期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
Effects of high temperature and thermal cycles on fracture surface's roughness of granite:An insight on 3D morphology 被引量:1
1
作者 Qixiong Gu Zhen Huang +5 位作者 Kui Zhao Wen Zhong Li Liu Xiaozhao Li Yun Wu Ma Dan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期810-826,共17页
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o... The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles. 展开更多
关键词 GRANITE thermal cycles High temperature Fracture surface roughness ANISOTROPIC thermal damage
在线阅读 下载PDF
Effect of Multiple Thermal Cycles on Microstructure and Mechanical Properties of Cu Modified Ti64 Thin Wall Fabricated by Wire-Arc Directed Energy Deposition
2
作者 Zidong Lin Xuefeng Zhao +5 位作者 Wei Ya Yan Li Zhen Sun Shiwei Han Xiaoyang Peng Xinghua Yu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第11期1875-1890,共16页
This study investigated the effect of thermal cycles on Cu-modified Ti64 thin-walled components deposited using the wire-arc directed energy deposition(wire-arc DED)process.For the samples before and after experiencin... This study investigated the effect of thermal cycles on Cu-modified Ti64 thin-walled components deposited using the wire-arc directed energy deposition(wire-arc DED)process.For the samples before and after experiencing thermal cycles,it was found that both microstructures consisted of priorβ,grain boundaryα(GBα),and basketweave structures containingα+βlamellae.Thermal cycles realized the refinement ofαlaths,the coarsening of priorβgrains andβlaths,while the size and morphology of continuously distributed GBαremained unchanged.The residualβcontent was increased after thermal cycles.Compared with the heat-treated sample with nanoscale Ti2Cu formed,short residence time in high temperature caused by the rapid cooling rate of thermal cycles restricted Ti2Cu formation.No formation of brittle Ti2Cu means that only grain refinement strengthening and solid-solution strengthening matter.The yield strength increased from 809.9 to 910.85 MPa(12.46%increase).Among them,the main contribution from solid solution strengthening(~51 MPa)was due to the elemental redistribution effect betweenαandβphases caused by thermal cycles through quantitative analysis.The ultimate tensile strength increased from 918.5 to 974.22 MPa(6.1%increase),while fracture elongation increased from 6.78 to 10.66%(57.23%increase).Grain refinement ofαlaths,the promotedα′martensite decomposition,decreased aspect ratio,decreased Schmid factor,and local misorientation change ofαlaths are the main factors in improved ductility.Additionally,although the fracture modes of the samples in the top and middle regions are both brittle-ductile mixed fracture mode,the thermal cycles still contributed to an improvement in tensile ductility. 展开更多
关键词 Wire-arc directed energy deposition(wire-arc DED) Ti64-1.2Cu thin wall thermal cycles Microstructure variation Mechanical properties
原文传递
Valve Dynamic and Thermal Cycle Model in Stepless Capacity Regulation for Reciprocating Compressor 被引量:9
3
作者 JIN Jiangming HONG Weirong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1151-1160,共10页
The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the val... The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the valve dynamic has not been taken account into thermal cycle computation, the influence of capacity regulation system on suction valves dynamic performance and cylinder thermal cycle operation has not been considered. This paper focuses on theoretical and experimental analysis of the valve dynamic and thermal cycle for reciprocating compressor in the situation of stepless capacity regulation. The valve dynamics equation, gas forces for normal and back flow, and the cylinder pressure varying with suction valve unloader moment during compression thermal cycle are discussed. A new valve dynamic model based on L-K real gas state equation for reciprocating compressor is first deduced to reduce the calculation errors induced by the ideal gas state equation. The variations of valve dynamic and cylinder pressure during part of compression stroke are calculated numerically. The calculation results reveal the non-normal thermal cycle and operation condition of compressor in stepless capacity regulation situation. The numerical simulation results of the valve dynamic and thermal cycle parameters are also verified by the stepless capacity regulation experiments in the type of 3L-10/8 reciprocating compressor. The experimental results agree with the numerical simulation results, which show that the theoretical models proposed are effective and high-precision. The proposed theoretical models build the theoretical foundation to design the real stepless capacity regulation system. 展开更多
关键词 reciprocating compressor valve dynamic thermal cycle model stepless capacity regulation
在线阅读 下载PDF
Assessment of gas tungsten arc welding thermal cycles on Inconel 718 alloy 被引量:8
4
作者 M.HERNANDEZ R.R.AMBRIZ +3 位作者 R.CORTES C.M.GOMORA G.PLASCENCIA D.JARAMILLO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期579-587,共9页
Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding bead... Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical (Rosenthal’s thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements (profile and mapping representation) were conducted. A hardness decrement for the heat affected zone (~200 HV0.2) and fusion zone (~240 HV0.2) in comparison with base material (~350 HV0.2) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase (nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase,δ and MC transition phases, generating a loss in hardness close to the fusion zone. 展开更多
关键词 Inconel 718 gas tungsten arc welding (GTAW) weld thermal cycle finite element method heat moving source
在线阅读 下载PDF
Thermal cycle and its influence on the microstructure of laser welded butt joint of 8 mm thick Ti-6Al-4V alloy 被引量:8
5
作者 Tian Deyong Yan Tingyan +2 位作者 Gao Qiyu Wang Feiyun Zhan Xiaohong 《China Welding》 EI CAS 2019年第3期61-66,共6页
Ti-6Al-4V alloy is extensively used in the manufacture of components in aviation.In the current study,the laser welding process is adopted to joint the Ti-6Al-4V alloy plate which has the thick of 8 mm.A three-dimensi... Ti-6Al-4V alloy is extensively used in the manufacture of components in aviation.In the current study,the laser welding process is adopted to joint the Ti-6Al-4V alloy plate which has the thick of 8 mm.A three-dimensional finite element model is established to simulate the temperature distribution of laser welding process.The thermal cycle curves are produced on the strength of the simulation results.Meanwhile,the microstructure characteristics of the welded joint are investigated combined with simulation results.The results show that weld zone,heat affected zone and based metal experience similar thermal cycles process and the cooling rate has an important influence on the formation of microstructure.Moreover,the simulation results are well matched with experiment results. 展开更多
关键词 Ti-6Al-4V alloy laser welding temperature distribution thermal cycle MICROSTRUCTURE
在线阅读 下载PDF
Effect of Thermal Cycle on Microstructure and Fracture Morphology in HAZ of HQ130 Steel 被引量:4
6
作者 Li Yajiang Zou Zengda +2 位作者 Cheng Zhunian Wei Xing Jiang Quanchang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1996年第2期38-43,共6页
The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld therm... The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld thermo-simulation test. Experimental results indicate that the impact toughness and hardness decrease with the decrease of Tpor increase of t8/5 under the condition of a single thermal cycle. There is a brittle zone in the vicinity of Tp= 800℃, where the impact toughness is considerably low. There is a softened zone in the vicinity of Tp=700℃, where the hardness decreases but the toughness increases. In the practical application of multi-layer and multipass welding, the welding heat input should be strictly limited (t8/5≤20s) so as to reduce the softness and brittleness in the HAZ of-HQ130 steel. 展开更多
关键词 high strength steel welding thermal cycle heat-affected zone MICROSTRUCTURE impact toughness
在线阅读 下载PDF
Effects of Composition and Thermal Cycle on Transformation Behaviors,Thermal Stability and Mechanical Properties of CuAlAg Alloy 被引量:3
7
作者 Yunqing MA, Chengbao JIANG, Lifen DENG and Huibin XUDepartment of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第5期431-434,共4页
The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied allo... The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied alloy. It was found that Ag addition in the CuAl binary alloy can improve the stability of martensitic transformation and high Al content leads to the disappearing of martensitic transformation. The tensile strength and strain of the Cu-10.6AI-5.8Ag (wt pct) alloy were measured to be 383.5 MPa and 0.86%, respectively. With rare earth addition, the tensile strain increased from 0.86% to 1.47%. The CuAlAg alloy did not exhibit martensitic transformation on the second heating process. Its poor thermal stability still needs to be improved. 展开更多
关键词 High temperature shape memory alloys CuAlAg Transformation behavior thermal cycle thermal stability Rare earth Mechanical property
在线阅读 下载PDF
The effect of thermal cycle on joint of Ti/stainless steel phase transformation diffusion bonding 被引量:4
8
作者 周荣林 张九海 田锡唐 《China Welding》 EI CAS 2001年第1期14-18,共5页
The effects of thermal cycle parameters on the tensile strength and fracture characteristics of phase transformation diffusion bonding(PTDB) joint of titanium and stainless steel (Ti/SS) were studied in this paper. Wi... The effects of thermal cycle parameters on the tensile strength and fracture characteristics of phase transformation diffusion bonding(PTDB) joint of titanium and stainless steel (Ti/SS) were studied in this paper. With the maximum cyclic temperature of 1 173~1 223 K , the minimum cyclic temperature of 1 073~1 093 K , the heating velocity of 30~50 K/s , the cooling velocity of 15~20 K/s , the cycle numbers of 15~20 and bonding pressure is 13 MPa , the tensile strength of joint is more than 380 MPa , exceeding 80% of that of Ti. 展开更多
关键词 thermal cycle phases transformation diffusion bonding TITANIUM stainless steel
在线阅读 下载PDF
Microstructures and mechanical properties of Cu/Al compound materials during thermal cycle 被引量:2
9
作者 Bing Wang Ping Liu +4 位作者 Xin-Kuan Liu Zi-Yan Wang Yan-Yan Wang Xiao-Hong Chen Xiao-Zhi Liu 《Rare Metals》 SCIE EI CAS CSCD 2022年第11期3911-3918,共8页
Cu/Al compound materials,named as copperclad aluminum bus bars,are widely used in heat dissipation of modern engineering.The thermal cycle tests were conducted at 200,250 and 300℃for different cycle times,respectivel... Cu/Al compound materials,named as copperclad aluminum bus bars,are widely used in heat dissipation of modern engineering.The thermal cycle tests were conducted at 200,250 and 300℃for different cycle times,respectively.Effects of thermal cycle temperatures and thermal cycle times on micro structures and mechanical properties of the interface were studied.The results show that the width of bonding layer and bond strength are significantly affected by thermal cycle temperatures and times.Nonetheless,the variety or the quantity of intermediate compounds is scarcely influenced.Al_(2)Cu,Cu_(9) Al_(4)and CuAl were identified on the interface.With the increase in cycle times,grains of the material grew up.However,grains of the interface grew up more apparently than those of Cu and Al.The knowledge may be applied in the establishment of service condition and quality evaluation of material. 展开更多
关键词 Copper-clad aluminum bus bars thermal cycle Interface BONDING Microstructure INTERMETALLIC
原文传递
Thermal simulation of single thermal cycle for high strength steel pipe 被引量:4
10
作者 Xia Peipei Yang Liuqing +3 位作者 Wu Linen Gu Yunlong Xu Xiaolin You Zongbin 《China Welding》 CAS 2022年第4期59-66,共8页
Single thermal cycle simulation tests were carried out for X80 high strength steel pipes from three steel mills by a Gleeble 3500HS thermal simulation test machine,and coincidence degree of the thermal simulation curv... Single thermal cycle simulation tests were carried out for X80 high strength steel pipes from three steel mills by a Gleeble 3500HS thermal simulation test machine,and coincidence degree of the thermal simulation curve with the set curve under heat inputs of 6–30 kJ/cm was observed;The relationship between different heat inputs and microstructure,impact toughness and hardness of steel pipe CGHAZ(coarse grain heat affected zone)was studied by metallographic examination,impact test and hardness test.The results show that with the increase of heat input,original austenite grain size increases gradually,the lath bainite ratio decreases and the granular bainite ratio increases.The impact toughness of C steel pipe is lower than those of A and B steel pipe,and the impact toughness of CGHAZ from the three steel pipes show different trends:for A steel pipe CGHAZ,impact toughness increases first and then decreases,with the highest value of 270–320 J under 20–25 kJ/cm;for B steel pipe CGHAZ,impact toughness decreases slightly;for C steel pipe CGHAZ,impact toughness increases,with the highest value of 260–300 J under 25 kJ/cm.As the heat input increases,the hardness of three X80 steel pipes CGHAZ shows a decreasing trhighend,and C steel pipe has the largest decreasing range. 展开更多
关键词 X80 pipe single thermal cycle coarse grain heat affected zone heat input
在线阅读 下载PDF
Dimensional instability of LF21 aluminum alloy weldments at room temperature and after thermal cycles 被引量:3
11
作者 刘雪松 田锡唐 徐文立 《China Welding》 EI CAS 2002年第1期89-94,共6页
The unstable dimensional distortion of LF21 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM. At the same time, distortion mechanism was analyzed f... The unstable dimensional distortion of LF21 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM. At the same time, distortion mechanism was analyzed from the viewpoint of mechanics and microstructure. Experimental results show that there exists obvious difference of unstable dimensional distortion between LF21 welded specimens under two conditions mentioned above. Under room temperature, dimensional variation of welded specimens will decrease gradually and finally tends to be stable during 130 h after welding. The relative elongation of welded specimen is 4.2×10 -5 . After thermal cycles, distortion of welded specimen is much larger than that at room temperature. After 11 thermal cycles, the dimension will tend to be stable. Dimensional unstable distortion of weldments mainly results from temperature condition, microstructure variation and relaxation of welding residual stress. 展开更多
关键词 LF21 aluminum alloy light interference thermal cycles dimensional instability
在线阅读 下载PDF
SIMULATION OF WELD THERMAL CYCLE USING THE MODEL OF CARBONITRIDE PARTICLES PRECIPITATION 被引量:2
12
作者 C. B. Cui S. H. Yang Z. Xiong and J. B. Hong (University Navy Engineering, Wuhan, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期145-150,共6页
Based on the chasteal nucleation theory, the kinetic precipitation model of carbon - nitride particles in weld HAZ is proposed. Using the model,welding simulation technology and the quantitative metallo- graphic anal... Based on the chasteal nucleation theory, the kinetic precipitation model of carbon - nitride particles in weld HAZ is proposed. Using the model,welding simulation technology and the quantitative metallo- graphic analysis,the precipitation transformation temperatue (PTT) curve is obtained.The data from the simulated welds are in good apreement with the value that the PTT curves predicated. 展开更多
关键词 carbon-nitride simulated weld thermal cycle PTT curve
在线阅读 下载PDF
A study of local brittle zone (LBZ) of 10Ni5CrMoV steel after double thermal cycles 被引量:2
13
作者 张宝伟 魏金山 张田宏 《China Welding》 EI CAS 2005年第2期149-152,共4页
The 10Ni5CrMoV steel examined was a 16 mm thick plate. Specimens measuring 12 mm×12 mm×120 mm were thermally cycled using DM-100A weld simulator with various parameters. The main results are summarized as fo... The 10Ni5CrMoV steel examined was a 16 mm thick plate. Specimens measuring 12 mm×12 mm×120 mm were thermally cycled using DM-100A weld simulator with various parameters. The main results are summarized as follaws. In the coarse-grained austenitized region( Tm = 1 300℃ + 1300℃ ) ,the microstructure is in good toughness. At the condition of Tm = 1 300℃ + 850℃ and t8/5=43 s, the toughness decreases heavily because M-A constituent and twin martensite appear at the prior aastenite grain boundaries. When Tm= 1300℃ + 850℃ or 1300℃ + 730℃ and t8/5 = 85 s, local brittle zone is formed because of relatively coarse granular bainite. 展开更多
关键词 10Ni5SCrMoV steel local brittle zone WELD thermal cycle microstructure inheritance
在线阅读 下载PDF
Parameter fitting of constitutive model and FEM analysis of solder joint thermal cycle reliability for lead-free solder Sn-3.5Ag 被引量:1
14
作者 周萍 胡炳亭 +1 位作者 周孑民 杨莺 《Journal of Central South University》 SCIE EI CAS 2009年第3期339-343,共5页
The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--... The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right comer of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796 × 10^4 cycles under the calculated conditions. 展开更多
关键词 lead free solder Sn-3.5Ag alloy Sn-37Pb alloy constitutive model TENSILE FEM analysis thermal cycle reliability
在线阅读 下载PDF
Conductivity and Oxidation Behavior of Fe-16Cr Alloy as Solid Oxide Fuel Cell Interconnect Under Long-Stability and Thermal Cycles 被引量:1
15
作者 Jianwu Zhou Qiangfeng Chen +3 位作者 Junkang Sang Rongmin Wu Zhuobin Li Wanbing Guan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第5期668-674,共7页
Conductivity and oxidation behavior of Fe-16Cr alloy were investigated under long-term stability operation at 750℃and thermal cycles from room temperature to 750℃.The results showed that the area specific resistance... Conductivity and oxidation behavior of Fe-16Cr alloy were investigated under long-term stability operation at 750℃and thermal cycles from room temperature to 750℃.The results showed that the area specific resistance(ASR)of Fe-16Cr alloy increased over time and reached about 56.29 mΩcm~(2)after 40,000 h of long-term stability operation at 750℃by theoretical calculation.The ASR of Fe-16Cr remained about 11 mΩcm~(2)after 52 thermal cycles from room temperature to750℃.The analysis of structure showed that the oxidized phase on the surface of Fe-16Cr was mainly composed of Cr_(2)O_3and Fe Cr_(2)O_(4)spinel phase under long-term stability operation at 750℃.While the Cr_(2)O_(3)phase was mainly observed on the surface of Fe-16Cr alloy after 52 thermal cycles,the oxidation rates of Fe-16Cr alloy were 0.0142μm h~(-1)and 0.06μm cycle~(-1)under long-term stability operation and under thermal cycle,respectively.The property of Fe-16Cr alloy with 2.6 mm thickness met the lifespan requirement of interconnect for solid oxide fuel cell(SOFC)stacks.The Cr element all diff used onto oxidation surface,indicating that it was necessary to spray a coating on the surface to avoid poisoning cell cathode of SOFCs.Two 2-cell stacks were assembled and tested to verify the properties of Fe-16Cr alloy as SOFC interconnect under long-term stability operation and thermal cycle condition. 展开更多
关键词 Fe-16Cr INTERCONNECT Long-term stability thermal cycle Solid oxide fuel cell
原文传递
Effect of thermal cycles on microstructure of reduced activation steel fabricated using laser melting deposition 被引量:1
16
作者 Qian An Zhi-xin Xia +2 位作者 Chi Zhang Zhi-gang Yang Hao Chen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2021年第3期316-326,共11页
Reduced activation steel was successfully fabricated by laser melting deposition employing a Gaussian and a ring-shaped laser.The microstructure evolution of the reduced activation steel was investigated using the sca... Reduced activation steel was successfully fabricated by laser melting deposition employing a Gaussian and a ring-shaped laser.The microstructure evolution of the reduced activation steel was investigated using the scanning electron microscope,transmission electron microscope and electron backscatter diffraction.The experimental results showed that the grains close to the substrate were smaller than the grains in the upper layers.Compared to those deposited using a Gaussian laser,the samples deposited using a ring-shaped laser showed a more homogeneous microstructure.Furthermore,a finite element analysis(FEA)model was applied to reveal the thermal history during laser melting deposition.The simulation results were well validated with the experimental results.FEA results indicate that the peak temperature increases and the cooling rate decreases,as the layer gets further from the substrate.Additionally,the temperature and the cooling rate resulting from the Gaussian laser model were higher at the midline of the samples and lower around the edges,whereas those of the ring-shaped laser model were consistent with both at the center and around the edges. 展开更多
关键词 Laser melting deposition Reduced activation steel Microstructure evolution thermal cycle Finite element analysis
原文传递
EFFECTS OF THERMAL CYCLE ON MECHANICAL PROPERTIES AND FRACTOGRAPHY IN HAZ OF HQ130 STEEL 被引量:1
17
作者 B. Liu J.X.Qu W.J.Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第3期274-278,共5页
The effect of different peak temperature T_P) and cooling time (t_(8/5)) on hardness,impact toughness and fracture morphology in the heat--affected zone (HAZ) of HQ130steel was studied by using welding thermo--simulat... The effect of different peak temperature T_P) and cooling time (t_(8/5)) on hardness,impact toughness and fracture morphology in the heat--affected zone (HAZ) of HQ130steel was studied by using welding thermo--simulation test. Experimental results showthat the impact toughness and hardness decrease with the decrease of T_P or increase oft_(8/5) under the condition of a single thermal cycle. There is a brittle zone in the vicinityof T_P=800℃, where the impact toughness is considerebly low. There is softened zonein vicinity of T_P=700℃, Where the harkness decreases but the toughness increases. Inthe practical application of multi--layer and multi--pass welding, the welding heat inputshould be strictly limited (t_(8/5)≤20s) so as to reduce the softness and brittleness in theHAZ of HQ130 steel. 展开更多
关键词 high strength steel welding thermal cycle heat-affected zone impact toughness
在线阅读 下载PDF
Modeling effect of cooling conditions on solidification process during thermal cycle of rollers in twin-roll strip casting 被引量:1
18
作者 Chun-feng Bai Bo Wang +2 位作者 Jie Ma Jie-yu Zhang Wan-ping Pan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第1期64-73,共10页
In the twin-roll strip casting process,molten steel solidifies by losing heat through its interface with the casting rollers.The heat extraction along this interface has an effect on the quality of the strips and shou... In the twin-roll strip casting process,molten steel solidifies by losing heat through its interface with the casting rollers.The heat extraction along this interface has an effect on the quality of the strips and should be affected by coating,rolls’material,and cooling water flow rate.It is necessary to understand the effect of these casting parameters on the solidification structure of twin-roll strip casting.A three-dimensional computational domain is set up to simulate the solidification process of molten steel and heat exchange between steel strip/air,coating,rolls,and cooling water in the channel of roll sleeves.The effect of the cooling water intensity and flow intensity of molten steel in the pool on the solidification structures is studied during the thermal cycle of rolls in the twin-roll strip casting.These predicted results are helpful to optimize casting parameters and improve the strip quality in the twin-roll strip casting process. 展开更多
关键词 Twin-roll strip casting Solidification structure Numerical simulation thermal cycle Cellular automata finite element model
原文传递
DIMENSIONAL INSTABILITY OF LD31 Al ALLOY WELDMENTS AT ROOM TEMPERATURE AND AFTER THERMAL CYCLES
19
作者 X.S.Liu H.Y.Fang +2 位作者 W.L.Xu X.T.Tian X.D.Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期64-70,共7页
The unstable dimensional distortion of LD31 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM(three-coordinate measuring machines). At the same time... The unstable dimensional distortion of LD31 aluminum alloy weldments at room temperature and after thermal cycles was studied by use of light interference and CMM(three-coordinate measuring machines). At the same time, distortion mechanism was analyzed from the viewpoint of mechanics and micro structure. Experimental results show that there exists obvious difference of unstable dimensional distortion between LD31 welded specimens under two conditions mentioned above. Under room temperature, dimensional variation of welded specimens will decrease gradually and finally tends to be stable during 200h after welding. The relative elongation of welded specimen is 3.0×10-5; After thermal cycles, distortion of welded specimen is much larger than that at room temperature. After 11 thermal cycles, the dimension will tend to be stable. Dimensional unstable distortion of weldments mainly results from temperature condition, microstructure variation and relaxation of welding residual stress. 展开更多
关键词 LD31 aluminum alloy light interference room temperature and thermal cycles dimensional instability
在线阅读 下载PDF
Tailoring microstructure evolution and mechanical properties of a high-performance alloy steel through controlled thermal cycles of a direct laser depositing process
20
作者 Shi-yun Dong Xuan Zhao +5 位作者 Shi-xing Yan Yao-hui Lü Xiao-ting Liu Yu-xin Liu Peng He Bin-shi Xu 《China Foundry》 SCIE CAS 2021年第5期463-473,共11页
Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processi... Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processing of DLD,the deposited steel layer is affected by the subsequent layer depositing.The DLD block shows different microstructure and mechanical properties at the bottom,middle and top of the deposited parts.To date,there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers.In this study,the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate,while the bottom deposited layer was subjected to a weak tempering effect.Results show that a high proportion of martensite is produced,which improves the strength of the deposited layer.Under the laser scanning strategy of laser power 2,500 W,scanning velocity 5 mm·s^(-1),powder feeding rate 11 g·min^(-1),overlap rate 50%,and a laser power difference of 50 W and a 2 min interval,the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873-1,022 MPa,and the elongation is in the range of 16.2%-18.9%.This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers,which can increase the proportion of martensite in the low-alloy high-strength steel,so as to improve the yield strength of the alloy steel. 展开更多
关键词 alloy steel direct laser deposition thermal cycles microstructure evolution mechanical properties
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部