In this paper,the heat transfer enhancement(HTE)of supercritical nitrogen flowing downward in a vertical small tube(diameter 2 mm)is studied using the commercial software CFX of Ansys16.1,to provide theoretical guidan...In this paper,the heat transfer enhancement(HTE)of supercritical nitrogen flowing downward in a vertical small tube(diameter 2 mm)is studied using the commercial software CFX of Ansys16.1,to provide theoretical guidance on the design of high-performance heat transfer systems.An effective numerical simulation method,which employs the SSG Reynolds stress model with enhanced wall treatment,is applied to study the heat transfer of supercritical nitrogen under typical working conditions.The objective is to evaluate the effect of the main parameters taking into account the buoyancy and flow acceleration effects.Simulation results are compared with results calculated from three well-known empirical correlations and the applicability of empirical correlation is discussed in detail.It is discovered that the Watts and Chou correlation accurately fits the simulation results of supercritical nitrogen and the Dittus-Boelter and Jackson correlations can only be used for high-pressure conditions.The HTE of supercritical nitrogen is closely related to the laminar sub-layer and buffer layer of a boundary layer.The buoyancy effect on the HTE should be considered at low mass flux conditions,and thermal acceleration can be completely ignored for the cases studied.The special HTE featured by the increment in heat transfer coefficient with increasing heat flux is discovered at low pressure,and simulation results proved that this HTE is caused by the combined actions of buoyancy as well as significant variations in specific heat and viscosity.展开更多
In this paper,a time–frequency algorithm based on adaptive chirplet transform for parameter modeling and identification of Linear Time-Varying(LTV)systems under random excitation is presented.It is assumed that the s...In this paper,a time–frequency algorithm based on adaptive chirplet transform for parameter modeling and identification of Linear Time-Varying(LTV)systems under random excitation is presented.It is assumed that the solution of responses of LTV structures is expressed as the sum of multicomponent Linear Frequency Modulated(LFM)signals in a short-time.Then the measured acceleration response is used to perform the adaptive chirplet transform,in which an integral algorithm is employed to reconstruct the velocity and displacement responses.The vibration differential equation with time-varying coefficients is transformed into a simple linear equation.Furthermore,for systems under random excitation,the input–output relation based on correlation function is also derived to estimate the parameters including physicals parameters and instantaneous modal parameters.The full procedure of the method is presented and validated by using simulated responses.The results show that the presented method is accurate and robust for various LTV systems under random excitation.展开更多
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separati...This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.展开更多
To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) co...To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.展开更多
The post-Newtonian scheme in multiple systems with post-Newtonian parameters presented by Klioner and Soffel is extended to the post-post-Newtonian (PPN) order for light propagation problem in the solar system. Unde...The post-Newtonian scheme in multiple systems with post-Newtonian parameters presented by Klioner and Soffel is extended to the post-post-Newtonian (PPN) order for light propagation problem in the solar system. Under considering the solar system experiment requirement, a new parameter ε is introduced. This extension does not change the virtue of the scheme on the linear partial differential equations of the potential and vector potential mentioned in previous work. Furthermore, this extension is based on the former work done by Richter and Matzner in one global system theory. As an application, we also consider the deflection of light ray in the global coordinates. And the deflection angle of light ray is obtained with post-Newtonian parameters.展开更多
Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output ...Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.展开更多
基于中国科学院自主研发的第二代地球系统模式CAS-ESM2.0,本研究通过在陆面分量模式CoLM(Common Land Model)中引入植被水力模型以替换原有的经验性方案,开展了两组34年(1981~2014年)的AMIP(Atmospheric Model Intercomparison Project...基于中国科学院自主研发的第二代地球系统模式CAS-ESM2.0,本研究通过在陆面分量模式CoLM(Common Land Model)中引入植被水力模型以替换原有的经验性方案,开展了两组34年(1981~2014年)的AMIP(Atmospheric Model Intercomparison Project)数值模拟试验,探讨了植被水力方案的引入对中国夏季降水模拟的影响。结果表明,植被水力方案的引入能够显著降低CAS-ESM2.0模式对中国夏季降水气候态的模拟偏差,特别是显著改进了中国东部、青藏高原降水的低估,青藏高原以东的川西地区降水高估的偏差,同时也改善了夏季降水年际变率和极端大雨日数的模拟性能。进一步分析显示,植被水力方案的改进显著减小了土壤湿度在长江流域偏干、青藏高原偏湿的模式模拟偏差,降低了我国中东部以及青藏高原地表感热通量和潜热通量的模拟偏差,改善了模式对陆气相互作用过程的模拟能力。陆气相互作用的改进显著提升了模式对东亚季风环流的模拟,改进后的模式模拟的西北太平洋海平面气压的负偏差显著降低,有利于西南季风以及西北太平洋向我国东部的水汽输送,同时在对流层低层出现反气旋异常响应,有效改善了中国东部南风偏弱及水汽辐合偏弱的模拟偏差,使得我国东部降水负偏差显著减小。以上结果表明,包括植被水力过程的陆气相互作用的合理表述是改善东亚夏季降水模拟的重要途径之一。展开更多
One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present ...One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present a parameter-dependent l 2-l ∞ performance criterion using a parameter-dependent Lyapunov function. Upon the conditions addressed, an improved parameter-dependent l 2-l ∞ performance criterion is established by the introduction of a slack variable, which exhibits a kind of decoupling between Lyapunov functions and system matrices. This kind of decoupling enables us to obtain more easily tractable conditions for analysis and synthesis problems. Then, the corresponding parameter-dependent state-feedback controller design is investigated upon these performance criteria, with sufficient conditions obtained for the existence of admissible controllers in terms of parameterized linear matrix inequalities. Finally, a numerical example is provided to illustrate the feasibility and advantage of the proposed controller design procedure.展开更多
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (...An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.展开更多
A computer aided design system of welding fixture (called WFCAD system) is introduced in this paper. The microcomputer graphics software AutoCAD has been used as the supporting software of WFCAD system. By means of pr...A computer aided design system of welding fixture (called WFCAD system) is introduced in this paper. The microcomputer graphics software AutoCAD has been used as the supporting software of WFCAD system. By means of programming, 2-D and 3-D parameterized graphic libraries of components of welding fixture are established. With the aid of AutoCAD ' s advanced development system (ADS), menus and dialogs are constructed for convenient use of graphic library, and it also makes the system has a good man-machine interface.展开更多
In this paper, we discuss an inverse problem, i.e., the reconstruction of a linear differential dynamic system from the given discrete data of the solution. We propose a model and a corresponding algorithm to recover ...In this paper, we discuss an inverse problem, i.e., the reconstruction of a linear differential dynamic system from the given discrete data of the solution. We propose a model and a corresponding algorithm to recover the coefficient matrix of the differential system based on the normal vectors from the given discrete points, in order to avoid the problem of parameterization in curve fitting and approximation. We also give some theoretical analysis on our algorithm. When the data points are taken from the solution curve and the set composed of these data points is not degenerate, the coefficient matrix A reconstructed by our algorithm is unique from the given discrete and noisefree data. We discuss the error bounds for the approximate coefficient matrix and the solution which are reconstructed by our algorithm.Numerical examples demonstrate the effectiveness of the algorithm.展开更多
This paper investigates a parameterization method of adaptive H∞ controllers for dissipative Hamiltonian systems with disturbances and unknown parameters.The family of adaptive H∞ controllers with full information i...This paper investigates a parameterization method of adaptive H∞ controllers for dissipative Hamiltonian systems with disturbances and unknown parameters.The family of adaptive H∞ controllers with full information is obtained by interconnecting an adaptive H∞ controller with a generalized zero-energy-gradient (ZEG) detectable,free generalized Hamiltonian system.The present parameterization method avoids solving Hamilton-Jacobi-Issacs equations and thus the controllers obtained are easier in operation as compared to some existing ones.Simulations show the effectiveness and feasibility of the adaptive control strategy proposed in this paper.展开更多
基金financially sponsored by the National Natural Science Foundation of China(No.51876024 and No.51976204)Science and Technology on Reactor System Design Technology Laboratory。
文摘In this paper,the heat transfer enhancement(HTE)of supercritical nitrogen flowing downward in a vertical small tube(diameter 2 mm)is studied using the commercial software CFX of Ansys16.1,to provide theoretical guidance on the design of high-performance heat transfer systems.An effective numerical simulation method,which employs the SSG Reynolds stress model with enhanced wall treatment,is applied to study the heat transfer of supercritical nitrogen under typical working conditions.The objective is to evaluate the effect of the main parameters taking into account the buoyancy and flow acceleration effects.Simulation results are compared with results calculated from three well-known empirical correlations and the applicability of empirical correlation is discussed in detail.It is discovered that the Watts and Chou correlation accurately fits the simulation results of supercritical nitrogen and the Dittus-Boelter and Jackson correlations can only be used for high-pressure conditions.The HTE of supercritical nitrogen is closely related to the laminar sub-layer and buffer layer of a boundary layer.The buoyancy effect on the HTE should be considered at low mass flux conditions,and thermal acceleration can be completely ignored for the cases studied.The special HTE featured by the increment in heat transfer coefficient with increasing heat flux is discovered at low pressure,and simulation results proved that this HTE is caused by the combined actions of buoyancy as well as significant variations in specific heat and viscosity.
基金funded by the National Natural Science Foundation of China(Grant No.11172131 and 11232007)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘In this paper,a time–frequency algorithm based on adaptive chirplet transform for parameter modeling and identification of Linear Time-Varying(LTV)systems under random excitation is presented.It is assumed that the solution of responses of LTV structures is expressed as the sum of multicomponent Linear Frequency Modulated(LFM)signals in a short-time.Then the measured acceleration response is used to perform the adaptive chirplet transform,in which an integral algorithm is employed to reconstruct the velocity and displacement responses.The vibration differential equation with time-varying coefficients is transformed into a simple linear equation.Furthermore,for systems under random excitation,the input–output relation based on correlation function is also derived to estimate the parameters including physicals parameters and instantaneous modal parameters.The full procedure of the method is presented and validated by using simulated responses.The results show that the presented method is accurate and robust for various LTV systems under random excitation.
基金supported by National Natural Science Foundation of China (No. 60974139)Fundamental Research Funds for the Central Universities (No. 72103676)
文摘This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.
文摘To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.
基金supported by the National Natural Science Foundation of China (Grant No. 10674099)the National Science Foundation for Young Scientists of China (Grant No. 10925313)the Shandong Provincial Natural Science Foundation,China (GrantNo. ZR2010AQ023)
文摘The post-Newtonian scheme in multiple systems with post-Newtonian parameters presented by Klioner and Soffel is extended to the post-post-Newtonian (PPN) order for light propagation problem in the solar system. Under considering the solar system experiment requirement, a new parameter ε is introduced. This extension does not change the virtue of the scheme on the linear partial differential equations of the potential and vector potential mentioned in previous work. Furthermore, this extension is based on the former work done by Richter and Matzner in one global system theory. As an application, we also consider the deflection of light ray in the global coordinates. And the deflection angle of light ray is obtained with post-Newtonian parameters.
基金supported by the National Natural Science Foundation of China(6123101761671352)
文摘Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.
文摘基于中国科学院自主研发的第二代地球系统模式CAS-ESM2.0,本研究通过在陆面分量模式CoLM(Common Land Model)中引入植被水力模型以替换原有的经验性方案,开展了两组34年(1981~2014年)的AMIP(Atmospheric Model Intercomparison Project)数值模拟试验,探讨了植被水力方案的引入对中国夏季降水模拟的影响。结果表明,植被水力方案的引入能够显著降低CAS-ESM2.0模式对中国夏季降水气候态的模拟偏差,特别是显著改进了中国东部、青藏高原降水的低估,青藏高原以东的川西地区降水高估的偏差,同时也改善了夏季降水年际变率和极端大雨日数的模拟性能。进一步分析显示,植被水力方案的改进显著减小了土壤湿度在长江流域偏干、青藏高原偏湿的模式模拟偏差,降低了我国中东部以及青藏高原地表感热通量和潜热通量的模拟偏差,改善了模式对陆气相互作用过程的模拟能力。陆气相互作用的改进显著提升了模式对东亚季风环流的模拟,改进后的模式模拟的西北太平洋海平面气压的负偏差显著降低,有利于西南季风以及西北太平洋向我国东部的水汽输送,同时在对流层低层出现反气旋异常响应,有效改善了中国东部南风偏弱及水汽辐合偏弱的模拟偏差,使得我国东部降水负偏差显著减小。以上结果表明,包括植被水力过程的陆气相互作用的合理表述是改善东亚夏季降水模拟的重要途径之一。
文摘One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present a parameter-dependent l 2-l ∞ performance criterion using a parameter-dependent Lyapunov function. Upon the conditions addressed, an improved parameter-dependent l 2-l ∞ performance criterion is established by the introduction of a slack variable, which exhibits a kind of decoupling between Lyapunov functions and system matrices. This kind of decoupling enables us to obtain more easily tractable conditions for analysis and synthesis problems. Then, the corresponding parameter-dependent state-feedback controller design is investigated upon these performance criteria, with sufficient conditions obtained for the existence of admissible controllers in terms of parameterized linear matrix inequalities. Finally, a numerical example is provided to illustrate the feasibility and advantage of the proposed controller design procedure.
基金supported by National Natural Science Foundation of China(No.60804021,No.60702063)
文摘An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
文摘A computer aided design system of welding fixture (called WFCAD system) is introduced in this paper. The microcomputer graphics software AutoCAD has been used as the supporting software of WFCAD system. By means of programming, 2-D and 3-D parameterized graphic libraries of components of welding fixture are established. With the aid of AutoCAD ' s advanced development system (ADS), menus and dialogs are constructed for convenient use of graphic library, and it also makes the system has a good man-machine interface.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1129014311471066+2 种基金11572081)the Fundamental Research of Civil Aircraft(Grant No.MJF-2012-04)the Fundamental Research Funds for the Central Universities(Grant No.DUT15LK44)
文摘In this paper, we discuss an inverse problem, i.e., the reconstruction of a linear differential dynamic system from the given discrete data of the solution. We propose a model and a corresponding algorithm to recover the coefficient matrix of the differential system based on the normal vectors from the given discrete points, in order to avoid the problem of parameterization in curve fitting and approximation. We also give some theoretical analysis on our algorithm. When the data points are taken from the solution curve and the set composed of these data points is not degenerate, the coefficient matrix A reconstructed by our algorithm is unique from the given discrete and noisefree data. We discuss the error bounds for the approximate coefficient matrix and the solution which are reconstructed by our algorithm.Numerical examples demonstrate the effectiveness of the algorithm.
基金supported by National Natural Science Foundation of China (No. 61074189)
文摘This paper investigates a parameterization method of adaptive H∞ controllers for dissipative Hamiltonian systems with disturbances and unknown parameters.The family of adaptive H∞ controllers with full information is obtained by interconnecting an adaptive H∞ controller with a generalized zero-energy-gradient (ZEG) detectable,free generalized Hamiltonian system.The present parameterization method avoids solving Hamilton-Jacobi-Issacs equations and thus the controllers obtained are easier in operation as compared to some existing ones.Simulations show the effectiveness and feasibility of the adaptive control strategy proposed in this paper.