期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
A Novel Variable Shifting Code for Test Compression of SoC
1
作者 Xiao-Le Cui Liang Yin Jin-Xi Hong Ren-Fu Zuo Xiao-Xin Cui Wei Cheng 《Journal of Electronic Science and Technology of China》 2009年第4期375-379,共5页
The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic ... The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic test equipment (ATE) and the CUT (circuit under test) effectively, a novel VSPTIDR (variable shifting prefix-tail identifier reverse) code for test stimulus data compression is designed. The encoding scheme is defined and analyzed in detail, and the decoder is presented and discussed. While the probability of 0 bits in the test set is greater than 0.92, the compression ratio from VSPTIDR code is better than the frequency-directed run-length (FDR) code, which can be proved by theoretical analysis and experiments. And the on-chip area overhead of VSPTIDR decoder is about 15.75 % less than the FDR decoder. 展开更多
关键词 FDR code run-length code test data compression VSPTIDR code.
在线阅读 下载PDF
Numerically and Experimentally Establishing Rheology Law for AISI 1045 Steel Based on Uniaxial Hot Compression Tests
2
作者 Josef Walek Petr Lichy 《Computer Modeling in Engineering & Sciences》 2025年第3期3135-3153,共19页
Plastometric experiments,supplemented with numerical simulations using the finite element method(FEM),can be advantageously used to characterize the deformation behavior of metallic materials.The accuracy of such simu... Plastometric experiments,supplemented with numerical simulations using the finite element method(FEM),can be advantageously used to characterize the deformation behavior of metallic materials.The accuracy of such simulations predicting deformation behaviors of materials is,however,primarily affected by the applied rheology law.The presented study focuses on the characterization of the deformation behavior of AISI 1045 type carbon steel,widely used e.g.,in automotive and power engineering,under extreme conditions(i.e.,high temperatures,strain rates).The study consists of two main parts:experimentally analyzing the flow stress development of the steel under different thermomechanical conditions via uniaxial hot compression tests and establishing the rheology law via numerical simulations implementing the experimentally acquired flow stress curves.The numerical simulations then not only serve to establish the rheology law but also to verify the reliability of the selected experimental process.The results of the numerical simulations showed that the established rheology law characterizes the behavior of the investigated steel with sufficient accuracy also at high temperatures and/or strain rates,and can,therefore,be used for practical purposes.Last but not least,supplementary microstructure analyses performed for the samples subjected to the highest deformation temperature provided a deeper insight into the effects of the applied(extreme)thermomechanical conditions on the behavior of the investigated steel. 展开更多
关键词 Rheology law numerical simulation finite element method hot compression test deformation behavior microstructure
在线阅读 下载PDF
Strain localization-controlled rock failure using digital volume correlation technology: In situ compression tests on 3D-printed rocklike samples with a single initial flaw
3
作者 Yulong Shao Jingwei Yang +4 位作者 Jineon Kim Chen He Jae-Joon Song Hong Yin Junsu Leem 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4329-4348,共20页
The study of rock failure mechanisms is fundamental to geotechnical engineering,as it enhances design quality and mitigates disaster risks.This research employed in situ compression tests on 3D-printed rocklike sample... The study of rock failure mechanisms is fundamental to geotechnical engineering,as it enhances design quality and mitigates disaster risks.This research employed in situ compression tests on 3D-printed rocklike samples with a single flaw,combining Micro-CT scans and a specialized loading device to analyze their behavior.Mechanical properties and failure modes of these printed samples were compared to those of natural flawed sandstones,demonstrating the capability of 3D printing to replicate natural rock characteristics.By reconstructing 3D crack evolution from 2D CT images and applying digital volume correlation(DVC),the study visualized internal strain fields and established a relationship between strain patterns and rock failure.The results reveal that crack initiation consistently occurs at the flaw,advancing into tensile and secondary shear or mixed cracks.For flaw angles(α)ranging from 0°to 45°,the 3D-printed samples exhibited a higher number of newly formed cracks and a faster increase in crack volume with strain.In contrast,for flaw angles of 45°≤α≤90°,the opposite trend was observed.The internal strain field exhibited significant strain localization,with this uneven distribution playing a critical role in sample failure.When the flaw angle was in the range of 0°≤α≤30°,failure was primarily driven by tensile cracks,forming distinct tensile bands.Conversely,for 30°<α≤90°,a combination of tensile and shear cracks dominated the failure,producing both shear and tensile bands in the sample.Additionally,the strain field component ε_(yy) showed a strong correlation with the evolution of internal damage,providing valuable insights into the underlying rock failure mechanisms. 展开更多
关键词 3D printing In situ compression test CT scanning Digital volume correlation(DVC) Damage evolution Strain localization Failure mechanism
在线阅读 下载PDF
ADVANCED FREQUENCY-DIRECTED RUN-LENTH BASED CODING SCHEME ON TEST DATA COMPRESSION FOR SYSTEM-ON-CHIP 被引量:1
4
作者 张颖 吴宁 葛芬 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期77-83,共7页
Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre... Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes. 展开更多
关键词 test data compression FDR codes test resource partitioning SYSTEM-ON-CHIP
在线阅读 下载PDF
An Efficient Test Data Compression Technique Based on Codes
5
作者 方建平 郝跃 +1 位作者 刘红侠 李康 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2005年第11期2062-2068,共7页
This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t... This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method 展开更多
关键词 test data compression unspecified bits assignment system-on-a-chip test hybrid run-length codes
在线阅读 下载PDF
Constitutive relationship of IN690 superalloy by using uniaxial compression tests 被引量:12
6
作者 SUN Chaoyang LIU Jinrong +2 位作者 LI Rui ZHANG Qingdong DONG Jianxin 《Rare Metals》 SCIE EI CAS CSCD 2011年第1期81-86,共6页
The hot deformation behavior of IN690 superalloy was characterized in a temperature range of 1273-1473 K and a strain rate range of 0.01-10 s^-1 using uniaxial compression tests on process annealed material.The consti... The hot deformation behavior of IN690 superalloy was characterized in a temperature range of 1273-1473 K and a strain rate range of 0.01-10 s^-1 using uniaxial compression tests on process annealed material.The constitutive relations between flow stress and effective strain,effective strain rate as well as deformation temperature were studied.It can be concluded that the flow stress significantly reduces with the deformation temperature of IN690 superalloy increasing.Whereas,there is a significant increase of flow stress when the strain rate increases from 0.1 s^-1 to 10 s^-1.Based on the hyperbolic-sine Arrhenius-type equation,a constitutive equation considering compensation of strain was developed.The activation energy and the material constants(Q,n and ln A) decrease as the deformation strain increases.The strain dependent term is successfully incorporated in the constitutive equation through a quartic equation.A good agreement between the experimental data and the predicted results has been achieved,indicating that the proposed constitutive equation and the methods of determing the material constants are suitable to model the high temperature deformation behavior of IN690 superalloy. 展开更多
关键词 SUPERALLOYS compression testing constitutive equations activation energy
在线阅读 下载PDF
Stress-strain behavior of plastic concrete using monotonic triaxial compression tests 被引量:14
7
作者 Y.Pashang Pisheh S.M.Mir Mohammad Hosseini 《Journal of Central South University》 SCIE EI CAS 2012年第4期1125-1131,共7页
The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures hav... The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes have been experimentally investigated. It has been observed that increasing the confining pressures applied on the specimens causes the material behavior to be alike the more ductile materials and the compressive strength increases considerably as well. Moreover, a parametric study has been carded out to investigate the influence of essential parameters on the shear strength parameters of these materials. According to the research, increasing the coarse to fine aggregates ratio leads to the increase of compressive strength of the specimens as well as the increase of the cohesion and internal friction angle of the materials. Furthermore, the bentonite content decrease and the cement factor increase result in an increase of the cohesion parameter of plastic concretes and decrease of the internal friction angle of such materials. 展开更多
关键词 plastic concrete stress-strain behavior triaxial compression test STRENGTH elastic modulus
在线阅读 下载PDF
Temperature-controlled triaxial compression/creep test device for thermodynamic properties of soft sedimentary rock and corresponding theoretical prediction 被引量:2
8
作者 Sheng Zhang Hirotomo Nakano +2 位作者 Yonglin Xiong Tomohiro Nishimura Feng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期255-261,共7页
In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of ... In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of the waste.In this paper,some experimental researches on the thermo-mechanical characteristics of soft sedimentary rock have been presented.For this reason,a new temperature-controlled triaxial compression and creep test device,operated automatically by a computer-controlled system,whose control software has been developed by the authors,was developed to conduct the thermo-mechanical tests in different thermal loading paths,including an isothermal path.The new device is proved to be able to conduct typical thermo-mechanical element tests for soft rock.The test device and the related testing method were introduced in detail.Finally,some test results have been simulated with a thermo-elasto-viscoplastic model that was also developed by the authors. 展开更多
关键词 temperature control soft sedimentary rock thermal triaxial compression test thermal triaxial creep test
在线阅读 下载PDF
Finite element analysis of small-scale hot compression testing
9
作者 Patryk Jedrasiak Hugh Shercliff 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第17期174-188,共15页
This paper models hot compression testing using a dilatometer in loading mode.These small-scale tests provide a high throughput at low cost,but are susceptible to inhomogeneity due to friction and temperature gradient... This paper models hot compression testing using a dilatometer in loading mode.These small-scale tests provide a high throughput at low cost,but are susceptible to inhomogeneity due to friction and temperature gradients.A novel method is presented for correcting the true stress-strain constitutive response over the full range of temperatures,strain-rates and strain.The nominal response from the tests is used to predict the offset in the stress-strain curves due to inhomogeneity,and this stress offsetΔσis applied piecewise to the data,correcting the constitutive response in one iteration.A key new feature is the smoothing and fitting of the flow stress data as a function of temperature and strain-rate,at multiple discrete strains.The corrected model then provides quantitative prediction of the spatial and temporal variation in strain-rate and strain throughout the sample,needed to correlate the local deformation conditions with the microstructure and texture evolution.The study uses a detailed series of 144 hot compression tests of a Zr-Nb alloy.While this is an important wrought nuclear alloy in its own right,it also serves here as a test case for modelling the dilatometer for hot testing of high temperature alloys,particularly those with dualα-βphase microstructures(such as titanium alloys). 展开更多
关键词 Finite element analysis Process modelling Hot compression testing UPSETTING Zr alloys Ti alloys
原文传递
System-on-Chip Test Data Compression Based on Split-Data Variable Length (SDV) Code
10
作者 J. Robert Theivadas V. Ranganathan J. Raja Paul Perinbam 《Circuits and Systems》 2016年第8期1213-1223,共11页
System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to opti... System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to optimize the test data volume, decrease the testing time, and conquer the ATE memory limitation for SOC designs. This paper presents a new compression method of testing for intellectual property core-based system-on-chip. The proposed method is based on new split- data variable length (SDV) codes that are designed using the split-options along with identification bits in a string of test data. This paper analyses the reduction of test data volume, testing time, run time, size of memory required in ATE and improvement of compression ratio. Experimental results for ISCAS 85 and ISCAS 89 Benchmark circuits show that SDV codes outperform other compression methods with the best compression ratio for test data compression. The decompression architecture for SDV codes is also presented for decoding the implementations of compressed bits. The proposed scheme shows that SDV codes are accessible to any of the variations in the input test data stream. 展开更多
关键词 test Data compression SDV Codes SOC ATE Benchmark Circuits
在线阅读 下载PDF
Progressive failure of frozen sodium sulfate saline sandy soil under uniaxial compression 被引量:1
11
作者 Dongyong Wang Bo Shao +2 位作者 Jilin Qi Wenyu Cui Liyun Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4646-4656,共11页
The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics ... The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics of frozen sodium sulfate saline sandy soil,a series of uniaxial compression tests were performed by integrating digital image correlation(DIC)technology into the testing apparatus.The evolution law of the uniaxial compression strength(UCS),the failure strain,and the formation of the shear band of the frozen sodium sulfate saline sandy soil were analyzed.The test results show that within the scope of this study,with the increase of salt content,both the UCS and the shear band angle initially decrease with increasing salt content before showing an increase.In contrast,the failure strain and the width of the shear band exhibit an initial increase followed by a decrease in the samples.In addition,to investigate the brittle failure characteristics of frozen sodium sulfate saline sandy soil,two classic brittleness evaluation methods were employed to quantitatively assess the brittleness level for the soil samples.The findings suggest that the failure characteristics under all test conditions in this study belong to the transition stage between brittle and ductile,indicating that frozen sodium sulfate saline sandy soil exhibits certain brittle behavior under uniaxial compression conditions,and the brittleness index basically decreases and then increases with the rise in salt content. 展开更多
关键词 Frozen sodium sulfate saline sandy soil Uniaxial compression test Digital image correlation Progressive failure Brittleness index
在线阅读 下载PDF
Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression
12
作者 Qian Yin Fan Wen +7 位作者 Zhigang Tao Hai Pu Tianci Deng Yaoyao Meng Qingbin Meng Hongwen Jing Bo Meng Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期311-324,共14页
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio... The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure. 展开更多
关键词 cemented gangue backfill materials particle size distribution true triaxial compression test carbon nanotubes mechanical properties failure modes
在线阅读 下载PDF
Mechanical properties, deformation response, energy evolution and failure pattern of stratified cemented tailings backfill under triaxial compression
13
作者 Wenbin Xu Yalun Zhang +1 位作者 Kangqi Zhao Tong Sun 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2391-2405,共15页
The backfill should keep stable in the primary stope when mining an adjacent secondary stope in subsequent open stoping mining methods,and the large-size mined-out area is usually backfilled by multiple backfilling be... The backfill should keep stable in the primary stope when mining an adjacent secondary stope in subsequent open stoping mining methods,and the large-size mined-out area is usually backfilled by multiple backfilling before the recovery of a secondary stope,resulting in a layered structure of backfill in stope.Therefore,it is significant to investigate the deformation responses and mechanical properties of stratified cemented tailings backfill(SCTB)with different layer structures to remain self-standing as an artificial pillar in the primary stope.The current work examined the effects of enhance layer position(1/3,1/2,and 2/3)and thickness ratio(0,0.1,0.2,and 0.3)on the mechanical properties,deformation,energy evolution,microstructures,and failure modes of SCTB.The results demonstrate that the incorporation of an enhance layer significantly strengthens the deformation and strength of SCTB.Under a confining pressure of 50 kPa,the peak deviatoric stress rises from 525.6 to 560.3,597.1,and 790.5 kPa as the thickness ratio of enhance layer is increased from 0 to 0.1,0.2,and 0.3,representing a significant increase of 6.6%,13.6%,and 50.4%.As the confining pressure increases,the slopes of the curves in the elastic stage become steep,and the plastic phase is extended accordingly.Additionally,the incorporation of the enhance layer significantly improves the energy storage linit of SCTB specimen.As the thickness ratio of the enhance layer increases from 0 to 0.1,0.2,and 0.3,the elastic energy rises from 0.54 to 0.67,0.84,and 1.00 MJ·m^(-3),representing a significant increase of 24.1%,55.6%,and 85.2%.The internal friction angles and cohesions of the SCTB specimens are higher than those of the CTB specimens,however,the cohesion is more susceptible to enhance layer position and thickness ratio than the internal friction angle.The failure style of the SCTB specimen changes from shear failure to splitting bulging failure and shear bulging failure with the presence of an enhance layer.The crack propagation path is significantly blocked by the enhance layer.The findings are of great significance to the application and stability of the SCTB in subsequent stoping backfilling mines. 展开更多
关键词 stratified cemented tailings backfill enhance layer triaxial compressive tests mechanical properties energy evolution
在线阅读 下载PDF
Modeling compression behaviors of freeze-thaw-impacted soils extending the disturbed state concept
14
作者 Pan Zhang Sai K.Vanapalli Zhong Han 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6606-6620,共15页
This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performe... This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performed on saturated expansive soil specimens with varying compaction conditions and soil structures under different stress states.Experimental results demonstrate that the specimens expand during freezing and contract during thawing.All specimens converge to the same residual void ratio after seven FT cycles,irrespective of their different initial void ratio,stress state,and soil structure.The compression index of the expansive soil specimens increases with the initial void ratio,whereas their swelling index remains nearly constant.A model extending the disturbed state concept(DSC)is proposed to predict the 1D compression behaviors of FT-impacted soils.The model incorporates a parameter,b,to account for the impacts of FT cycles.Empirical equations have been developed to link the key model parameters(i.e.the normalized yield stress and parameter b)to the soil state parameter(i.e.the normalized void ratio)in order to simplify the prediction approach.The proposed model well predicts the results of the tested expansive soil.In addition,the model’s feasibility for other types of soils,including low-and high-plastic clays,and high-plastic organic soils,has been validated using published data from the literature.The proposed model is simple yet reliable for predicting the compression behaviors of soils subjected to FT cycles. 展开更多
关键词 Initial state Freeze-thaw(FT)cycle test One-dimensional(1D)compression test Disturbed state concept(DSC) compression model
在线阅读 下载PDF
Particle simulation of the failure process of brittle rock under triaxial compression 被引量:15
15
作者 Ming Xia Ke-ping Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第5期507-513,共7页
In order to investigate the failure process of brittle rock under triaxial compression through both experimental and numerical approaches, the particle simulation method was used in numerical simulations and the simul... In order to investigate the failure process of brittle rock under triaxial compression through both experimental and numerical approaches, the particle simulation method was used in numerical simulations and the simulated results were compared with those of the experiment. The numerical simulation results, such as fracture propagation, microcrack distribution, stress-strain response, and damage patterns, were discussed in detail. The simulated results under various confining pressures (0-60 MPa) are in good agreement with the experimental results. The simulated results reveal that rock failure is caused by axial splitting under uniaxial compression. As the confining pressure increases, rock failure occurs in a few localized shear planes and the rock mechanical behavior is changed from brittle to ductile. Consequently, the peak failure strength, microcrack numbers, and the shear plane angle increase, but the ratio of tensile to shear microcracks decreases. The damage formation during the compression simulations indicates that the particle simulation method can produce similar behaviors as those observed through laboratory compression tests. 展开更多
关键词 rock mechanics compression testing FAILURE fracture modes SIMULATION MICROCRACKS
在线阅读 下载PDF
Experimental study on cracking behaviour of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression 被引量:10
16
作者 Lekan Olatayo Afolagboye Jianming He Sijing Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期394-405,共12页
Failure of rock mass that is subjected to compressive loads occurs from initiation, propagation, and linkage of new cracks from preexisting fissures. Our research investigates the cracking behaviour and coalescence pr... Failure of rock mass that is subjected to compressive loads occurs from initiation, propagation, and linkage of new cracks from preexisting fissures. Our research investigates the cracking behaviour and coalescence process in a brittle material with two non-parallel overlapping flaws using a high-speed camera. The coalescence tensile crack and tensile wing cracks were the first cracks to occur from the preexisting flaws. The initiation stresses of the primary cracks at the two tips of each flaw were simultaneous and decreased with reduced flaw inclination angle. The following types of coalescence cracks were identified between the flaws: primary tensile coalescence crack, tensile crack linkage, shear crack linkage, mixed tensile-shear crack, and indirect crack coalescence. Coalescence through tensile linkage occurred mostly at pre-peak stress. In contrast, coalescence through shear or mixed tensile-shear cracks occurred at higher stress. Overall, this study indicates that the geometry of preexisting flaws affect crack initiation and coalescence behaviour. 展开更多
关键词 Crack coalescence Moulded gypsum Non-parallel flaws Primary cracks Uniaxial compression test
在线阅读 下载PDF
Deformability characteristics of jointed rock masses under uniaxial compression 被引量:47
17
作者 Chen Xin Liao Zhihong Peng Xi 《International Journal of Mining Science and Technology》 2012年第2期213-221,共9页
We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial c... We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial compression. Complete axial stress-strain curves were classified into four types, i.e., single peak, softening after multi-peak yield platform, hardening after multi-peak yield platform and multi-peak dur- ing softening. Observation of crack evolution on the specimen surface reveals that the deformation behavior is correlated to the closure of pre-existing joint, development of fractures in rock matrix and teeth shearing of the shear plane. To investigate the brittleness of the specimens, the ratio of the residual strength to the maximum peak strength as well as the first and last peak strains were studied. At the same joint inclination angle, the ratios between residual strength and the maximum peak strength and the last peak strains increased while the first peak strain decreased with the increase of joint continuity factor. At the same joint continuity factor, the curves of the three brittleness parameters vs. joint inclina- tion angle can either be concave or convex single-oeak or wave-shaoed. 展开更多
关键词 Rock mass Joint inclination angle Joint connectivity Uniaxial compression test Axial stress-strain curve
在线阅读 下载PDF
Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation 被引量:14
18
作者 H. Munoz A. Taheri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期599-610,共12页
The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in sp... The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime. 展开更多
关键词 Uniaxial compression test Aspect ratio Strain patterns Digital image correlation(DIC)
在线阅读 下载PDF
Frictional behavior during cold ring compression process of aluminum alloy 5052 被引量:10
19
作者 Dawei ZHANG Guangcan YANG Shengdun ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期47-64,共18页
The friction is the considerable boundary condition in bulk metal forming.In this paper,the ring compression test was used to evaluate the friction coefficient and factor in Coulomb friction model and Tresca friction ... The friction is the considerable boundary condition in bulk metal forming.In this paper,the ring compression test was used to evaluate the friction coefficient and factor in Coulomb friction model and Tresca friction model for the plastic deformation of aluminum alloy AA5052.The micro-macro analysis method combining surface morphology and micro-texture was used to explore the friction behaviors in AA5052 cold forming process.In general,the magnitude(μor m)of friction changes before and after a deformation threshold during ring compression.The maximum change rate of the magnitude(μor m)before and after the deformation threshold is close to 18.5%under the present experimental conditions,and the change rate decreases with increasing loading speed.The lubrication using MoS_(2) is better than that using oil at lower speeds(0.15 mm/s,1.5 mm/s),but the lubrications for MoS_(2) and oil are similar at higher speeds(15 mm/s).The surface roughness,three-dimensional topography,and surface texture of compressed ring have a sudden change around the deformation threshold,which deviate from the previous evolution trend.The increased friction after deformation threshold also promotes the formation of sufficient shear strain layer in the subsurface plane of the compressed ring,and then it hinders the formation of the typical deformation textures withβ-oriented line and promotes the appearance of shear textures such as{001}(110),{111}(uvw)and{hkl}{110)textures. 展开更多
关键词 Deformation threshold Magnitude of friction Ring compression test Shear texture Surface feature
原文传递
Triaxial creep tests of weak sandstone from fracture zone of high dam foundation 被引量:12
20
作者 张玉 徐卫亚 +1 位作者 顾锦健 王伟 《Journal of Central South University》 SCIE EI CAS 2013年第9期2528-2536,共9页
The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the... The lithology of fracture zone which was developed at the dam foundation of a hydropower station is weak sandstone with poor integrity and pore cementation contact.Its creep properties have a significant impact on the deformation and stability of the dam.Based on the characteristics of loose organizational structure,high moisture content and poor mechanical properties,the triaxial compression tests and creep tests were carried out,respectively.The results show significant non-linear,low strength and no obvious strength peaks.Both axial and lateral strains are achieved more than 3%when the tests are failed.The weak sandstone has a significant creep property,but only transient and steady state appear under low stress.Increased stress causes creep intensified and lateral strain gradually exceeds axial strain.In the failure stage,it has characteristics of large axial plastic deformation,obvious volumetric ductility dilation and large steady creep rate.The accelerated creep appears shortly after transient loading under confining of pressures 1.0 MPa and 1.5 MPa.Therefore,an improved Burgers creep model considering the non-linear characteristics of weak sandstone is built based on hyperbolic equation and the creep parameters are identified.This model can well describe the creep properties of weak sandstone. 展开更多
关键词 hydropower station weak sandstone creep properties triaxial compression tests triaxial creep tests improved Burgers creep model
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部