individualized preoperative planning.While promising,further research,particularly randomized controlled trials,is needed to standardize protocols and evaluate long-term efficacy.
文摘BACKGROUND Fracture is one of the most pervasive injuries in the musculoskeletal system,and there is a complex interaction between macrophages and adipose tissue-derived stem cells(ADSCs)in fracture healing.However,two-dimensional(2D)coculture of macrophages and ADSCs can not accurately mimic the in vivo cell microenvironment.AIM To establish both 2D and 3D osteogenic coculture models to investigate the interaction between macrophages and ADSCs.METHODS After obtaining ADSCs from surgery and inducing differentiation of the THP1 cell line,we established 2D and 3D osteogenic coculture models.To assess the level of osteogenic differentiation,we used alizarin red staining and measured the relative expression levels of osteogenic differentiation markers osteocalcin,Runt-related transcription factor 2,and alkaline phosphatase through polymerase chain reaction.Verification was conducted by analyzing the expression changes of N-cadherin and the activation of the Wnt/β-catenin signaling pathway using western blotting.RESULTS In this study,it was discovered that macrophages in 3D culture inhibited osteogenic differentiation of ADSCs,contrary to the effect in 2D culture.This observation confirmed the significance of intricate intercellular connections in the 3D culture environment.Additionally,the 3D culture group exhibited significantly higher N-cadherin expression and showed reducedβ-catenin and Wnt1 protein levels compared to the 2D culture group.CONCLUSION Macrophages promoted ADSC osteogenic differentiation in 2D culture conditions but inhibited it in 3D culture.The 3D culture environment might inhibit the Wnt/β-catenin signaling pathway by upregulating N-cadherin expression,ultimately hindering the osteogenic differentiation of ADSCs.By investigating the process of osteogenesis in ADSCs,this study provides novel ideas for exploring 3D osteogenesis in ADSCs,fracture repair,and other bone trauma repair.
基金supported by the Science and Technology Project of Southwest Petroleum University(No.2021JBGS03)the Local Science and Technology Development Fund Projects Guided by the Central Government of China(No.2021ZYD0060)+2 种基金the National Natural Science Foundation of China(Nos.22209143 and 52371241)Guangdong High-level Innovation Institute Project(Nos.2021B0909050001 and 2021CX02L365)Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120095).
文摘The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transition metal sulfide electrocatalysts have been widely recognized as efficient catalysts for water splitting in alkaline media.In this work,an original and efficient synthesis strategy is proposed for the fabrication of asymmetric anode(N-(Co-Cu)S_(x))and cathode(N-CoS/Cu_(2)S).Impressively,these electrodes exhibit superior performance,benefiting from the construction of three-dimensional(3D)structures and the electronic structure adjustment caused by N-doping with increased active sites,improved mass/charge transport and enhanced evolution and release of gas bubbles.Hence,N-(Co-Cu)S_(x)anode exhibits excellent OER performance with only 217 mV overpotential at 10 mA·cm^(-2),while N-CoS/Cu_(2)S cathode possesses excellent HER performance with only 67 mV overpotential at 10 mA·cm^(-2).N-(Co-Cu)S_(x)||N-CoS/Cu_(2)S electrolyzer presents a low cell voltage of 1.53 V at 10 mA·cm^(-2)toward overall water splitting,which is superior to most recently reported transition metal sulfide-based catalysts.
基金Supported by the Natural Science Foundation of Fujian Province,No.2022J011442.
文摘BACKGROUND Percutaneous transhepatic biliary drainage(PTBD)is one of the primary clinical treatment options for patients with obstructive jaundice.In recent years,PTBD assisted by three-dimensional(3D)reconstruction technology has been widely implemented,but its advantages over traditional methods remains inconclusive.Thus,a discussion is warranted.AIM To explore the safety and efficacy of 3D reconstruction technology-assisted PTBD.METHODS We systematically searched the databases including the Cochrane Library,PubMed,EMBASE,Web of Science and China National Knowledge Infrastructure.The search period extended from the establishment of each database to November,2024.We screened the literature according to predefined inclusion and exclusion criteria,assessed the quality of the studies,and extracted data.Meta-analysis was performed using Revman 5.4.1 software.RESULTS A total of 15 studies were included,involving 1434 patients.The results of the meta-analysis showed that compared with the traditional group,the overall post-operative complications rate in the 3D reconstruction technology group was significantly lower[odds ratio=0.25;95%confidence interval(CI):0.17-0.36,P<0.00001].The overall puncture success rate in the 3D reconstruction group was better than those in the traditional group(odds ratio=3.61;95%CI:1.98-6.55,P<0.0001).However,there was no significant difference between the two groups in the reduction levels of postoperative total bilirubin(mean difference=-1.38;95%CI:-3.29 to 0.53,P=0.16).Subgroup analysis were conducted on the surgery time according to guidance stages of the 3D reconstruction,3D reconstruction imaging modalities,and types of studies.The results were stable,with no significant changes observed.CONCLUSION 3D reconstruction technology significantly improves the puncture success rate and safety of PTBD.However,it has no significant advantage in bile drainage effectiveness.Continued research is warranted to further explore its clinical value and optimize its application.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2902103National Natural Science Foundation of China,Grant/Award Number:51934001Fundamental Research Funds for the Central Universities,Grant/Award Number:2023JCCXLJ02。
文摘Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.
基金supported by the Hainan Provincial Natural Science Foundation of China(Grant No.525QN342)the Scientific Research Foundation of Hainan Tropical Ocean University(Grant No.RHDRC202301).
文摘We theoretically investigate the extended Bose-Hubbard model using a three-dimensional cubic lattice.In the framework of the dynamical Gutzwiller mean-field theory,we identify a checkerboard supersolid phase.By considering the repulsive interactions between next-nearest-neighbor lattice sites,we further discover an exotic type of supersolid state,whose site occupancies show a stereoscopically arrayed and staggered distribution rather than checkerboard ordering.Intriguingly,if the physical observations of two neighboring layers were superimposed,they would give rise to a checkerboard configuration.This novel structure is convincingly induced by the simultaneous existence of nearest-neighbor and nextnearest-neighbor interactions.We also identify arrayed stripes in the ground state,as well as arrayed holes in the pattern of occupancies.
基金supported by the National Key R&D Program of China(No.2023YFC3081200)the National Natural Science Foundation of China(No.42077264)the Scientific Research Project of PowerChina Huadong Engineering Corporation Limited(HDEC-2022-0301).
文摘Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.