Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industr...Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes.展开更多
A series of Al-xSi-yGe filler metals(x=4–12 and y=10–40,wt%)were prepared,and the effect of Si and Ge on microstructure and melting characteristics of filler metals was studied.The thermodynamic model of Al-Si-Ge te...A series of Al-xSi-yGe filler metals(x=4–12 and y=10–40,wt%)were prepared,and the effect of Si and Ge on microstructure and melting characteristics of filler metals was studied.The thermodynamic model of Al-Si-Ge ternary alloy was established to analyze the phase formation mechanism of filler metals based on Miedema model,Tanaka model,and Toop equation.This research provided a basis for the composition optimization of filler metals and the analysis of metallurgical reaction process between filler metals and base materials.Results show that Al-Si-Ge alloy is composed of Al-Ge eutectic phase,Al-Si eutectic phase,and primary Si.Ge addition promotes the precipitation of primary Si.Ge is the main melting point depressant element of filler metals.With the increase in Ge content from 10wt%to 40wt%,the solid phase line of filler metals remains unchanged,whereas the liquidus temperature decreases from 567.65°C to 499.96°C.With the increase in Ge content of filler metal,Ge content in eutectic Si phase is increased,the endothermic peak of Al-Si eutectic reaction according to thermogravimetry curve becomes smoother,and Al-Si eutectic temperature is decreased.Ge addition can reduce the free energy of Al-Si alloy system.The lowest point of free energy is located on Al-Ge side.The eutectic Ge phase with the composition similar to pure Ge composition is the most likely to appear in the microstructure of filler metals,whereas the eutectic Si phase with the composition similar to pure Si composition is the least likely to appear.The thermodynamic calculation results are consistent with the experiment results.展开更多
The low-temperature embrittlement limits the service temperature of ferritic and duplex stainless steels.The effects of alloying elements added to Fe-Cr binary system on the low-temperature embrittlement have been rev...The low-temperature embrittlement limits the service temperature of ferritic and duplex stainless steels.The effects of alloying elements added to Fe-Cr binary system on the low-temperature embrittlement have been reviewed critically.Prior literature on the underlying phase transformation,i.e.,phase separation(PS)and changes of mechanical properties,is surveyed.The available literature indicates that the rate of PS is accelerated by Ni or Co in Fe-Cr binary system.The increased kinetics of PS also lead to an enhanced hardening rate during aging for Ni and Co alloyed Fe-Cr alloys.In low Cr(<17 wt.%)ferritic alloys,the additions of Al or Co can reduce embrittlement because these elements contribute to lowering the driving force for PS.The influence of other alloying elements such as Mo,Cu,Mn,Nb,and Ti is inconclusive but also discussed here.Thermodynamic and kinetic calculations were performed to evaluate current CALPHAD databases and to further investigate the thermodynamic and kinetic reasons for the effect of the additional alloying elements added to Fe-Cr alloy on PS.Some indications were provided for improving physically-based predictions of low-temperature embrittlement as well as opportunities to mitigate the phenomenon by alloying.展开更多
Gas-phase synthesis of glycolide(GL)from methyl glycolate(MG)is of great significance for producing biodegradable polyglycolic acid.Here,we report a detailed thermodynamics study for the gas-phase synthesis of GL from...Gas-phase synthesis of glycolide(GL)from methyl glycolate(MG)is of great significance for producing biodegradable polyglycolic acid.Here,we report a detailed thermodynamics study for the gas-phase synthesis of GL from MG,which involves complex reaction pathways,by utilizing the Gibbs free energy minimization method.The results indicate that the decompositions of MG and GL and the polymerization of MG are thermodynamically favorable as compared with the target pathway,i.e.,the cyclization of MG.Effects of the reaction conditions including temperature,pressure and feed composition on the formation of GL and linear polymers have also been addressed,which demonstrate that the higher temperature and lower pressure can effectively inhibit the formation of linear methyl ester dimer and improve the selectivity to GL.In addition,the higher N_(2)/MG ratio is beneficial for the formation of GL in the process promoted by catalysts.These thermodynamics results indicate that the process promoted by catalysts would benefit from the kinetics control by high-performance catalysts and the operation at high temperature,low pressure and high N_(2)/MG ratio to enhance the yield of targeted GL.The insights demonstrated here from thermodynamics are valuable for guiding the design of catalysts and/or optimization of reaction conditions for the gas-phase synthesis of GL from MG.展开更多
Al_(2)O_(3)and MgO serve as the primary gangue components in sintered ores,and they are critical for the formation of CaO-Fe_(2)O_(3)-xAl_(2)O_(3)(wt%,C-F-xA)and CaO-Fe_(2)O_(3)-xM gO(wt%,C-F-xM)systems,respectively.I...Al_(2)O_(3)and MgO serve as the primary gangue components in sintered ores,and they are critical for the formation of CaO-Fe_(2)O_(3)-xAl_(2)O_(3)(wt%,C-F-xA)and CaO-Fe_(2)O_(3)-xM gO(wt%,C-F-xM)systems,respectively.In this study,a nonisothermal crystallization thermodynamics behavior of C-F-xA and C-F-xM systems was examined using differential scanning calorimetry,and a phase identification and microstructure analysis for C-F-xA and C-F-xM systems were carried out by X-ray diffraction and scanning electron microscopy.Results showed that in C-F-2A and C-F-2M systems,the increased cooling rates promoted the precipitation of CaFe_(2)O_(4)(CF)but inhibited the formation of Ca_(2)Fe_(2)O_(5)(C2F).In addition,C-F-2A system exhibited a lower theoretical initial crystallization temperature(1566 K)compared to the C-F system(1578 K).This temperature further decreases to 1554 K and 1528 K in the C-F-4A and C-F-8A systems,respectively.However,in C-F-xM system,the increased MgO content raised the crystallization temperature.This is because that the enhanced precipitation of MF(a spinel phase mainly comprised Fe_(3)O_(4)and MgFe_(2)O_(4))and C2F phases suppressed the CF precipitation reaction.In kinetic calculations,the Ozawa method revealed the apparent activation energies of the C-F-2A and C-F-2M systems.Malek's method revealed that the crystallization process in C-F-2A system initially followed a logarithmic law(lnαor lnα2),later transitioning to a reaction order law((1-α)-1or(1-α)^(-1/2),n=2/3)or the lnα2function of the exponential law.In C-F-2M system,it consistently followed the sequencef(α)=(1-α)^(2)(αis the crystallization conversion rate;n is the Avrami constant;?(α)is the differential equations for the model function of C_(2)F and CF crystallization processes).展开更多
The comprehension of universal thermodynamic behaviors in the supercritical region is crucial for examining the characteristics of black hole systems under high temperature and pressure.This study is devoted to the an...The comprehension of universal thermodynamic behaviors in the supercritical region is crucial for examining the characteristics of black hole systems under high temperature and pressure.This study is devoted to the analysis of characteristic lines and crossover behaviors within the supercritical region.By making use of the free energy,we introduce three key thermodynamic quantities:scaled variance,skewness,and kurtosis.Our results demonstrate that the Widom line,associated with the maximal scaled variance,can effectively differentiate between small and large black hole-like subphases,each displaying distinct thermodynamic behaviors within the supercritical region.Furthermore,by utilizing quasinormal modes,we identify the Frenkel line,offering a dynamic perspective to distinguish between small and large black hole-like subphases.These contribute to a deeper comprehension of black hole subphases in the supercritical region,thus illuminating new facets of black hole thermodynamics.展开更多
Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulf...Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulfur(S_(8))[1].However,the electrochemical conversion reaction of S_(8) is an exceedingly complex process that involves the generation of multiple intermediates(e.g.,lithium polysulfides(LiPSs))and multiphase transitions[1,2].Currently,the mechanistic investigations of the electrochemical conversion reaction of S_(8) upon discharging a LSB cell heavily rely on electrochemical titration and spectroscopic techniques[3].Nevertheless,the considerable complexity and intrinsic instability of the LSB system present substantial obstacles to obtaining accurate information for all sulfur-containing species,which significantly obstructs in-depth elucidation of the fundamental discharge mechanism of LSB[3,4].展开更多
The adsorption behavior of D301 for molybdenum blue was investigated.The thermodynamics parameters in adsorption process were calculated and the adsorption kinetics was studied.The experimental results show that the a...The adsorption behavior of D301 for molybdenum blue was investigated.The thermodynamics parameters in adsorption process were calculated and the adsorption kinetics was studied.The experimental results show that the adsorption characteristic of D301 for molybdenum blue fits well with the Freundlich adsorption isotherm equation.In the adsorption process of D301 for molybdenum blue,both the enthalpy change ΔH and entropy change ΔS are positive,while the free energy change ΔG is negative when temperatures are in the range of 303-333 K.It is indicated that the adsorption is a spontaneous and endothermic process,and the elevated temperatures benefit to the adsorption.Kinetic studies show that the kinetic data are well described by double driving-force model,and the adsorption rate of molybdenum blue on D301 is controlled by the intraparticle diffusion during the adsorption process.The total kinetic equation is determined.展开更多
A novel technique was developed to remove impurities from crude lead by vacuum distillation.The thermodynamics on vacuum distillation refining process of crude lead was studied by means of saturated vapor pressure of ...A novel technique was developed to remove impurities from crude lead by vacuum distillation.The thermodynamics on vacuum distillation refining process of crude lead was studied by means of saturated vapor pressure of main components of crude lead,separation coefficients and vapor-liquid equilibrium composition of Pb-i(i stands for an impurity) system at different temperatures.The behaviors of impurities in the vacuum distillation refining process were investigated.The results show that the vacuum distillation should be taken to obtain lead from crude lead,in which Zn,As and partial Sb are volatilized at lower temperature of 923-1023 K.Lead is distilled from the residue containing Cu,Sn,Ag and Bi at higher temperature of 1323-1423 K,but the impurity Bi is also volatilized along with lead and cannot be separated from lead.展开更多
Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can ...Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can be fitted well by Langmuir equation and the pseudo-second order kinetics,indicating that the adsorption of amino-BC would obey monolayer molecule adsorption and the main action was chemisorption.Meanwhile,the adsorption process was studied by the Elovich equation and the intra-particle diffusion model,indicating that the absorption characteristics of metal ions on amino-BC is controlled by both film diffusion and particle diffusion.The increase of reaction temperature will accelerate the adsorbing rate because of endothermic reaction.展开更多
Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed wer...Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.展开更多
For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The ...For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The mineral composition and chemical composition were investigated by X-ray diffraction analysis and semi-quantitative analysis.The thermodynamics of leaching process was analyzed.The results show that the major minerals in the bauxite are gibbsite,secondly goethite and quartz,anatase and so on.The acid leaching reactions of the bauxite would be thermodynamically easy and completed.Under the conditions that ore granularity is less than-55 μm,the L/S ratio is 100:7,and the leaching temperature is 373-383 K,the leaching time is 120 min and the concentration of HCl is 10%,both the leaching rates of Al and Fe are over 95%.The main composition of leaching slag is SiO2 which is easy for comprehensive utilization.展开更多
The precipitation behavior of carbide in K416 B superalloy was investigated by means of creep measurement and microstructure observation. The results show that nanometer M6 C particles discontinuously precipitate in t...The precipitation behavior of carbide in K416 B superalloy was investigated by means of creep measurement and microstructure observation. The results show that nanometer M6 C particles discontinuously precipitate in the γ matrix or along the γ/γ′ interface of the alloy during high temperature tensile creep. Thereinto, the amount of fine M6 C carbide increases as creep goes on, and the coherent interfaces of M6 C phase precipitating from the γ matrix are {100} and {111} planes. The thermodynamics analysis indicates that the solubility of element carbon in the matrix decreases when the alloy is deformed by the axial tensile stress during creep, so as to cause the carbon segregating in the regions of stress concentration and combining with carbide-forming elements M(W, Co), which promotes the fine M6 C carbide to precipitate from the γ matrix.展开更多
In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusio...In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process.展开更多
An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow...An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow engineering the microstructures for desired properties through smartly designing fabrication processing parameters.This is demonstrated for SnO2 nano-particle surfaces and also a technologically important Ag-SnO2 interface fabricated by in-situ internal oxidation.Based on defect thermodynamics,we first modeled and calculated the equilibrium surface and interface structures,and as well corresponding properties,as a function of the ambient temperature and oxygen partial pressure.A series of first principles energetics calculations were then performed to construct the equilibrium surface and interface phase diagrams,to describe the environment dependence of the microstructures and properties of the surfaces and interfaces during fabrication and service conditions.The use and potential application of these phase diagrams as a process design tool were suggested and discussed.展开更多
The thermal decomposition process ofjarosite residue and the solubility of various oxides presented in the decomposed residue in NH4C1-H20 system were studied. The results of heat decomposition ofjarosite residue show...The thermal decomposition process ofjarosite residue and the solubility of various oxides presented in the decomposed residue in NH4C1-H20 system were studied. The results of heat decomposition ofjarosite residue show that the insoluble ZnFe2O4 phase in the residue can be decomposed at temperatures ranging from 500 ℃ to 650 ℃ for 1 h. The OLI Systems software was used to study the thermodynamics of the solubility of various metal oxides existing in the decomposed residue in NH4CI-H20 system. The results show that the solubility ofZnO, PbO, CdO, CuO and Ag20 is high, while the solubility of Fe203 is less than 10-4 mol/L in the pH range from 4.0 to 9.0. The calculated data are in accordance with the experimental results.展开更多
Thermodynamics of the precipitation from Li-Fe(II)-P-H2O system at 298 K was investigated.The results demonstrate that LiFePO4 can be formed at room temperature under pH value of 0-11.3,and the impurities Li3PO4 and...Thermodynamics of the precipitation from Li-Fe(II)-P-H2O system at 298 K was investigated.The results demonstrate that LiFePO4 can be formed at room temperature under pH value of 0-11.3,and the impurities Li3PO4 and Fe(OH)2 will be yielded at pH value above 11.3 and 12.9,respectively.The optimum pH value for LiFePO4 precipitation is 8-10.5.Considering the low rate of phase transformation kinetics,metastable Li-Fe(II)-P-H2O system was also studied.The results indicate that equimolar ratio of co-precipitation precursor Fe3(PO4)2.8H2O and Li3PO4 cannot be obtained at the initial molar ratio 1:1:1 and 1:1:3 of Li:Fe:P.In contrast,equimolar ratio of the co-precipitation precursor can be yielded by adjusting the pH value to 7-9.2,matching the molar ratio 3:1:1 of Li:Fe:P,meaning that Li+-excess is one of the essential conditions for LiFePO4 preparation by co-precipitation method.展开更多
According to the principles of simultaneous equilibrium and mass equilibrium, the thermodynamics model of the precipitation-coordination equilibrium of Ni2+-C2H8N2- 2-2 4C O -H2O system was established, and calculati...According to the principles of simultaneous equilibrium and mass equilibrium, the thermodynamics model of the precipitation-coordination equilibrium of Ni2+-C2H8N2- 2-2 4C O -H2O system was established, and calculation for the relationships between concentration of each substance in solution and parameters was carried out, including pH value, concentrations of ethylenediamine and oxalate by MATLAB program. The results show that Ni exists as Ni2+and [Ni(C2O4)n]2-2n mainly at pH〈1 and pH=1-6, respectively. When pH〉6, the complex between Ni2+and ethylenediamine is predominant. The precursor of Ni microfiber was prepared by an oxalate precipitation process using ethylenediamine as a coordination agent, and the role of ethylenediamine in the growth of the precursor fiber was discussed. The Ni microfiber can be obtained by a thermal decomposition-reduction process of the precursor in N2 and H2 mixed atmosphere. The diameters and aspect ratios of the obtained Ni microfibers are 0.2-1 μm and 20-30, respectively.展开更多
Low-heat Portland(LHP)cement is a new type of Portland cement that has been widely used in recent years due to its low heat of hydration,which makes it exceptional in temperature control for mass concrete construction...Low-heat Portland(LHP)cement is a new type of Portland cement that has been widely used in recent years due to its low heat of hydration,which makes it exceptional in temperature control for mass concrete construction.However,limited studies have investigated the impact of temperature and magnesium oxide(MgO)content on LHP cement-based materials.This study utilizes thermodynamic simulations to study the hydration process,pore structure,and autogenous shrinkage of LHP cement pastes with different water-to-cement ratios(0.3,0.4,and 0.5),curing temperatures(5,15,20,and 30℃),and MgO contents(mass fractions of 2%,4%,and 5%).Higher curing temperature is found to promote the hydration reactions in cement paste.Moreover,the incorporation of 4%MgO moderately decreases both porosity and dimensional shrinkage in pastes.The microstructural evolution of different LHP pastes is examined through a comparative analysis,lending insights into LHP cement-based material applications.展开更多
Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive gravity model in cosmology proposed lately, the corrected entropic formul...Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive gravity model in cosmology proposed lately, the corrected entropic formula of the apparent horizon is obtaJned with the help of the modified Friedmann equations. This entropy-area relation, together with the identified Misner-Sharp internal energy, verifies the first law of thermodynamics for the apparent horizon with a volume change term for consistency. On the other hand, by means of the corrected entropy-area formula and the Clausius relation δQ = T dS, where the heat flow δQ is the energy-supply of pure matter projecting on the vector ξ tangent to the apparent horizon and should be looked on as the amount of energy crossing the apparent horizon during the time interval dt and the temperature of the apparent horizon for energy crossing during the same interval is 1/(2πτA), the modified Friedmann equations governing the dynamical evolution of the universe are reproduced with the known energy density and pressure of massive graviton. The integration constant is found to correspond to a cosmological term which could be absorbed into the energy density of matter. Having established the correspondence of massive cosmology with the unified first law of thermodynamics on the apparent horizon, the validity of the generalized second law of thermodynamics is also discussed by assuming the thermal equilibrium between the apparent horizon and the matter field bounded by the apparent horizon. It is found that, in the limit Hc → 0, which recovers the Minkowski reference metric solution in the fiat case, the generalized second law of thermodynamics holds if α3 + 4α4 〈 0. Without this condition, even for the simplest model of dRGT massive cosmology with α3= α4 = 0, the generalized second law of thermodynamics could be violated.展开更多
基金supported by the China Postdoctoral Science Foundation(No.2023T160088)the Youth Fund of the National Natural Science Foundation of China(No.52304324).
文摘Magnesium and magnesium alloys,serving as crucial lightweight structural materials and hydrogen storage elements,find extensive applications in space technology,aviation,automotive,and magnesium-based hydrogen industries.The global production of primary magnesium has reached approximately 1.2 million tons per year,with anticipated diversification in future applications and significant market demand.Nevertheless,approximately 80%of the world’s primary magnesium is still manufactured through the Pidgeon process,grappling with formidable issues including high energy consumption,massive carbon emission,significant resource depletion,and environmental pollution.The implementation of the relative vacuum method shows potential in breaking through technological challenges in the Pidgeon process,facilitating clean,low-carbon continuous magnesium smelting.This paper begins by introducing the principles of the relative vacuum method.Subsequently,it elucidates various innovative process routes,including relative vacuum ferrosilicon reduction,aluminum thermal reduction co-production of spinel,and aluminum thermal reduction co-production of calcium aluminate.Finally,and thermodynamic foundations of the relative vacuum,a quantitative analysis of the material,energy flows,carbon emission,and production cost for several new processes is conducted,comparing and analyzing them against the Pidgeon process.The study findings reveal that,with identical raw materials,the relative vacuum silicon thermal reduction process significantly decreases raw material consumption,energy consumption,and carbon dioxide emissions by 15.86%,30.89%,and 26.27%,respectively,compared to the Pidgeon process.The relative vacuum process,using magnesite as the raw material and aluminum as the reducing agent,has the lowest magnesium-to-feed ratio,at only 3.385.Additionally,its energy consumption and carbon dioxide emissions are the lowest,at 1.817 tce/t Mg and 7.782 t CO_(2)/t Mg,respectively.The energy consumption and carbon emissions of the relative vacuum magnesium smelting process co-producing calcium aluminate(12CaO·7Al_(2)O_(3),3CaO·Al_(2)O_(3),and CaO·Al_(2)O_(3))are highly correlated with the consumption of dolomite in the raw materials.When the reduction temperature is around 1473.15 K,the critical volume fraction of magnesium vapor for different processes varies within the range of 5%–40%.Production cost analysis shows that the relative vacuum primary magnesium smelting process has significant economic benefits.This paper offers essential data support and theoretical guidance for achieving energy efficiency,carbon reduction in magnesium smelting,and the industrial adoption of innovative processes.
基金National Natural Science Foundation of China(U22A20191)。
文摘A series of Al-xSi-yGe filler metals(x=4–12 and y=10–40,wt%)were prepared,and the effect of Si and Ge on microstructure and melting characteristics of filler metals was studied.The thermodynamic model of Al-Si-Ge ternary alloy was established to analyze the phase formation mechanism of filler metals based on Miedema model,Tanaka model,and Toop equation.This research provided a basis for the composition optimization of filler metals and the analysis of metallurgical reaction process between filler metals and base materials.Results show that Al-Si-Ge alloy is composed of Al-Ge eutectic phase,Al-Si eutectic phase,and primary Si.Ge addition promotes the precipitation of primary Si.Ge is the main melting point depressant element of filler metals.With the increase in Ge content from 10wt%to 40wt%,the solid phase line of filler metals remains unchanged,whereas the liquidus temperature decreases from 567.65°C to 499.96°C.With the increase in Ge content of filler metal,Ge content in eutectic Si phase is increased,the endothermic peak of Al-Si eutectic reaction according to thermogravimetry curve becomes smoother,and Al-Si eutectic temperature is decreased.Ge addition can reduce the free energy of Al-Si alloy system.The lowest point of free energy is located on Al-Ge side.The eutectic Ge phase with the composition similar to pure Ge composition is the most likely to appear in the microstructure of filler metals,whereas the eutectic Si phase with the composition similar to pure Si composition is the least likely to appear.The thermodynamic calculation results are consistent with the experiment results.
基金support from the China Scholarship Council(CSC No.201700260207)Swedish Iron and Steel Research Office(Jernkontoret)The EIT RawMaterials Upscaling project EndureIT(No.18317)is acknowledged by PH and WM for financial support.
文摘The low-temperature embrittlement limits the service temperature of ferritic and duplex stainless steels.The effects of alloying elements added to Fe-Cr binary system on the low-temperature embrittlement have been reviewed critically.Prior literature on the underlying phase transformation,i.e.,phase separation(PS)and changes of mechanical properties,is surveyed.The available literature indicates that the rate of PS is accelerated by Ni or Co in Fe-Cr binary system.The increased kinetics of PS also lead to an enhanced hardening rate during aging for Ni and Co alloyed Fe-Cr alloys.In low Cr(<17 wt.%)ferritic alloys,the additions of Al or Co can reduce embrittlement because these elements contribute to lowering the driving force for PS.The influence of other alloying elements such as Mo,Cu,Mn,Nb,and Ti is inconclusive but also discussed here.Thermodynamic and kinetic calculations were performed to evaluate current CALPHAD databases and to further investigate the thermodynamic and kinetic reasons for the effect of the additional alloying elements added to Fe-Cr alloy on PS.Some indications were provided for improving physically-based predictions of low-temperature embrittlement as well as opportunities to mitigate the phenomenon by alloying.
基金supported by the National Natural Science Foundation of China(22478106,22178102,and 22332003)Shanghai Rising-Star Program(23QA1401900)+1 种基金Young Elite Scientists Sponsorship Programby CAST(2023QNRC001)the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050272).
文摘Gas-phase synthesis of glycolide(GL)from methyl glycolate(MG)is of great significance for producing biodegradable polyglycolic acid.Here,we report a detailed thermodynamics study for the gas-phase synthesis of GL from MG,which involves complex reaction pathways,by utilizing the Gibbs free energy minimization method.The results indicate that the decompositions of MG and GL and the polymerization of MG are thermodynamically favorable as compared with the target pathway,i.e.,the cyclization of MG.Effects of the reaction conditions including temperature,pressure and feed composition on the formation of GL and linear polymers have also been addressed,which demonstrate that the higher temperature and lower pressure can effectively inhibit the formation of linear methyl ester dimer and improve the selectivity to GL.In addition,the higher N_(2)/MG ratio is beneficial for the formation of GL in the process promoted by catalysts.These thermodynamics results indicate that the process promoted by catalysts would benefit from the kinetics control by high-performance catalysts and the operation at high temperature,low pressure and high N_(2)/MG ratio to enhance the yield of targeted GL.The insights demonstrated here from thermodynamics are valuable for guiding the design of catalysts and/or optimization of reaction conditions for the gas-phase synthesis of GL from MG.
基金financially supported by the National Natural Science Foundation of China(Nos.52204331 and 52374315)the Major Industrial Innovation Plan of Anhui Provincial Development and the Reform Commission,China(No.AHZDCYCX-LSDT2023-01)。
文摘Al_(2)O_(3)and MgO serve as the primary gangue components in sintered ores,and they are critical for the formation of CaO-Fe_(2)O_(3)-xAl_(2)O_(3)(wt%,C-F-xA)and CaO-Fe_(2)O_(3)-xM gO(wt%,C-F-xM)systems,respectively.In this study,a nonisothermal crystallization thermodynamics behavior of C-F-xA and C-F-xM systems was examined using differential scanning calorimetry,and a phase identification and microstructure analysis for C-F-xA and C-F-xM systems were carried out by X-ray diffraction and scanning electron microscopy.Results showed that in C-F-2A and C-F-2M systems,the increased cooling rates promoted the precipitation of CaFe_(2)O_(4)(CF)but inhibited the formation of Ca_(2)Fe_(2)O_(5)(C2F).In addition,C-F-2A system exhibited a lower theoretical initial crystallization temperature(1566 K)compared to the C-F system(1578 K).This temperature further decreases to 1554 K and 1528 K in the C-F-4A and C-F-8A systems,respectively.However,in C-F-xM system,the increased MgO content raised the crystallization temperature.This is because that the enhanced precipitation of MF(a spinel phase mainly comprised Fe_(3)O_(4)and MgFe_(2)O_(4))and C2F phases suppressed the CF precipitation reaction.In kinetic calculations,the Ozawa method revealed the apparent activation energies of the C-F-2A and C-F-2M systems.Malek's method revealed that the crystallization process in C-F-2A system initially followed a logarithmic law(lnαor lnα2),later transitioning to a reaction order law((1-α)-1or(1-α)^(-1/2),n=2/3)or the lnα2function of the exponential law.In C-F-2M system,it consistently followed the sequencef(α)=(1-α)^(2)(αis the crystallization conversion rate;n is the Avrami constant;?(α)is the differential equations for the model function of C_(2)F and CF crystallization processes).
基金supported by the National Natural Science Foundation of China(Grant Nos.12473001,11975072,11875102,11835009,and 11965013)the National SKA Program of China(Grant Nos.2022SKA0110200 and 2022SKA0110203)+1 种基金the National 111 Project(Grant No.B16009)supported by Yunnan High-level Talent Training Support Plan Young&Elite Talents Project(Grant No.YNWR-QNBJ-2018-181).
文摘The comprehension of universal thermodynamic behaviors in the supercritical region is crucial for examining the characteristics of black hole systems under high temperature and pressure.This study is devoted to the analysis of characteristic lines and crossover behaviors within the supercritical region.By making use of the free energy,we introduce three key thermodynamic quantities:scaled variance,skewness,and kurtosis.Our results demonstrate that the Widom line,associated with the maximal scaled variance,can effectively differentiate between small and large black hole-like subphases,each displaying distinct thermodynamic behaviors within the supercritical region.Furthermore,by utilizing quasinormal modes,we identify the Frenkel line,offering a dynamic perspective to distinguish between small and large black hole-like subphases.These contribute to a deeper comprehension of black hole subphases in the supercritical region,thus illuminating new facets of black hole thermodynamics.
文摘Lithium-sulfur battery(LSB)has attracted worldwide attention owing to its overwhelmingly high theoretical energy density of 2600Wh/kg due to the unique 16-electron electrochemical conversion reaction of elemental sulfur(S_(8))[1].However,the electrochemical conversion reaction of S_(8) is an exceedingly complex process that involves the generation of multiple intermediates(e.g.,lithium polysulfides(LiPSs))and multiphase transitions[1,2].Currently,the mechanistic investigations of the electrochemical conversion reaction of S_(8) upon discharging a LSB cell heavily rely on electrochemical titration and spectroscopic techniques[3].Nevertheless,the considerable complexity and intrinsic instability of the LSB system present substantial obstacles to obtaining accurate information for all sulfur-containing species,which significantly obstructs in-depth elucidation of the fundamental discharge mechanism of LSB[3,4].
基金Project(2007AA06Z129) supported by the High-tech Research and Development Program of China
文摘The adsorption behavior of D301 for molybdenum blue was investigated.The thermodynamics parameters in adsorption process were calculated and the adsorption kinetics was studied.The experimental results show that the adsorption characteristic of D301 for molybdenum blue fits well with the Freundlich adsorption isotherm equation.In the adsorption process of D301 for molybdenum blue,both the enthalpy change ΔH and entropy change ΔS are positive,while the free energy change ΔG is negative when temperatures are in the range of 303-333 K.It is indicated that the adsorption is a spontaneous and endothermic process,and the elevated temperatures benefit to the adsorption.Kinetic studies show that the kinetic data are well described by double driving-force model,and the adsorption rate of molybdenum blue on D301 is controlled by the intraparticle diffusion during the adsorption process.The total kinetic equation is determined.
基金Project (2012CB722803) supported by the National Basic Research Program of ChinaProject (U1202271) supported by the National Natural Science Foundation of China
文摘A novel technique was developed to remove impurities from crude lead by vacuum distillation.The thermodynamics on vacuum distillation refining process of crude lead was studied by means of saturated vapor pressure of main components of crude lead,separation coefficients and vapor-liquid equilibrium composition of Pb-i(i stands for an impurity) system at different temperatures.The behaviors of impurities in the vacuum distillation refining process were investigated.The results show that the vacuum distillation should be taken to obtain lead from crude lead,in which Zn,As and partial Sb are volatilized at lower temperature of 923-1023 K.Lead is distilled from the residue containing Cu,Sn,Ag and Bi at higher temperature of 1323-1423 K,but the impurity Bi is also volatilized along with lead and cannot be separated from lead.
基金Project (20130206059G X) supported by Science and Technology Key Project of Jilin Province,ChinaProject (20101553) supported by the Natural Science Foundation of Jilin Province,China+1 种基金Project (BSJXM-201226) supported by Doctor Science Research Starting Projects of Northeast Dianli University,ChinaProject (2013) supported by the 12th Five-Year Enhancing Innovation Projects of Northeast Dianli University,China
文摘Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can be fitted well by Langmuir equation and the pseudo-second order kinetics,indicating that the adsorption of amino-BC would obey monolayer molecule adsorption and the main action was chemisorption.Meanwhile,the adsorption process was studied by the Elovich equation and the intra-particle diffusion model,indicating that the absorption characteristics of metal ions on amino-BC is controlled by both film diffusion and particle diffusion.The increase of reaction temperature will accelerate the adsorbing rate because of endothermic reaction.
基金Projects(51374064,51004033,51074044)supported by the National Natural Science Foundation of ChinaProject(2012AA062303)supported by High-tech Research and Development Program of China
文摘Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.
基金Projects(50974035,51074047,51004033) supported by the National Natural Science Foundation of ChinaProject(2008BAB34B01) supported by the National Science and Technology Pillar Program of China during the Eleventh Five-Year Plan Period+1 种基金Project (N100302005) supported by the National Higher-education Institution General Research and Development Funding,ChinaProject (2010AA03A405) supported by the Hi-tech Research and Development Program of China
文摘For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The mineral composition and chemical composition were investigated by X-ray diffraction analysis and semi-quantitative analysis.The thermodynamics of leaching process was analyzed.The results show that the major minerals in the bauxite are gibbsite,secondly goethite and quartz,anatase and so on.The acid leaching reactions of the bauxite would be thermodynamically easy and completed.Under the conditions that ore granularity is less than-55 μm,the L/S ratio is 100:7,and the leaching temperature is 373-383 K,the leaching time is 120 min and the concentration of HCl is 10%,both the leaching rates of Al and Fe are over 95%.The main composition of leaching slag is SiO2 which is easy for comprehensive utilization.
基金Projects(2010CB631200,2010CB631206)supported by the National Basic Research Program of ChinaProject(50931004)supported by the National Natural Science Foundation of China
文摘The precipitation behavior of carbide in K416 B superalloy was investigated by means of creep measurement and microstructure observation. The results show that nanometer M6 C particles discontinuously precipitate in the γ matrix or along the γ/γ′ interface of the alloy during high temperature tensile creep. Thereinto, the amount of fine M6 C carbide increases as creep goes on, and the coherent interfaces of M6 C phase precipitating from the γ matrix are {100} and {111} planes. The thermodynamics analysis indicates that the solubility of element carbon in the matrix decreases when the alloy is deformed by the axial tensile stress during creep, so as to cause the carbon segregating in the regions of stress concentration and combining with carbide-forming elements M(W, Co), which promotes the fine M6 C carbide to precipitate from the γ matrix.
基金Project(2011CB606306) supported by the National Basic Research Program of ChinaProject(51101014) supported by the National Natural Science Foundation of China
文摘In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process.
基金Project(51171211) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0837) supported by the Chinese Ministry of Education's Supportive Program for New Century Excellent Talents in UniversitiesProject(2006BAE03B03) supported by the Chinese National Science and Technology Supportive Program
文摘An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow engineering the microstructures for desired properties through smartly designing fabrication processing parameters.This is demonstrated for SnO2 nano-particle surfaces and also a technologically important Ag-SnO2 interface fabricated by in-situ internal oxidation.Based on defect thermodynamics,we first modeled and calculated the equilibrium surface and interface structures,and as well corresponding properties,as a function of the ambient temperature and oxygen partial pressure.A series of first principles energetics calculations were then performed to construct the equilibrium surface and interface phase diagrams,to describe the environment dependence of the microstructures and properties of the surfaces and interfaces during fabrication and service conditions.The use and potential application of these phase diagrams as a process design tool were suggested and discussed.
基金Project(51090385) supported by the National Natural Science Foundation of China
文摘The thermal decomposition process ofjarosite residue and the solubility of various oxides presented in the decomposed residue in NH4C1-H20 system were studied. The results of heat decomposition ofjarosite residue show that the insoluble ZnFe2O4 phase in the residue can be decomposed at temperatures ranging from 500 ℃ to 650 ℃ for 1 h. The OLI Systems software was used to study the thermodynamics of the solubility of various metal oxides existing in the decomposed residue in NH4CI-H20 system. The results show that the solubility ofZnO, PbO, CdO, CuO and Ag20 is high, while the solubility of Fe203 is less than 10-4 mol/L in the pH range from 4.0 to 9.0. The calculated data are in accordance with the experimental results.
基金Project (2007CB613603) supported by the National Basic Research Program of China
文摘Thermodynamics of the precipitation from Li-Fe(II)-P-H2O system at 298 K was investigated.The results demonstrate that LiFePO4 can be formed at room temperature under pH value of 0-11.3,and the impurities Li3PO4 and Fe(OH)2 will be yielded at pH value above 11.3 and 12.9,respectively.The optimum pH value for LiFePO4 precipitation is 8-10.5.Considering the low rate of phase transformation kinetics,metastable Li-Fe(II)-P-H2O system was also studied.The results indicate that equimolar ratio of co-precipitation precursor Fe3(PO4)2.8H2O and Li3PO4 cannot be obtained at the initial molar ratio 1:1:1 and 1:1:3 of Li:Fe:P.In contrast,equimolar ratio of the co-precipitation precursor can be yielded by adjusting the pH value to 7-9.2,matching the molar ratio 3:1:1 of Li:Fe:P,meaning that Li+-excess is one of the essential conditions for LiFePO4 preparation by co-precipitation method.
基金Project(CX2012B046)supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(20090162120080)supported by the Doctorate Fund of Education Minister of China
文摘According to the principles of simultaneous equilibrium and mass equilibrium, the thermodynamics model of the precipitation-coordination equilibrium of Ni2+-C2H8N2- 2-2 4C O -H2O system was established, and calculation for the relationships between concentration of each substance in solution and parameters was carried out, including pH value, concentrations of ethylenediamine and oxalate by MATLAB program. The results show that Ni exists as Ni2+and [Ni(C2O4)n]2-2n mainly at pH〈1 and pH=1-6, respectively. When pH〉6, the complex between Ni2+and ethylenediamine is predominant. The precursor of Ni microfiber was prepared by an oxalate precipitation process using ethylenediamine as a coordination agent, and the role of ethylenediamine in the growth of the precursor fiber was discussed. The Ni microfiber can be obtained by a thermal decomposition-reduction process of the precursor in N2 and H2 mixed atmosphere. The diameters and aspect ratios of the obtained Ni microfibers are 0.2-1 μm and 20-30, respectively.
基金supported by the National Natural Science Foundation of China(Nos.51602229 and U2040222)the Opening Project of Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education(Tongji University)+1 种基金the Joint Fund Project of Hubei Provincial Natural Science Foundation(No.2023AFD196)the Opening Funding of Henan Key Laboratory of Green Building Materials Manufacturing and Intelligent Equipment(No.2024LGSYS02),China.
文摘Low-heat Portland(LHP)cement is a new type of Portland cement that has been widely used in recent years due to its low heat of hydration,which makes it exceptional in temperature control for mass concrete construction.However,limited studies have investigated the impact of temperature and magnesium oxide(MgO)content on LHP cement-based materials.This study utilizes thermodynamic simulations to study the hydration process,pore structure,and autogenous shrinkage of LHP cement pastes with different water-to-cement ratios(0.3,0.4,and 0.5),curing temperatures(5,15,20,and 30℃),and MgO contents(mass fractions of 2%,4%,and 5%).Higher curing temperature is found to promote the hydration reactions in cement paste.Moreover,the incorporation of 4%MgO moderately decreases both porosity and dimensional shrinkage in pastes.The microstructural evolution of different LHP pastes is examined through a comparative analysis,lending insights into LHP cement-based material applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10747155, 11205131, 11175270, 11005164, and 10935013, ChongqingChongqing Science and Technology Commission under Grant No. 2010BB0408Local Support from Argonne National Laboratory
文摘Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive gravity model in cosmology proposed lately, the corrected entropic formula of the apparent horizon is obtaJned with the help of the modified Friedmann equations. This entropy-area relation, together with the identified Misner-Sharp internal energy, verifies the first law of thermodynamics for the apparent horizon with a volume change term for consistency. On the other hand, by means of the corrected entropy-area formula and the Clausius relation δQ = T dS, where the heat flow δQ is the energy-supply of pure matter projecting on the vector ξ tangent to the apparent horizon and should be looked on as the amount of energy crossing the apparent horizon during the time interval dt and the temperature of the apparent horizon for energy crossing during the same interval is 1/(2πτA), the modified Friedmann equations governing the dynamical evolution of the universe are reproduced with the known energy density and pressure of massive graviton. The integration constant is found to correspond to a cosmological term which could be absorbed into the energy density of matter. Having established the correspondence of massive cosmology with the unified first law of thermodynamics on the apparent horizon, the validity of the generalized second law of thermodynamics is also discussed by assuming the thermal equilibrium between the apparent horizon and the matter field bounded by the apparent horizon. It is found that, in the limit Hc → 0, which recovers the Minkowski reference metric solution in the fiat case, the generalized second law of thermodynamics holds if α3 + 4α4 〈 0. Without this condition, even for the simplest model of dRGT massive cosmology with α3= α4 = 0, the generalized second law of thermodynamics could be violated.