针对农业温室复杂环境中的超宽带(Ultra wide band,UWB)定位精度受非视距(Non line of sight,NLOS)效应和多路径影响的问题,本文提出了一种融合Chan-Taylor与改进沙猫群优化粒子滤波(Chan-Taylor and improved sand cat swarm intellige...针对农业温室复杂环境中的超宽带(Ultra wide band,UWB)定位精度受非视距(Non line of sight,NLOS)效应和多路径影响的问题,本文提出了一种融合Chan-Taylor与改进沙猫群优化粒子滤波(Chan-Taylor and improved sand cat swarm intelligence optimization particle filter,CT+ISCSO-PF)定位算法。首先,利用Chan-Taylor算法实现对目标初始位置的快速估算,为粒子滤波提供准确初值;随后,引入ISCSO(Improved sand cat swarm optimization particle filter)引导粒子向高似然区域移动,通过三角游走策略提升全局搜索能力,结合Levy飞行机制增强局部收敛效率,从而有效抑制粒子退化问题。本文模拟了3种不同噪声水平的环境。仿真结果表明,CT+ISCSO-PF算法在3种环境下,相比于传统的粒子滤波(Particle filter,PF)、Chan-Taylor与粒子滤波(Chan-Taylor and particle filter,CT+PF)、Chan-Taylor与沙猫群优化粒子滤波(Chan-Taylor and sand cat swarm intelligence optimization particle filter,CT+SCSO-PF)、Chan-Taylor与灰狼优化粒子滤波(Chan-Taylor and grey wolf optimizer particle filter,CT+GWO-PF)均表现出明显优势。进一步以农用履带车辆为载体开展温室环境定位试验,结果显示:在LOS场景下,该算法较PF、CT+PF、CT+SCSO-PF和CT+GWO-PF的均方根误差分别降低27.9%、17.8%、7.8%和10.2%;在NLOS场景下,均方根误差降幅分别达21.4%、15.6%、7.6%和5.2%。展开更多
针对室内环境影响定位精度的非视距传播(non-line-of-sight,NLOS)问题,在对基于到达时间差(time differ-ence of arrival,TDOA)的超宽带(ultra wideband,UWB)室内定位模型和算法进行分析研究的基础上,提出了质心-Taylor混合定位算法。...针对室内环境影响定位精度的非视距传播(non-line-of-sight,NLOS)问题,在对基于到达时间差(time differ-ence of arrival,TDOA)的超宽带(ultra wideband,UWB)室内定位模型和算法进行分析研究的基础上,提出了质心-Taylor混合定位算法。该算法利用对测距误差不敏感的质心算法对目标进行初始粗定位,然后将其作为Taylor级数展开法的迭代初值进行二次精细定位,并动态地将前期定位完毕的节点转化为后续定位过程的参考节点,最大限度地利用不断增加的已知信息,在提高Taylor初值质量的前提下减少预设参考节点数目,降低系统硬件成本。采用MATLAB软件进行了模拟仿真。仿真结果表明,该算法定位性能优越,尤其在NLOS测距误差较大的环境下能有效地提高系统的定位精度。展开更多
文摘针对室内环境影响定位精度的非视距传播(non-line-of-sight,NLOS)问题,在对基于到达时间差(time differ-ence of arrival,TDOA)的超宽带(ultra wideband,UWB)室内定位模型和算法进行分析研究的基础上,提出了质心-Taylor混合定位算法。该算法利用对测距误差不敏感的质心算法对目标进行初始粗定位,然后将其作为Taylor级数展开法的迭代初值进行二次精细定位,并动态地将前期定位完毕的节点转化为后续定位过程的参考节点,最大限度地利用不断增加的已知信息,在提高Taylor初值质量的前提下减少预设参考节点数目,降低系统硬件成本。采用MATLAB软件进行了模拟仿真。仿真结果表明,该算法定位性能优越,尤其在NLOS测距误差较大的环境下能有效地提高系统的定位精度。