期刊文献+
共找到2,287篇文章
< 1 2 115 >
每页显示 20 50 100
A photon-photon collider based on synchrotron γ rays in hollow plasma channels
1
作者 Yi-Nuo Liu Zhang-Hu Hu +3 位作者 Jie-Jie Lan Hao-Yuan Li Wang-Wen Xu You-Nian Wang 《Matter and Radiation at Extremes》 2025年第5期38-44,共7页
We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)pho... We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)photons s^(-1)·mrad^(-2)·mm^(-2)per 0.1% bandwidth at 0.6 MeV)photon beams are generated by strong electromagnetic fields induced by current filamentation instability,and up to~10^(6) Breit-Wheeler(BW)pairs can be created per shot.Notably,the usage of hollow plasma channels not only enhances synchrotron radiation,but also allows flexible control of the produced photon beams,ensuring the alignment of the two colliding beams and maximizing the two-photon BW process.This setup has the advantage of a clean background by eliminating the yield from the nonlinear BW process,and the signal-to-noise ratio is higher than 10^(2). 展开更多
关键词 synchrotron gamma sources relativistic electron beams strong electromagnetic fields hollow plasma channels synchrotron gamma rays hollow plasma channelsthe photon photon collider current filamentation instabilityand
在线阅读 下载PDF
Unveiling nano-scale chemical inhomogeneity in surface oxide films formed on V-and N-containing martensite stainless steel by synchrotron X-ray photoelectron emission spectroscopy/microscopy and microscopic X-ray absorption spectroscopy
2
作者 Xiaoqi Yue Dihao Chen +11 位作者 Anantha Krishnan Isac Lazar Yuran Niu Evangelos Golias Carsten Wiemann Andrei Gloskovskii Christoph Schlueter Arno Jeromin Thomas F.Keller Haijie Tong Sebastian Ejnermark Jinshan Pan 《Journal of Materials Science & Technology》 2025年第2期191-203,共13页
Nano-scale chemical inhomogeneity in surface oxide films formed on a V-and N-containing martensite stainless steel and tempering heating induced changes are investigated by a combination of synchrotron-based hard X-ra... Nano-scale chemical inhomogeneity in surface oxide films formed on a V-and N-containing martensite stainless steel and tempering heating induced changes are investigated by a combination of synchrotron-based hard X-ray Photoelectron emission spectroscopy(HAXPES)and microscopy(HAXPEEM)as well as microscopic X-ray absorption spectroscopy(μ-XAS)techniques.The results reveal the inhomogeneity in the oxide films on the micron-sized Cr_(2)N-and VN-type particles,while the inhomogeneity on the martensite matrix phase exists due to localised formation of nano-sized tempering nitride particles at 600℃.The oxide film formed on Cr_(2)N-type particles is rich in Cr_(2)O_(3) compared with that on the martensite matrix and VN-type particles.With the increase of tempering temperature,Cr_(2)O_(3) formation is faster for the oxidation of Cr in the martensite matrix than the oxidation of Cr nitride-rich particles. 展开更多
关键词 synchrotron X-ray photoelectron emission microscopy Hard X-ray photoelectron emission spectroscopy synchrotron microscopic X-ray absorption spectroscopy Martensite stainless steel Surface oxide film
原文传递
Recent progress on in-situ characterization of laser additive manufacturing process by synchrotron radiation 被引量:3
3
作者 Wenquan Lu Liang Zhao +2 位作者 Zhun Su Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 2025年第14期29-46,共18页
Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex ... Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex laser-matter interaction,melt flow,and defect formation during LAM due to extremely large temperature gradient,fast cooling rate,and small time(millisecond)and space(micron)scales.The emergence of synchrotron radiation provides a feasible approach for in situ observation of the LAM process.This paper outlines the current development in real-time characterization of LAM by synchrotron radiation,including laser-matter interaction,molten pool evolution,solidification structure evolution,and defects formation and elimination.Furthermore,the future development direction and application-oriented research are also discussed. 展开更多
关键词 Laser additive manufacturing synchrotron radiation Melt pool DEFECT
原文传递
Unveiling the growth and morphological transition mechanisms of Al_(2)Cu intermetallic compounds quantified by synchrotron X-ray tomography 被引量:1
4
作者 Zongye Ding Liao Yu +3 位作者 Naifang Zhang Wenquan Lu Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 2025年第6期43-54,共12页
Controlling the morphology of Al_(2) Cu intermetallic compounds(IMCs)has been of importance to enhance the properties of Al-based alloys.However,the quantification of Al_(2) Cu IMCs with diversified morphologies is st... Controlling the morphology of Al_(2) Cu intermetallic compounds(IMCs)has been of importance to enhance the properties of Al-based alloys.However,the quantification of Al_(2) Cu IMCs with diversified morphologies is still lacking,and the morphological evolution of Al_(2) Cu dendrites remains poorly understood.Using synchrotron X-ray tomography,we have directly quantified the morphological evolution of proeutectic Al_(2) Cu IMCs in directionally solidified Al-Cu alloys.The three-dimensional(3D)morphologies of Al_(2) Cu IMCs under different growth rates were quantified using volume,specific surface area,interconnectivity,tortuosity,and Gaussian curvature.The faceted morphology under slow growth rate was divided into three different types,including single hollow prism,irregular prism lacking partial faces,and coalesced prism consisting of two adjacent crystals.The morphological transition from faceted prism to non-faceted algae-like,irregular tree-like,and typically dendritic shapes with increasing growth rates was determined,reflecting the growth modes varied from lateral mode to intermediary and continuous modes.The non-faceted Al_(2) Cu dendrite had one primary stem,three groups of secondary arms,and a faceted tip.The angles between secondary arms were 120°,and the tip consisted of(011)and(011^(-))planes.This work provides a deep understanding of the formation and growth of complex IMCs in metallic alloys. 展开更多
关键词 Proeutectic Al_(2)Cu intermetallic synchrotron tomography Directional solidification 3-D morphology
原文传递
Experimental determination of stripping foil thickness on the XiPAF synchrotron
5
作者 Xiao-Yu Liu Hong-Juan Yao +4 位作者 Shu-Xin Zheng Ze-Jiang Wang Yang Xiong Pei-Zhi Fang Zhong-Ming Wang 《Nuclear Science and Techniques》 2025年第3期27-37,共11页
Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is cru... Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is crucial in the study of stripping injection,particularly in low-energy stripping injection synchrotrons,such as the XiPAF synchrotron.The foil thickness is the main parameter that affects the properties of the beam after injection.The thin stripping foil is reinforced with collodion during its installation.However,the collodion on the foil surface makes it difficult to determine its equivalent thickness,because the mechanical measurements are not sufficiently reliable or convenient for continuously determining foil thickness.We propose an online stripping foil thickness measurement method based on the ionization energy loss effect,which is suitable for any foil thickness and does not require additional equipment.Experimental studies were conducted using the XiPAF synchrotron.The limitation of this method was examined,and the results were verified by comparing the experimentally obtained beam current accumulation curves with the simulation results.This confirms the accuracy and reliability of the proposed method for measuring the stripping foil thickness. 展开更多
关键词 Stripping injection Foil thickness synchrotron Injection efficiency Experimental study
在线阅读 下载PDF
Tension-compression asymmetry of an AM magnesium alloy unveiled by in-situ synchrotron X-ray diffraction
6
作者 Hao Chen Huicong Chen +6 位作者 Yuanding Huang Weimin Gan Emad Maawad Weidong Xie Guobing Wei Yan Yang Yu Zou 《Journal of Magnesium and Alloys》 2025年第11期5421-5437,共17页
Magnesium(Mg)alloys typically exhibit anisotropic mechanical behaviors due to their hexagonal close-packed(hcp)crystal structures,often leading to tension-compression asymmetries.Understanding of the asymmetrical and ... Magnesium(Mg)alloys typically exhibit anisotropic mechanical behaviors due to their hexagonal close-packed(hcp)crystal structures,often leading to tension-compression asymmetries.Understanding of the asymmetrical and related deformation mechanisms is crucial for their structural applications,particularly in the lightweight transportation industries.Nevertheless,the underlying deformation mechanisms(e.g.,slip versus twinning)at each deformation stage during tension and compression have not been fully understood.In this study,we employed tensile and compressive tests on extruded Al and Mn containing Mg alloy,i.e.,an AM alloy Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca,during the synchrotron X-ray diffraction.Our results show that distinct deformation behaviors and mechanisms in tension and compression are associated with the strong texture in the extruded samples:(i)The tensile deformation is dominated by dislocation slips,with activation of non-basaland<c+a>slip,but deformation twinning is suppressed.(ii)The compressive deformation shows early-stage tensile twinning,followed by dislocation slips.Twinning induces grain reorientation,leading to significant lattice strain evolution aligned with the texture.The pronounced tension-compression asymmetry is attributed to the favorable shear stress direction formed in the twinning system during compression,which facilitates the activation of tensile twins.During tension,the strain hardening rate(SHR)drops significantly after yielding due to limited activated slip systems.In contrast,the samples under compression exhibit significant increases in SHR after yielding.During compression,dislocation multiplication dominates the initial strain hardening,while twinning progressively contributes more significantly than dislocation slip at higher strains.This study improves our understanding of the tension-compression and strain hardening asymmetries in extruded AM Mg alloys. 展开更多
关键词 Mg alloy Plastic deformation DISLOCATION TWINNING synchrotron X-ray diffraction
在线阅读 下载PDF
Cytoprotective activity of Pogonatherum paniceum(Lam.)Hack.ethanolic extract evaluated by synchrotron radiation-based Fourier transform infrared microspectroscopy
7
作者 Benjawan Dunkhunthod Kanjana Thumanu +2 位作者 Yothin Teethaisong Priyada Sittisart Patcharawan Sittisart 《Journal of Integrative Medicine》 2025年第2期182-194,共13页
Objective:The present study investigated the cytoprotective effects of a Pogonatherum paniceum extract prepared with 80%ethanol(PPE)using synchrotron radiation-based Fourier transform infrared(SR-FTIR)microspectroscop... Objective:The present study investigated the cytoprotective effects of a Pogonatherum paniceum extract prepared with 80%ethanol(PPE)using synchrotron radiation-based Fourier transform infrared(SR-FTIR)microspectroscopy and determined its phytochemical profile.Methods:The volatile and polyphenolic compounds in PPE were characterized using gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry,respectively.The antioxidant capacity of PPE was evaluated using chemical and cell-based assays.The SR-FTIR microspectroscopy was performed to evaluate the cytoprotective effect of PPE by identifying changes in macromolecule composition in tert-butyl hydroperoxide(t BuOOH)-induced oxidative damage in RAW264.7 cells.Results:A total of 48 volatile compounds and 28 polyphenol components were found in PPE.PPE exhibited a high potential for antioxidant activity by scavenging the intracellular reactive oxygen species in t Bu OOH-induced oxidative damage in RAW264.7 cells.PPE treatment also significantly protected RAW264.7 cells against t BuOOH-induced toxicity and restored cell viability.The SR-FTIR analysis revealed that t BuOOH increased the lipid and ester lipid content in RAW264.7 cells.The PPE exerted a cytoprotective effect by decreasing the levels of lipid and ester lipid compounds that had been elevated by t BuOOH in RAW264.7 cells.These findings indicate that PPE has cytoprotective potential due to its ability to inhibit endogenous reactive oxygen species.Conclusion:This study extends the current knowledge on the phytochemistry of PPE and its antioxidant and cytoprotective effects.These findings support the use of SR-FTIR microspectroscopy to determine the cytoprotective effects of natural products.PPE extract may be a candidate compound for new therapeutics and nutraceuticals that target the prevention of oxidative stress-associated diseases. 展开更多
关键词 Pogonatherum paniceum Reactive oxygen species Antioxidant Phytochemical CYTOPROTECTIVE synchrotron radiation-based Fourier transform infrared microspectroscopy
原文传递
Depression of pyrrhotite superstructures in copper flotation:A synchrotron X-ray powder diffraction and DFT study
8
作者 Alireza Rezvani Foad Raji +3 位作者 Rong Fan R.Kappes Zhiyong Gao Yongjun Peng 《International Journal of Mining Science and Technology》 2025年第8期1259-1270,共12页
Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and ... Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry. 展开更多
关键词 Pyrrhotite depression synchrotron X-ray powder diffraction analysis Pyrrhotite superstructures DFT simulation Surface reactivity
在线阅读 下载PDF
Efficient flexible perovskite solar cells:From materials to buried structure revealed by synchrotron radiation GIWAXS
9
作者 Xiaoxi Li Tingting Wang +7 位作者 Lifeng Yang Bitao Dong Yuchun Li Laixi Li Lina Li Shanglei Feng Gengsheng Chen Yingguo Yang 《Journal of Energy Chemistry》 2025年第5期254-267,共14页
Perovskite solar cells(PSC)are considered as a promising photovoltaic technology due to their low cost and high efficiency exceeding 26.8%.Ultra-lightweight flexible perovskite solar cells(FPSCs)can be applied to many... Perovskite solar cells(PSC)are considered as a promising photovoltaic technology due to their low cost and high efficiency exceeding 26.8%.Ultra-lightweight flexible perovskite solar cells(FPSCs)can be applied to many fields such as architecture and portable devices.Although the photovoltaic conversion efficiency(PCE)of FPSC has exceeded 24%in the past few years,further application of FPSC is constrained by the challenges posed by limitation of critical material components.Here,we discussed recent research progress of key FPSC materials,mechanical endurance,low-temperature fabrication,etc.With the advantages of high brightness,collimation and resolution,we specially introduced the application of synchrotron radiation grazing incidence wide-angle X-ray scattering(GIWAXS)to directly observe the perovskite buried interface structure and corresponding mechanical stability of FPSCs without any damage.Finally,we summarize the challenges and propose an outlook about the large-scale preparation of efficient and stable FPSC modules. 展开更多
关键词 Flexible perovskite solar cells Device materials Buried structure synchrotron radiation GIWAXS
在线阅读 下载PDF
Integrated multi-scale synchrotron radiation-technology studies on AlPO_(4)-coating modification mechanism in lithium-rich manganese-based cathode
10
作者 Zhong-Qin Dai Huan Chen Zhao-Yin Wen 《Nuclear Science and Techniques》 2025年第5期30-42,共13页
Lithium-and manganese-rich(LMR)oxide cathode materials are among the most attractive candidates for next-generation energy-storage materials owing to their anomalous capacity.However,severe Mn dissolution that occurs ... Lithium-and manganese-rich(LMR)oxide cathode materials are among the most attractive candidates for next-generation energy-storage materials owing to their anomalous capacity.However,severe Mn dissolution that occurs during long-term cycling,which leads to capacity loss,hinders their application prospects.In this study,nanoscale AlPO_(4)-coated Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LMR@APO)with significantly enhanced electrochemical performance is successfully synthesized using a simple and effective sol–gel method to mitigate Mn dissolution and suppress local structural distortion at high voltages.Because of the complex evolution of the structure and oxidation state of LMR materials during electrochemical cycling,observing and analyzing them using traditional single characterization methods may be difficult.Therefore,we combine various synchrotron-based characterization techniques to conduct a detailed analysis of the electronic and coordination structures of the cathode material from the surface to the bulk.Synchrotron-based hard and soft X-ray spectroscopies are integrated to investigate the differences in O and Mn evolution between the surfaces and bulk of the cathode.Advanced synchrotron-based transmission X-ray microscopy combined with X-ray near-edge absorption-structure technology is utilized to visualize the two-dimensional nanometer-scale reactivity of the LMR cathode.The AlPO_(4)-coating layer can stabilize the surface structure of the LMR material,effectively alleviating irreversible oxygen release on the surface and preventing the dissolution of Mn^(2+)at the interface caused by side reactions after a long cycle.Therefore,the spatial reaction uniformity of Mn is enhanced by the AlPO_(4)-coating layer,and rapid capacity decay caused by Mn deactivation is prevented.The AlPO_(4)-coating method is a facile modification strategy for high-performance LMR materials. 展开更多
关键词 synchrotron radiation X-ray absorption fine structure X-ray imaging Amorphous coating layer Lithium-and manganese-rich(LMR)cathode
在线阅读 下载PDF
Tensile Deformation Mechanism of Glycerol Plasticized Poly(vinyl alcohol) Film as Elucidated by In situ Synchrotron Radiation X-ray Scattering: the Critical Role of Hydrolysis
11
作者 Zi-Shuo Wu Jia-Ying Deng Wei Chen 《Chinese Journal of Polymer Science》 2025年第9期1671-1680,I0013,共11页
The deformation mechanism of glycerol plasticized poly(vinyl alcohol)(PVA)with different hydrolyses(88%,92%,98%)at elevated temperatures(60-100℃)was elucidated by in situ synchrotron radiation X-ray scattering.The vi... The deformation mechanism of glycerol plasticized poly(vinyl alcohol)(PVA)with different hydrolyses(88%,92%,98%)at elevated temperatures(60-100℃)was elucidated by in situ synchrotron radiation X-ray scattering.The vinyl acetate(VAc)in PVA acts as a non-crystalline chain defect,which significantly influences the plastic deformation and stretching-induced crystallization behavior of PVA.The key microstructural parameters of PVA during deformation,such as crystallinity(χ_(c)),lateral crystallite size(L),and long period(l),in combination with the stress-strain curves,were obtained.The experimental results show that the deformation process of the plasticized PVA film present a three-stage evolution:(i)a plastic deformation zone.The plastic deformation of the crystallite occurs as evidenced by the apparent decrease in crystallinity and lamellar reorientation induced by stretching;(ii)the stress softening zone.The decreasing trend of crystallinity becomes slow,and the long period becomes smaller,which indicates that PVA crystallization is induced by stretching;and(iii)the strain-hardening zone.There is a synergistic effect between the crystallite destruction and formation.Further research reveals that a high temperature and low degree of alcoholysis favor the stretching-induced crystallization of PVA,while the system with a high degree of alcoholysis shows significant characteristics of preferred crystal growth. 展开更多
关键词 Poly(vinyl alcohol)film Polymer deformation mechanism Soft matter mechanics synchrotron radiation X-ray scattering
原文传递
Synchrotron-radiation computed tomography of the water drop penetration time test on hydrophobic soils
12
作者 Clara M.Toffoli Marius Milatz +3 位作者 Julian P.Moosmann Thomas Jentschke Felix Beckmann Jürgen Grabe 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5111-5121,共11页
The water drop penetration time(WDPT)test consists of placing water drops on a material's surface in order to evaluate how long it takes to penetrate the pores.It is used to evaluate the hydrophobicity of material... The water drop penetration time(WDPT)test consists of placing water drops on a material's surface in order to evaluate how long it takes to penetrate the pores.It is used to evaluate the hydrophobicity of materials.This study aims at investigating in more detail the soil-water interaction during the test,exposing its mechanism.For that,a model soil named Hamburg Sand was coated with a hydrophobic fluoropolymer and then a WDPT test was performed while computed tomography(CT)images were taken.Tomography experiments were performed at the P07 high-energy materials science(HEMS)beamline,operated by Helmholtz–Zentrum Hereon,at the storage ring PETRA III at the Deutsches Elektronen-Synchrotron(DESY)in Hamburg.Using synchrotron radiation,a tomogram can be obtained in about 10 min,way less time than regular laboratory X-ray sources usually owned by universities.The faster imaging enables the observation of the drop penetration during time and thus provides insight into the dynamics of the process.After that,digital discrete image correlation is performed to track the displacement of the grains throughout time.From the results one can observe that,as the drop is absorbed at the material's surface,the grains directly around the droplet base are dragged to the liquid-air interface around the drop,revealing grain kinematics during capillary interactions of the penetrating liquid and sand grains. 展开更多
关键词 Hydrophobic soil synchrotron tomography Water drop penetration time(WDPT)test
在线阅读 下载PDF
Recent Progress of Synchrotron X-Ray Imaging and Diffraction on the Solidification and Deformation Behavior of Metallic Materials 被引量:5
13
作者 Youhong Peng Kesong Miao +4 位作者 Wei Sun Chenglu Liu Hao Wu Lin Geng Guohua Fan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第1期3-24,共22页
Characterizing the microstructure and deformation mechanism associated with the performances and properties of metallic materials is of great importance in understanding the microstructure-property relationship.The pa... Characterizing the microstructure and deformation mechanism associated with the performances and properties of metallic materials is of great importance in understanding the microstructure-property relationship.The past few decades have witnessed the rapid development of characterization techniques from optical microscopy to electron microscopy,although these conventional methods are generally limited to the sample surface because of the intrinsic opaque nature of metallic materials.Advanced synchrotron radiation(SR)facilities can produce X-rays with strong penetrability and high spatiotemporal resolution,and thereby enabling the non-destructive visualization of full-field structural information in three dimensions.Tremendous endeavors were devoted to the 3 rd generation SR over the past three decades,in which X-ray beams have been focused down to 100 nm.In this paper,recent progresses on SR-related characterization technologies were reviewed,with particular emphases on the fundamentals of synchrotron X-ray imaging and synchrotron X-ray diffraction,as well as their applications in the in situ observations of material preparation(e.g.,in situ dendrite growth during solidification)and service under extreme environment(e.g.,in situ mechanics).Future innovations toward next-generation SR and newly emerging SRbased technologies such as dark-field X-ray microscopy and Bragg coherent X-ray diffraction imaging were also advocated. 展开更多
关键词 synchrotron radiation synchrotron X-ray imaging synchrotron X-ray diffraction Metallic alloys
原文传递
In situ study on columnar-equiaxed transition and anaxial columnar dendrite growth of Al-15%Cu alloy by synchrotron radiography 被引量:3
14
作者 李发国 东青 +5 位作者 张佼 戴永兵 付亚楠 谢红兰 尹付成 孙宝德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2112-2116,共5页
Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal... Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites. 展开更多
关键词 Al-15%Cu alloy directional solidification columnar to equiaxed transition synchrotron X-ray radiography
在线阅读 下载PDF
Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys 被引量:11
15
作者 Li Jiang Xiang-Xi Ye +1 位作者 De-Jun Wang Zhi-Jun Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第1期57-71,共15页
From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt ... From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials. 展开更多
关键词 Molten salt reactor Alloy materials synchrotron radiation Shanghai synchrotron Radiation Facility Molten salt corrosion Tellurium corrosion
在线阅读 下载PDF
In situ analysis of multi-twin morphology and growth using synchrotron polychromatic X-ray microdiffraction
16
作者 李理 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2156-2164,共9页
Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins... Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins were analyzed in situ under the load level from 64 to 73 MPa.The X-ray microdiffraction data,collected on beamline 12.3.2 at the Advanced Light Source,were then used to map an area of 396μm x 200μm within the region of interest.The experimental set-up and X-ray diffraction microscopy with a depth resolution allow the position and orientation of each illuminated grain to be determined at the submicron size.A list of parent grains sorted by crystallographic orientation were selected to examine their twinning behavior.The results depict twin variant selection,local misorientation fluctuation and mosaic spread for multi-twins within the same parent grain.As load increases,the amplitude of misorientation fluctuation along twin trace keeps increasing.This is attributable to the accumulation of geometrically necessary dislocations. 展开更多
关键词 synchrotron polychromatic X-ray deformation twinning in situ analysis local misorientation geometrically necessary dislocations
在线阅读 下载PDF
The protein complex crystallography beamline(BL19U1)at the Shanghai Synchrotron Radiation Facility 被引量:14
17
作者 Wei-Zhe Zhang Jian-Chao Tang +3 位作者 Si-Sheng Wang Zhi-Jun Wang Wen-Ming Qin Jian-Hua He 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第11期30-40,共11页
The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai... The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai,China).The beamline,which features a small-gap invacuum undulator,has been officially open to users since March 2015.This beamline delivers X-ray in the energy range 7–15 keV.With its high flux,low divergence beam and a large active area detector,BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions.Good performance and stable operation of the beamline have allowed the number of Protein Data Bank(PDB)depositions and the number of articles published based on data collected at this beamline to increase steadily.To date,over 300 research groups have collected data at the beamline.More than 600 PDB entries have been deposited at the PDB(www.pdb.org).More than 300 papers have been published that include data collected at the beamline,including 21 research articles published in the top-level journals Cell,Nature,and Science. 展开更多
关键词 MX BEAMLINES Macromolecular CRYSTALLOGRAPHY Shanghai synchrotron Radiation Facility SSRF-BL19U1
在线阅读 下载PDF
Design of wide-range energy material beamline at the Shanghai Synchrotron Radiation Facility 被引量:5
18
作者 Zhen-Hua Chen Fan-Fei Sun +5 位作者 Ying Zou Fei Song Shuo Zhang Zheng Jiang Yong Wang Ren-Zhong Tai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第2期91-102,共12页
We report the design of a wide-range energy material beamline(E-line) with multiple experimental techniques at the Shanghai Synchrotron Radiation Facility.The undulators consisted of an elliptically polarizing undulat... We report the design of a wide-range energy material beamline(E-line) with multiple experimental techniques at the Shanghai Synchrotron Radiation Facility.The undulators consisted of an elliptically polarizing undulator and in-vacuum undulator that generate the soft and hard X-rays, respectively. The beamline covered a wide energy range from 130 to 18 ke V with both a high photon flux([ 10^(12) phs/s with exit silt 30 lm in soft X-ray and [ 5 9 10^(12) phs/s in hard X-ray within 0.1%BW bandwidth) and promising resolving power(maximum E/DE [ 15,000 in soft X-ray with exit silt 30 lm and [6000 in hard X-ray). Moreover, the beam spots from the soft and hard X-rays were focused to the same sample position with a high overlap ratio, so that the surfaces, interfaces, and bulk properties were characterized in situ by changing the probing depth. 展开更多
关键词 synchrotron RADIATION BEAMLINE Wide energy range E-line SHANGHAI synchrotron RADIATION FACILITY
在线阅读 下载PDF
In-situ study on hydrogen bubble evolution in the liquid Al/solid Ni interconnection by synchrotron radiation X-ray radiography 被引量:5
19
作者 Zongye Ding Qiaodan Hu +6 位作者 Wenquan Lu Xuan Ge Sheng Cao Siyu Sun Tianxing Yang Mingxu Xia Jianguo Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第7期1388-1392,共5页
Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heat... Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heating. The size distribution for groups of bubbles follows a Gaussian distribution in the early stage and Lifshitz-Slyozov-Wagner(LSW) diffusion controlled distribution in the final stage. The intermetallic compounds(IMCs) first form during solidification, following by the hydrogen bubbles. The bubbles between two adjacent Al3Ni grains grow unidirectionally along the liquid channel, with the bottom being impeded by the Al3Ni phase and the radius of the growth front being smaller. For the bubbles at triple junctions, they grow along the liquid channel and the crack with morphology transition. 展开更多
关键词 synchrotron radiation LIQUID Al/solid NI INTERCONNECTION HYDROGEN BUBBLE Intermetallic compounds Growth behavior
原文传递
Tuning control system of a third harmonic superconducting cavity in the Shanghai Synchrotron Radiation Facility 被引量:5
20
作者 Peng-Peng Gong Yu-Bin Zhao +6 位作者 Hong-Tao Hou Zhi-Gang Zhang Xiang Zheng Xiao-Yun Pu Kai Xu Qiang Chang Jian-Fei Liu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第10期123-132,共10页
Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge densit... Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge density of the bench.In the phaseⅡupgrade of the SSRF,a third harmonic superconducting cavity will be used to enhance the Touschek lifetime by lengthening the bunches.The Touschek lifetime improvement factor is affected by the voltage of a harmonic cavity.To stabilize the cavity voltage,a tuning control system was designed to control it.The design of the tuning control system was based on the SSRF third-generation low-level RF control system.Some hardware and specialized algorithms were redesigned to fit the harmonic cavity control.The design of the tuning control system is complete,and the control system has been tested.The test result shows that the fluctuation of amplitude is<±0.34%within 1.5 h,which satisfies the stability requirement. 展开更多
关键词 Passive HARMONIC CAVITY Low-level radio frequency SHANGHAI synchrotron Radiation Facility Touschek LIFETIME
在线阅读 下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部