Ultrafast Joule heating(JH)has emerged as a powerful and scalable platform for rapid thermal processing of advanced nanomaterials.By delivering transient,high-intensity electrical pulses,JH induces ultrafast heating a...Ultrafast Joule heating(JH)has emerged as a powerful and scalable platform for rapid thermal processing of advanced nanomaterials.By delivering transient,high-intensity electrical pulses,JH induces ultrafast heating and cooling rates on the order of milliseconds,facilitating nonequilibrium phase transitions,defect modulation,and tailored nanostructural evolution.This technique offers unprecedented control over material synthesis and has been successfully applied to a broad spectrum of functional property-driven materials,including graphene,single-atom catalysts,transition metal carbides,oxides,nitrides,phosphides,and chalcogenides,as well as complex multicomponent frameworks such as high-entropy alloys.This review systematically explores the principles governing JH,highlights recent advances in its application to diverse materials systems,and critically assesses current limitations related to process uniformity,scalability,and mechanistic understanding.Particular attention is given to its intrinsic advantages,including energy efficiency,fast rate,environmental sustainability,and compatibility with sustainable manufacturing.Finally,we propose guidance for expanding the utility of JH for new materials discovery,including integration with in-situ diagnostics,theoretical compatibility and data-driven optimization of synthesis to effectively correlate structure-property relationships.展开更多
The production. characteristics. and commercialization of monolithic and composite titanium aluminides are summanzed with emphasis on use in the demanding aerospace industry. The attractive elevated temperature proper...The production. characteristics. and commercialization of monolithic and composite titanium aluminides are summanzed with emphasis on use in the demanding aerospace industry. The attractive elevated temperature properties combined with alow density make these materials of great interest, but inherently low 'forgiveness', and environmental concerns, must be overcome before widespread use will occur One synthesis method for the production of monolithic titanium aluminides-mechanical alloying- will be discussed in detail展开更多
This paper is a brief and selective review on hydrothermal synthesis of advanced materials. Some general comments about the hydrothermal synthesis of materials are presented. In particular, the surface modification an...This paper is a brief and selective review on hydrothermal synthesis of advanced materials. Some general comments about the hydrothermal synthesis of materials are presented. In particular, the surface modification and hydrothermal synthesis of functional powders (e.g. the hydrothermal coating of aluminum borate whiskers with chromium oxide, hydrothermal synthesis of Ni-Zn ferrite and magnesium hydroxide ) are introduced and their importance are explained.展开更多
Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuC14) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KN03, which indicates the good reducin...Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuC14) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KN03, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuC14,' respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH- catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods.展开更多
Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,a...Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,and process optimization have significantly improved the efficiency,selectivity,and sustainability of these processes.This Account introduces the relevant research activities in the Research Center for Catalysis in Syngas Conversion and Fine Chemicals(DNL0805)of Dalian Institute of Chemical Physics(DICP),Chinese Academy of Sciences.The reactions of interests include FTS,heterogeneous hydroformylation of olefins,alcohol dehydration and oxidation,andα-olefin polymerization,with the emphasis on developing innovative catalysts and processes to address the challenges of traditional processes.Exemplified by the discovery of robust Co-Co_(2)C/AC for FTS and Rh_(1)/POPs-PPh_(3) for heterogeneous hydroformylation of olefins,it demonstrates how lab-scale fundamental understandings on the active sites of catalysts leads to pilot-plant scale-up and finally commercial technologies.Perspectives on the challenges and directions for future developments in these exciting fields are provided.展开更多
Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix(TM) of a scattering medium. We report a simple but powerful method, ...Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix(TM) of a scattering medium. We report a simple but powerful method, direct digital frequency synthesis(DDS) technology to modulate the phase front of the laser and measure the TM. By judiciously modulating the phase front of a He–Ne laser beam, we experimentally generate a high quality focus at any targeted location through a 2 mm thick 120 grit ground glass diffuser, which is commercially used in laser display and laser holographic display for improving brightness uniformity and reducing speckle. The signal to noise ratio(SNR) of the clear round focus is 50 and the size is about 44 μm. Our study will open up new avenues for enhancing light energy delivery to the optical engine in laser TV to lower the power consumption, phase compensation to reduce the speckle noise, and controlling the lasing threshold in random lasers.展开更多
With the application of HIGEE process intensification technology, petroleum sulfonate surfactant used for enhanced oil recovery was synthesized from petroleum fraction of Shengli crude oil with three sulfonating agent...With the application of HIGEE process intensification technology, petroleum sulfonate surfactant used for enhanced oil recovery was synthesized from petroleum fraction of Shengli crude oil with three sulfonating agents, including diluted liquid sulfur trioxide, diluted gaseous sulfur trioxide and fuming sulfuric acid. For each sulfonating agent, different operation modes (liquid-liquid or gas-liquid reaction with semi-continuous or continuous operation) were applied. The effects of various experimental conditions, such as solvent/oil mass ratio, sulfonating agent/oil mass ratio, gas/liquid ratio, gas concentration, reaction temperature, rotating speed, circulation ratio, reaction time and aging time, on the content of active matter and unsulfonated oil were investigated. Under relatively optimal reaction conditions, the target product was prepared with high mass content of active matter (up to 45.3%) and extremely low oil/water interfacial tension (4.5×10 –3 mN·m –1 ). The product quality and process efficiency are higher compared with traditional sulfonation technology.展开更多
The ways and technology of synthesis of alcohol, ether, ester, amine ester, lactone, polyester, carbamide and diamond based on CO2 were explored. Using CO2 as potential organic carbon resources not only solves environ...The ways and technology of synthesis of alcohol, ether, ester, amine ester, lactone, polyester, carbamide and diamond based on CO2 were explored. Using CO2 as potential organic carbon resources not only solves environmental problem, but also eases shortage of resources.展开更多
Electrochemical methods are environmentally friendly and have unique advantages in the synthesis of organic chemicals.However,their implementation is limited due to the complex transport problems posed by traditional ...Electrochemical methods are environmentally friendly and have unique advantages in the synthesis of organic chemicals.However,their implementation is limited due to the complex transport problems posed by traditional electrochemical reactors.Recently,the application of microreaction technology in electrosynthesis studies has reduced the transport distance of ions and increased the specific surface area of electrodes,leading to efficient,successive,and easily scaled-up electrosynthesis technologies.In this review article,engineering advantages of using microchannels in electrosynthesis are discussed from process enhancement perspective.Flow patterns and mass transfer behaviors in recently reported electrochemical microreactors are analyzed,and prototypes for the reactor scale-up are reviewed.As a relatively new research area,many scientific rules and engineering features of electrosynthesis in microreactors require elucidation.Potential research foci,considered crucial for the development of novel electrosynthesis technology,are therefore proposed.展开更多
Several bacterial strains of Actinomycetes belonging to Streptomyces and Arthrobacter genera for the first time were used to study the biotechnology of synthesis of gold and silver nanoparticles.The experimental condi...Several bacterial strains of Actinomycetes belonging to Streptomyces and Arthrobacter genera for the first time were used to study the biotechnology of synthesis of gold and silver nanoparticles.The experimental conditions of gold and silver nanoparticles production by the cells of studied strains in aqueous chloroauric acid(HAuCIq)and in silver nitrate(AgNO3)solutions,respectively,were determined.Concentration and time-dependences of nanoparticle formation were investigated.The complex of optical and analytical methods was used for testing the gold and silver nanoparticles in the bacterial biomass.The TEM(Transmission Electron Microscopy)and XRD(X-ray Diffraction)data in all cases demonstrated the presence of crystals with fcc(face centered cubic)structure.The results obtained show that the Actinomycetes are capable of producing gold and silver nanoparticles of spherical shape extracellularly when exposed to suitable compounds.The particle size distribution shows that the sizes of nanoparticles are in the range of 5 nm to 80 nm.The biomass obtained may be used for industrial as well as medical and pharmaceutical purposes.展开更多
Fischer-Tropsch(F-T)synthesis has become a commercial pathway for producing liquid fuels and chemicals from non-petroleum carbon resources through syngas.In line with national energy security strategies and environmen...Fischer-Tropsch(F-T)synthesis has become a commercial pathway for producing liquid fuels and chemicals from non-petroleum carbon resources through syngas.In line with national energy security strategies and environmental protection concerns,the SINOPEC Research Institute of Petroleum Processing Co.,Ltd.(RIPP)has intensified research on F-T synthesis since 2002.Co-based fixed-bed and slurry F-T synthesis technologies nearing industrial readiness and a processing package of 0.7 Mt/a have been successfully developed after years of fundamental research,pilot testing,and technical designs.Besides,multiple mesoscopic channel reactor with a cross-flow structure and excellent heat control was developed to enhance the space time yield of supported cobalt catalyst under different reaction conditions.RIPP has also developed several different F-T synthetic oil hydro-upgrading technologies according to different target products,all of which have been implemented in industrial production.To address the quality of F-T reaction water,a targeted alcohol recovery pretreatment technology has been developed.Pilot tests confirmed that this technology significantly reduced the chemical oxygen demand of the water,thereby ensuring the feasibility of using F-T technology on an industrial scale.展开更多
Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge....Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.展开更多
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
Natural products,with their remarkable structural and biological diversity,have historically served as a vital bridge between chemistry,the life sciences,and medicine.They not only provide essential scaffolds for drug...Natural products,with their remarkable structural and biological diversity,have historically served as a vital bridge between chemistry,the life sciences,and medicine.They not only provide essential scaffolds for drug discovery but also inspire innovative strategies in drug development.The biomimetic synthesis of natural products employs principles from biomimicry,applying inspiration from biogenetic processes to design synthetic strategies that mimic biosynthetic processes.Biomimetic synthesis is a highly efficient approach in synthetic chemistry,as it addresses critical challenges in the synthesis of structurally complex natural products with significant biological and medicinal importance.It has gained widespread attention from researchers in chemistry,biology,pharmacy,and related fields,underscoring its interdisciplinary impact.In this perspective,we present recent advances and challenges in the biomimetic synthesis of natural products,along with the significance and prospects of this field,highlighting the transformative potential of biomimetic synthesis strategies for both chemical and biosynthetic approaches to natural product synthesis in the pursuit of novel therapeutic agents.展开更多
Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the n...Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0.展开更多
In order to obtain high comprehensive performance hollow ceramic microspheres (HCMs), used Al-Cr2O3 as the main reaction system, HCMs were prepared by Self-reactive flame quenching technology in Ar2 and N2 atmosphere ...In order to obtain high comprehensive performance hollow ceramic microspheres (HCMs), used Al-Cr2O3 as the main reaction system, HCMs were prepared by Self-reactive flame quenching technology in Ar2 and N2 atmosphere respectively. Effects of the two different atmospheres on synthesizing HCMs were studied. Results show that in Ar2 atmosphere, because of incomplete reaction of agglomerate powders, porous particles with hollow structure and smooth-faced HCMs constitute the products. However in N2 atmosphere, because agglomerate powders react completely, all of them become smooth-faced HCMs. Results above show that experiment atmosphere is a important parameter to synthesize HCMs and to a great extent influences reaction process of agglomerate powders in the flame field.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.22402030)the Fujian Province Young and Middle-Aged Teacher Education Research Project(JZ240012)+1 种基金I.S.A.acknowledges funding support from Research Ireland under the SFI-IRC Pathway Program(Grant no:22/PATH-S/10725)the SFI Industry RD&I Fellowship Program(Grant no:21/IRDIF/9876).
文摘Ultrafast Joule heating(JH)has emerged as a powerful and scalable platform for rapid thermal processing of advanced nanomaterials.By delivering transient,high-intensity electrical pulses,JH induces ultrafast heating and cooling rates on the order of milliseconds,facilitating nonequilibrium phase transitions,defect modulation,and tailored nanostructural evolution.This technique offers unprecedented control over material synthesis and has been successfully applied to a broad spectrum of functional property-driven materials,including graphene,single-atom catalysts,transition metal carbides,oxides,nitrides,phosphides,and chalcogenides,as well as complex multicomponent frameworks such as high-entropy alloys.This review systematically explores the principles governing JH,highlights recent advances in its application to diverse materials systems,and critically assesses current limitations related to process uniformity,scalability,and mechanistic understanding.Particular attention is given to its intrinsic advantages,including energy efficiency,fast rate,environmental sustainability,and compatibility with sustainable manufacturing.Finally,we propose guidance for expanding the utility of JH for new materials discovery,including integration with in-situ diagnostics,theoretical compatibility and data-driven optimization of synthesis to effectively correlate structure-property relationships.
文摘The production. characteristics. and commercialization of monolithic and composite titanium aluminides are summanzed with emphasis on use in the demanding aerospace industry. The attractive elevated temperature properties combined with alow density make these materials of great interest, but inherently low 'forgiveness', and environmental concerns, must be overcome before widespread use will occur One synthesis method for the production of monolithic titanium aluminides-mechanical alloying- will be discussed in detail
文摘This paper is a brief and selective review on hydrothermal synthesis of advanced materials. Some general comments about the hydrothermal synthesis of materials are presented. In particular, the surface modification and hydrothermal synthesis of functional powders (e.g. the hydrothermal coating of aluminum borate whiskers with chromium oxide, hydrothermal synthesis of Ni-Zn ferrite and magnesium hydroxide ) are introduced and their importance are explained.
基金supported by the National Natural Science Foundation of China(No.21073111)the Natural Science Foundation of Shandong Province,China(No.ZR2010BQ029)
文摘Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuC14) to an electrolyzed aqueous solution of poly(N-vinylpyrrolidone) (PVP) and KN03, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuC14,' respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH- catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods.
文摘Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,and process optimization have significantly improved the efficiency,selectivity,and sustainability of these processes.This Account introduces the relevant research activities in the Research Center for Catalysis in Syngas Conversion and Fine Chemicals(DNL0805)of Dalian Institute of Chemical Physics(DICP),Chinese Academy of Sciences.The reactions of interests include FTS,heterogeneous hydroformylation of olefins,alcohol dehydration and oxidation,andα-olefin polymerization,with the emphasis on developing innovative catalysts and processes to address the challenges of traditional processes.Exemplified by the discovery of robust Co-Co_(2)C/AC for FTS and Rh_(1)/POPs-PPh_(3) for heterogeneous hydroformylation of olefins,it demonstrates how lab-scale fundamental understandings on the active sites of catalysts leads to pilot-plant scale-up and finally commercial technologies.Perspectives on the challenges and directions for future developments in these exciting fields are provided.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0401902 and 2016YFB0402001)Key-Area Research and Development Program of Guang Dong Province,China(Grant No.2019B010926001)。
文摘Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix(TM) of a scattering medium. We report a simple but powerful method, direct digital frequency synthesis(DDS) technology to modulate the phase front of the laser and measure the TM. By judiciously modulating the phase front of a He–Ne laser beam, we experimentally generate a high quality focus at any targeted location through a 2 mm thick 120 grit ground glass diffuser, which is commercially used in laser display and laser holographic display for improving brightness uniformity and reducing speckle. The signal to noise ratio(SNR) of the clear round focus is 50 and the size is about 44 μm. Our study will open up new avenues for enhancing light energy delivery to the optical engine in laser TV to lower the power consumption, phase compensation to reduce the speckle noise, and controlling the lasing threshold in random lasers.
基金Supported by the National Natural Science Foundation of China (20821004 20990221) the National High Technology Research and Development Program of China (2006AA030202)
文摘With the application of HIGEE process intensification technology, petroleum sulfonate surfactant used for enhanced oil recovery was synthesized from petroleum fraction of Shengli crude oil with three sulfonating agents, including diluted liquid sulfur trioxide, diluted gaseous sulfur trioxide and fuming sulfuric acid. For each sulfonating agent, different operation modes (liquid-liquid or gas-liquid reaction with semi-continuous or continuous operation) were applied. The effects of various experimental conditions, such as solvent/oil mass ratio, sulfonating agent/oil mass ratio, gas/liquid ratio, gas concentration, reaction temperature, rotating speed, circulation ratio, reaction time and aging time, on the content of active matter and unsulfonated oil were investigated. Under relatively optimal reaction conditions, the target product was prepared with high mass content of active matter (up to 45.3%) and extremely low oil/water interfacial tension (4.5×10 –3 mN·m –1 ). The product quality and process efficiency are higher compared with traditional sulfonation technology.
文摘The ways and technology of synthesis of alcohol, ether, ester, amine ester, lactone, polyester, carbamide and diamond based on CO2 were explored. Using CO2 as potential organic carbon resources not only solves environmental problem, but also eases shortage of resources.
基金We would like to acknowledge the supports from the National Natural Science Foundation of China(21776150)and the State Key Laboratory of Chemical Engineering(SKL-ChE-20Z01).
文摘Electrochemical methods are environmentally friendly and have unique advantages in the synthesis of organic chemicals.However,their implementation is limited due to the complex transport problems posed by traditional electrochemical reactors.Recently,the application of microreaction technology in electrosynthesis studies has reduced the transport distance of ions and increased the specific surface area of electrodes,leading to efficient,successive,and easily scaled-up electrosynthesis technologies.In this review article,engineering advantages of using microchannels in electrosynthesis are discussed from process enhancement perspective.Flow patterns and mass transfer behaviors in recently reported electrochemical microreactors are analyzed,and prototypes for the reactor scale-up are reviewed.As a relatively new research area,many scientific rules and engineering features of electrosynthesis in microreactors require elucidation.Potential research foci,considered crucial for the development of novel electrosynthesis technology,are therefore proposed.
文摘Several bacterial strains of Actinomycetes belonging to Streptomyces and Arthrobacter genera for the first time were used to study the biotechnology of synthesis of gold and silver nanoparticles.The experimental conditions of gold and silver nanoparticles production by the cells of studied strains in aqueous chloroauric acid(HAuCIq)and in silver nitrate(AgNO3)solutions,respectively,were determined.Concentration and time-dependences of nanoparticle formation were investigated.The complex of optical and analytical methods was used for testing the gold and silver nanoparticles in the bacterial biomass.The TEM(Transmission Electron Microscopy)and XRD(X-ray Diffraction)data in all cases demonstrated the presence of crystals with fcc(face centered cubic)structure.The results obtained show that the Actinomycetes are capable of producing gold and silver nanoparticles of spherical shape extracellularly when exposed to suitable compounds.The particle size distribution shows that the sizes of nanoparticles are in the range of 5 nm to 80 nm.The biomass obtained may be used for industrial as well as medical and pharmaceutical purposes.
基金financial support from RIPP(R09040,R10029,R12066,R15009,R15007,and R17058)Sinopec,China(104085,105146,107035,109049,110122,110208,and 114141).
文摘Fischer-Tropsch(F-T)synthesis has become a commercial pathway for producing liquid fuels and chemicals from non-petroleum carbon resources through syngas.In line with national energy security strategies and environmental protection concerns,the SINOPEC Research Institute of Petroleum Processing Co.,Ltd.(RIPP)has intensified research on F-T synthesis since 2002.Co-based fixed-bed and slurry F-T synthesis technologies nearing industrial readiness and a processing package of 0.7 Mt/a have been successfully developed after years of fundamental research,pilot testing,and technical designs.Besides,multiple mesoscopic channel reactor with a cross-flow structure and excellent heat control was developed to enhance the space time yield of supported cobalt catalyst under different reaction conditions.RIPP has also developed several different F-T synthetic oil hydro-upgrading technologies according to different target products,all of which have been implemented in industrial production.To address the quality of F-T reaction water,a targeted alcohol recovery pretreatment technology has been developed.Pilot tests confirmed that this technology significantly reduced the chemical oxygen demand of the water,thereby ensuring the feasibility of using F-T technology on an industrial scale.
基金supported by National Natural Science Foundation of China(52302034,52402060,52202201,52021006)Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD202001)+1 种基金Shenzhen Science and Technology Innovation Commission(KQTD20221101115627004)China Postdoctoral Science Foundation(2024T170972)。
文摘Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
基金financially supported by the National Key Research and Development Program of China(2023YFC3503902)the National Natural Science Foundation of China(82430108,82293681(82293680),and 82321004)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120015 and 2024A1515030103)the Guangdong Major Project of Basic and Applied Basic Research(2023B0303000026)the Science and Technology Projects in Guangzhou(202102070001)。
文摘Natural products,with their remarkable structural and biological diversity,have historically served as a vital bridge between chemistry,the life sciences,and medicine.They not only provide essential scaffolds for drug discovery but also inspire innovative strategies in drug development.The biomimetic synthesis of natural products employs principles from biomimicry,applying inspiration from biogenetic processes to design synthetic strategies that mimic biosynthetic processes.Biomimetic synthesis is a highly efficient approach in synthetic chemistry,as it addresses critical challenges in the synthesis of structurally complex natural products with significant biological and medicinal importance.It has gained widespread attention from researchers in chemistry,biology,pharmacy,and related fields,underscoring its interdisciplinary impact.In this perspective,we present recent advances and challenges in the biomimetic synthesis of natural products,along with the significance and prospects of this field,highlighting the transformative potential of biomimetic synthesis strategies for both chemical and biosynthetic approaches to natural product synthesis in the pursuit of novel therapeutic agents.
基金supported by the Open Foundation of Key Laboratory of the Ministry of Educationof Nonferrous Metal Alloys and Processes(No.EKL09002)The Ph.D.Fund Project of Lanzhou University of Science and Technology(No.BS01200904)
文摘Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0.
基金National Nature Science Foundation of China (50672130)
文摘In order to obtain high comprehensive performance hollow ceramic microspheres (HCMs), used Al-Cr2O3 as the main reaction system, HCMs were prepared by Self-reactive flame quenching technology in Ar2 and N2 atmosphere respectively. Effects of the two different atmospheres on synthesizing HCMs were studied. Results show that in Ar2 atmosphere, because of incomplete reaction of agglomerate powders, porous particles with hollow structure and smooth-faced HCMs constitute the products. However in N2 atmosphere, because agglomerate powders react completely, all of them become smooth-faced HCMs. Results above show that experiment atmosphere is a important parameter to synthesize HCMs and to a great extent influences reaction process of agglomerate powders in the flame field.