This paper proposes a compensation method for using the Harmonic Amplitude-Phase Adaptive Control(HAPAC)to increase the precision of sinusoidal motion simulators. It also expounds on the HAPAC principle and structural...This paper proposes a compensation method for using the Harmonic Amplitude-Phase Adaptive Control(HAPAC)to increase the precision of sinusoidal motion simulators. It also expounds on the HAPAC principle and structural disposition, develops the HAPAC control laws and analyzes the system stability in the HAPAC. A method for further improving the precision using online identification of the system’s frequency-response models is presented. The tested data and tracking errors of the simulator demonstrate that the HAPAC makes the sinusoidal motions achieve higher precision than the common classical controls. The HAPAC can also be used in other tracking systems of precision sinusoidal motions.展开更多
Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturb...Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturbance torque of a satellite in outer space.However,at the beginning of the experiment,the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator.In order to solve this problem,it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity.The paper aims to discuss these issues.Design/methodology/approach–In this paper,a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed.L1 adaptive control algorithm adds the low-pass filter to the control law,which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system.At the same time,by estimating the adaptive parameter uncertainty in object,the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition,and the robustness of the system is also improved.The automatic balancing method of PID is also studied in this paper.Findings–Through this automatic balancing mechanism,the gravity disturbance torque can be effectively reduced down to 10−6 Nm,and the automatic balancing time can be controlled within 7 s.Originality/value–This paper introduces an automatic balancing mechanism.The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy,and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.展开更多
In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwi...In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.展开更多
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o...Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.展开更多
The flying-wing aircraft has excellent aerodynamic efficiency and stealth performance.However,due to the lack of tails,the flying-wing aircraft has a serious attitude control problem.In this paper,the effective flow c...The flying-wing aircraft has excellent aerodynamic efficiency and stealth performance.However,due to the lack of tails,the flying-wing aircraft has a serious attitude control problem.In this paper,the effective flow control strategy of three-axis control is proposed by using continuous jets for a flapless flying-wing aircraft.The wind tunnel test of two kinds of flying-wing models,namely one flow control model and one mechanical control model,is conducted,and the control effect is analyzed and compared.By simultaneous blowing of the circulation control actuators inboard and differential blowing of the circulation control actuators outboard,the pitch and roll controls are achieved,respectively.It also has an effective control effect at very large angles of attack where the conventional control surface fails.A linear relationship is found between the increment of the controlled aerodynamic force/moment coefficient and the momentum coefficient for circulation control actuators.Moreover,to resolve the difficulty in yaw control,a novel wingtip jet is proposed based on the concept of the all-moving tip and compared with apex jet and circulation control jet.It is found that the wingtip jet is the most efficient actuator,followed by the simultaneous-blowing circulation control jet.Therefore,based on the research above,two optimized fluidic control configurations are proposed.One employs circulation control jet and wingtip jet,and the other is completely dependent on circulation control jet.Finally,the flow control mechanism of circulation control is discussed.Circulation control significantly accelerates the flow on the upper surface of the airfoil in attached flow and reduces the flow separation region in separated flow,leading to aerodynamic performance improvement.These results provide an important theoretic basis for the flapless flight control of flying-wing aircraft.展开更多
Compared with traditional open surgery,laparoscopic surgery significantly reduces bodily trauma,postoperative pain,and hospitalization duration.However,owing to the small size of incisions and the counterintuitive mot...Compared with traditional open surgery,laparoscopic surgery significantly reduces bodily trauma,postoperative pain,and hospitalization duration.However,owing to the small size of incisions and the counterintuitive motion of surgical tools,longer training cycles are required for surgeons to achieve fine operational skills.This paper presents a laparoscopic surgery simulator with haptic-feedback control(LSHC-6)that provides a reliable and cost-effective training alternative for surgeons.In addition to the structural diagram,kinematic analysis,and gravity compensation algorithm,a particle swarm optimization algorithm(PSO)is applied to optimize the structural parameters of the simulator by evaluating its workspace,global dexterity,and gravity compensation ability.A prototype system was developed and evaluated using two training experiments.The results demonstrate that the simulator exhibits good operational fluidity,workspace,and stable force output,effectively meeting the needs of laparoscopic surgical training.展开更多
BACKGROUND Although exposure therapy is a proven treatment for post-traumatic stress disorder(PTSD),empirical research is difficult due to ethical issues.Recently,virtual reality-based content that can provide space a...BACKGROUND Although exposure therapy is a proven treatment for post-traumatic stress disorder(PTSD),empirical research is difficult due to ethical issues.Recently,virtual reality-based content that can provide space and time similar to reality for exposure therapy techniques is increasing.AIM To examine exposure therapy using driving simulations in patients with PTSD due to traffic accidents with PTSD symptoms.METHODS The intervention was provided to two individuals who experienced PTSD symptoms after a traffic accident using a driving simulator.Among the singlesubject experimental designs,the ABA(baseline-intervention-baseline)design was used,and the PTSD checklist and brain wave frequency were used to measure the results.RESULTS In all participants,the standard category departure time of the electroencephalogram decreased from baseline,and PTSD symptoms decreased after the intervention.CONCLUSION These results suggest the potential use of a driving simulator as an exposure treatment tool for PTSD.展开更多
The ground-based experimental tests are crucial to verify the related technologies of the drag-free satellite.This work presents a design method of the ground simulator testbed for emulating the planar dynamics of the...The ground-based experimental tests are crucial to verify the related technologies of the drag-free satellite.This work presents a design method of the ground simulator testbed for emulating the planar dynamics of the space drag-free systems.In this paper,the planar dynamic characteristics of the drag-free satellite with double test masses are analyzed and nondimensionalized.A simulator vehicle composed of an air bearing testbed and two inverted pendulums is devised on the basic of equivalent mass and equivalent stiffness proposed firstly in this paper.And the dynamic model of the simulator equivalent to the sensitive axis motion of the test mass and the planar motion of the satellite is derived from the Euler-Lagrange method.Then,the dynamic equivalence conditions between the space prototype system and the ground model system are derived from Pi theorem.To satisfy these conditions,the scaling laws of two systems and requirements for the inverted pendulum are put forward.Besides,the corresponding control scaling laws and a closed-loop control strategy are deduced and applied to establishing the numerical simulation experiments of underactuated system.Subsequently,the comparative simulation results demonstrate the similarity of dynamical behavior between the scaled-down ground model and the space prototype.As a result,the rationality and effectiveness of the design method are proved,facilitating the ground simulation of future gravitational wave detection satellites.展开更多
Large-scale physical simulation is essential for advancing our understanding of natural gas hydrates exploitation mechanism.However,cylinder-shaped simulators often face challenges in balancing large volume,controllab...Large-scale physical simulation is essential for advancing our understanding of natural gas hydrates exploitation mechanism.However,cylinder-shaped simulators often face challenges in balancing large volume,controllability,and comprehensive monitoring.In this study,we developed a fan columnshaped hydrate simulator(FCHS)with an internal angle of 6°,a radius of 3 m,and an inner height of0.3 m,resulting in an effective volume of~142 L.Moreover,the FCHS is equipped with an integrated"thermal-pressure-acoustic"sensing system,enabling in-situ monitoring of temperature,pressure,and P-wave velocity evolution during hydrate formation and dissociation process.The experimental results indicate that a pressure gradient successfully established from the reservoir center toward its boundaries during depressurization stage,and pressure propagation is relatively slow,resulting in a radial pressure difference of 3-4 MPa within a 3 m range.Once the system reaches pressure equilibrium,the pressure difference decreases to 0.3-0.4 MPa.The depressurization at the wellbore promotes hydrate dissociation in the near-well region,resulting in the radial temperature difference reaches~1.5°C along the radial direction.The acoustic data reveals that a radial gradient in hydrate saturation gradually forms from the center to the boundary during depressurization-induced gas production.The evolutions of spatio-temporal multi-fields obtained in the FCHS are consist with that of field production.The FCHS proves to be a cutting-edge platform for experimental simulation of NGH exploitation and carbon sequestration processes.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
The size and shape effect(SSE)of components has become a critical issue for mechanical properties,application reliability,and processing.In this study,the creep rupture life(CRL)of components with different wall thick...The size and shape effect(SSE)of components has become a critical issue for mechanical properties,application reliability,and processing.In this study,the creep rupture life(CRL)of components with different wall thicknesses and positions in a combustion chamber casing simulator made of K439B superalloy was investigated.The intrinsic mechanisms of the SSE were explored from the dendrite structure,volume fraction and size of theγ'phase,and element segregation,etc.It is shown that this casting exhibits a strong SSE of creep rupture life,characterized by a significant difference in the CRL values up to 60%with the variation of wall thickness and position in the casing.In terms of casting technology,the influence of SSE on CRL is actually determined by the cooling rate.The SSE on the creep rupture life originates from the dendrite structure(such as the secondary dendrite arm spacing),volume fraction size of theγ'phase in the dendrite trunk,and elements segregation rate.This work may have implications for the design and application of engineering components with large sizes and complex structures.展开更多
This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonst...This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing.展开更多
Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presen...Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe.展开更多
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints...BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.展开更多
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred...This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.展开更多
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si...Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl m...Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl methylphosphonate(DIMP),a commonly used CWA surrogate,is widely studied to enhance our understanding of CWA behavior.The prevailing thermal decomposition model for DIMP,developed approximately 25 years ago,is based on data collected in nitrogen atmospheres at temperatures ranging from 700 K to 800 K.Despite its limitations,this model continues to serve as a foundation for research across various thermal and reactive environments,including combustion studies.Our recent experiments have extended the scope of decomposition analysis by examining DIMP in both nitrogen and zero air across a lower temperature range of 175??C to 250??C.Infrared spectroscopy results under nitrogen align well with the established model;however,we observed that catalytic effects,stemming from decomposition byproducts and interactions with stainless steel surfaces,alter the reaction kinetics.In zero air environments,we observed a novel infrared absorption band.Spectral fitting suggests this band may represent a combination of propanal and acetone,while GCMS analysis points to vinyl formate and acetone as possible constituents.Although the precise identity of these new products remains unresolved,our findings clearly indicate that the existing decomposition model cannot be reliably extended to lower temperatures or non-nitrogen environments without further revisions.展开更多
文摘This paper proposes a compensation method for using the Harmonic Amplitude-Phase Adaptive Control(HAPAC)to increase the precision of sinusoidal motion simulators. It also expounds on the HAPAC principle and structural disposition, develops the HAPAC control laws and analyzes the system stability in the HAPAC. A method for further improving the precision using online identification of the system’s frequency-response models is presented. The tested data and tracking errors of the simulator demonstrate that the HAPAC makes the sinusoidal motions achieve higher precision than the common classical controls. The HAPAC can also be used in other tracking systems of precision sinusoidal motions.
基金This work was partially supported by the National Natural Science Foundation of China(Nos 61673208,61374115)the National Key Research and Development Plan(No.2016YFB0500901).
文摘Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturbance torque of a satellite in outer space.However,at the beginning of the experiment,the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator.In order to solve this problem,it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity.The paper aims to discuss these issues.Design/methodology/approach–In this paper,a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed.L1 adaptive control algorithm adds the low-pass filter to the control law,which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system.At the same time,by estimating the adaptive parameter uncertainty in object,the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition,and the robustness of the system is also improved.The automatic balancing method of PID is also studied in this paper.Findings–Through this automatic balancing mechanism,the gravity disturbance torque can be effectively reduced down to 10−6 Nm,and the automatic balancing time can be controlled within 7 s.Originality/value–This paper introduces an automatic balancing mechanism.The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy,and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.
文摘In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang Uni-versity,China(No.2024KQ130)the National Natural Science Foundation of China(Nos.52073010 and 52373259).
文摘Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.
文摘The flying-wing aircraft has excellent aerodynamic efficiency and stealth performance.However,due to the lack of tails,the flying-wing aircraft has a serious attitude control problem.In this paper,the effective flow control strategy of three-axis control is proposed by using continuous jets for a flapless flying-wing aircraft.The wind tunnel test of two kinds of flying-wing models,namely one flow control model and one mechanical control model,is conducted,and the control effect is analyzed and compared.By simultaneous blowing of the circulation control actuators inboard and differential blowing of the circulation control actuators outboard,the pitch and roll controls are achieved,respectively.It also has an effective control effect at very large angles of attack where the conventional control surface fails.A linear relationship is found between the increment of the controlled aerodynamic force/moment coefficient and the momentum coefficient for circulation control actuators.Moreover,to resolve the difficulty in yaw control,a novel wingtip jet is proposed based on the concept of the all-moving tip and compared with apex jet and circulation control jet.It is found that the wingtip jet is the most efficient actuator,followed by the simultaneous-blowing circulation control jet.Therefore,based on the research above,two optimized fluidic control configurations are proposed.One employs circulation control jet and wingtip jet,and the other is completely dependent on circulation control jet.Finally,the flow control mechanism of circulation control is discussed.Circulation control significantly accelerates the flow on the upper surface of the airfoil in attached flow and reduces the flow separation region in separated flow,leading to aerodynamic performance improvement.These results provide an important theoretic basis for the flapless flight control of flying-wing aircraft.
基金Supported by the National Key Research and Development Program of China(Grant No.2022YFB4500604)in part by the Natural Science Foundation of Guangdong Province,China(Grant No.2022A1515010100 and 2024A1515010140).
文摘Compared with traditional open surgery,laparoscopic surgery significantly reduces bodily trauma,postoperative pain,and hospitalization duration.However,owing to the small size of incisions and the counterintuitive motion of surgical tools,longer training cycles are required for surgeons to achieve fine operational skills.This paper presents a laparoscopic surgery simulator with haptic-feedback control(LSHC-6)that provides a reliable and cost-effective training alternative for surgeons.In addition to the structural diagram,kinematic analysis,and gravity compensation algorithm,a particle swarm optimization algorithm(PSO)is applied to optimize the structural parameters of the simulator by evaluating its workspace,global dexterity,and gravity compensation ability.A prototype system was developed and evaluated using two training experiments.The results demonstrate that the simulator exhibits good operational fluidity,workspace,and stable force output,effectively meeting the needs of laparoscopic surgical training.
文摘BACKGROUND Although exposure therapy is a proven treatment for post-traumatic stress disorder(PTSD),empirical research is difficult due to ethical issues.Recently,virtual reality-based content that can provide space and time similar to reality for exposure therapy techniques is increasing.AIM To examine exposure therapy using driving simulations in patients with PTSD due to traffic accidents with PTSD symptoms.METHODS The intervention was provided to two individuals who experienced PTSD symptoms after a traffic accident using a driving simulator.Among the singlesubject experimental designs,the ABA(baseline-intervention-baseline)design was used,and the PTSD checklist and brain wave frequency were used to measure the results.RESULTS In all participants,the standard category departure time of the electroencephalogram decreased from baseline,and PTSD symptoms decreased after the intervention.CONCLUSION These results suggest the potential use of a driving simulator as an exposure treatment tool for PTSD.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFC2202604)the Strategy Priority Research Program of Chinese Academy of Sciences (Grant No.XDA1502110101).
文摘The ground-based experimental tests are crucial to verify the related technologies of the drag-free satellite.This work presents a design method of the ground simulator testbed for emulating the planar dynamics of the space drag-free systems.In this paper,the planar dynamic characteristics of the drag-free satellite with double test masses are analyzed and nondimensionalized.A simulator vehicle composed of an air bearing testbed and two inverted pendulums is devised on the basic of equivalent mass and equivalent stiffness proposed firstly in this paper.And the dynamic model of the simulator equivalent to the sensitive axis motion of the test mass and the planar motion of the satellite is derived from the Euler-Lagrange method.Then,the dynamic equivalence conditions between the space prototype system and the ground model system are derived from Pi theorem.To satisfy these conditions,the scaling laws of two systems and requirements for the inverted pendulum are put forward.Besides,the corresponding control scaling laws and a closed-loop control strategy are deduced and applied to establishing the numerical simulation experiments of underactuated system.Subsequently,the comparative simulation results demonstrate the similarity of dynamical behavior between the scaled-down ground model and the space prototype.As a result,the rationality and effectiveness of the design method are proved,facilitating the ground simulation of future gravitational wave detection satellites.
基金support received from the National Natural Science Foundation of China(22127812,22578482,22278433)the National Key Research and Development Program of China(2021YFC2800902)。
文摘Large-scale physical simulation is essential for advancing our understanding of natural gas hydrates exploitation mechanism.However,cylinder-shaped simulators often face challenges in balancing large volume,controllability,and comprehensive monitoring.In this study,we developed a fan columnshaped hydrate simulator(FCHS)with an internal angle of 6°,a radius of 3 m,and an inner height of0.3 m,resulting in an effective volume of~142 L.Moreover,the FCHS is equipped with an integrated"thermal-pressure-acoustic"sensing system,enabling in-situ monitoring of temperature,pressure,and P-wave velocity evolution during hydrate formation and dissociation process.The experimental results indicate that a pressure gradient successfully established from the reservoir center toward its boundaries during depressurization stage,and pressure propagation is relatively slow,resulting in a radial pressure difference of 3-4 MPa within a 3 m range.Once the system reaches pressure equilibrium,the pressure difference decreases to 0.3-0.4 MPa.The depressurization at the wellbore promotes hydrate dissociation in the near-well region,resulting in the radial temperature difference reaches~1.5°C along the radial direction.The acoustic data reveals that a radial gradient in hydrate saturation gradually forms from the center to the boundary during depressurization-induced gas production.The evolutions of spatio-temporal multi-fields obtained in the FCHS are consist with that of field production.The FCHS proves to be a cutting-edge platform for experimental simulation of NGH exploitation and carbon sequestration processes.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金financially supported by the National Science and Technology Major Project of China (No.J2019-VI-0004-0117)a Laboratory Fund Project (6142903220101)。
文摘The size and shape effect(SSE)of components has become a critical issue for mechanical properties,application reliability,and processing.In this study,the creep rupture life(CRL)of components with different wall thicknesses and positions in a combustion chamber casing simulator made of K439B superalloy was investigated.The intrinsic mechanisms of the SSE were explored from the dendrite structure,volume fraction and size of theγ'phase,and element segregation,etc.It is shown that this casting exhibits a strong SSE of creep rupture life,characterized by a significant difference in the CRL values up to 60%with the variation of wall thickness and position in the casing.In terms of casting technology,the influence of SSE on CRL is actually determined by the cooling rate.The SSE on the creep rupture life originates from the dendrite structure(such as the secondary dendrite arm spacing),volume fraction size of theγ'phase in the dendrite trunk,and elements segregation rate.This work may have implications for the design and application of engineering components with large sizes and complex structures.
基金the National Natural Science Foundation of China(No.U23A20322)the National Key Research and Development Program of China(Nos.2023YFF0719600,2021YFA1202600,and 2021YFB4000800)+4 种基金the CAS Project for Young Scientists in Basic Research(No.YSBR-113)the Ningbo Technology Project(No.2022A-007-C)the Hunan Provincial Natural Science Foundation(Nos.2023JJ50009,2025JJ60351,and 2023JJ30599)the Foundation of Innovation Center of Radiation Application(No.KFZC2023020701)the Major Scientific and Technological Innovation Platform Project of Hunan Province(No.2024JC1003).
文摘This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing.
基金financially supported by the National Natural Science Foundation of China(52130109)。
文摘Centrifugal casting of ductile iron pipe is a high-temperature,semi-continuous production process.However,conducting laboratory research on the solidification process of centrifugal casting of ductile iron pipe presents significant challenges.In this study,a novel research method was introduced for investigating the solidification process of ductile iron pipe,namely thermal simulation of ductile iron pipe.Comparative research was conducted on the microstructure and properties of the thermal simulation sample and the ductile iron pipe.The findings indicate that the thermal simulation sample and ductile iron pipe exhibit good heat transfer similarity and microstructure similarity.The difference of cooling rate between thermal simulation sample and ductile pipe is less than 0.24℃·s^(-1),and the difference of microstructure content of free cementite,ferrite,and pearlite is less than 5%.The tensile strength of annealed ductile iron pipe is 466 MPa,with an elongation of 16.1%and a Brinell hardness of 156.5 HBW.In comparison,the tensile strength of annealed thermal simulation sample is 482.0 MPa,with an elongation of 15.5%and a Brinell hardness of 159.0 HBW.These results suggest that the thermal simulation experimental research method is both scientific and feasible,offering an objective,reliable,and cost-effective approach to laboratory research on ductile iron pipe.
文摘BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.
基金supported by the National Key R&D Program of China[grant number 2023YFC3008004]。
文摘This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.
基金financially supported by the National Key Research and Development Program of China (2022YFB3706802)。
文摘Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金sponsored by the Department of Defense,Defense Threat Reduction Agency under the Materials Science in Extreme Environments University Research Alliance,HDTRA1-20-2-0001。
文摘Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl methylphosphonate(DIMP),a commonly used CWA surrogate,is widely studied to enhance our understanding of CWA behavior.The prevailing thermal decomposition model for DIMP,developed approximately 25 years ago,is based on data collected in nitrogen atmospheres at temperatures ranging from 700 K to 800 K.Despite its limitations,this model continues to serve as a foundation for research across various thermal and reactive environments,including combustion studies.Our recent experiments have extended the scope of decomposition analysis by examining DIMP in both nitrogen and zero air across a lower temperature range of 175??C to 250??C.Infrared spectroscopy results under nitrogen align well with the established model;however,we observed that catalytic effects,stemming from decomposition byproducts and interactions with stainless steel surfaces,alter the reaction kinetics.In zero air environments,we observed a novel infrared absorption band.Spectral fitting suggests this band may represent a combination of propanal and acetone,while GCMS analysis points to vinyl formate and acetone as possible constituents.Although the precise identity of these new products remains unresolved,our findings clearly indicate that the existing decomposition model cannot be reliably extended to lower temperatures or non-nitrogen environments without further revisions.