期刊文献+
共找到266,773篇文章
< 1 2 250 >
每页显示 20 50 100
A high-energy powder with excellent combustion reaction performance:Surface modification strategy of boron powder based on non-thermal plasma
1
作者 Kangkang Li Jianyong Xu +9 位作者 Xiaoting Lei Mengzhe Yang Jing Liu Luqi Guo Pengfei Cui Dihua Ouyang Chunpei Yu He Cheng Jiahai Ye Wenchao Zhang 《Defence Technology(防务技术)》 2026年第1期289-300,共12页
The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative conti... The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites. 展开更多
关键词 Oxide film materials surface modification Boron powder Non-thermal plasma Combustion performance
在线阅读 下载PDF
Physical Antibacterial Surface Modifications on Titanium-Based Implant Materials
2
作者 Zhang Zhe Liu Hui +2 位作者 Lin Manfeng Cai Zongyuan Zhao Dapeng 《稀有金属材料与工程》 北大核心 2025年第1期84-93,共10页
Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics... Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized. 展开更多
关键词 physical antibacterial behavior surface modification titanium alloy implant material
原文传递
Recent Advancements in the Surface Modification of Additively Manufactured Metallic Bone Implants
3
作者 Jianhui Li Haitao Fan +4 位作者 Hui Li Licheng Hua Jianke Du Yong He Yuan Jin 《Additive Manufacturing Frontiers》 2025年第1期97-124,共28页
Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been cr... Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been crucial in enhancing the performance and biocompatibility of implants.Through leveraging the versatility of AM techniques,particularly powder bed fusion,a range of metallic biomaterials,including stainless steel,titanium,and biodegradable alloys,can be utilized to fabricate implants tailored for craniofacial,trunk,and limb bone reconstructions.However,the potential of AM is contingent on addressing intrinsic defects that may hinder implant performance.Techniques such as sandblasting,chemical treatment,electropolishing,heat treatment,and laser technology effectively remove residual powder and improve the surface roughness of these implants.The development of functional coatings,applied via both dry and wet methods,represents a significant advancement in surface modification research.These coatings not only improve mechanical and biological interactions at the implant-bone interface but also facilitate controlled drug release and enhance antimicrobial properties.Addition-ally,micro-and nanoscale surface modifications using chemical and laser techniques can precisely sculpt implant surfaces to promote the desired cellular responses.This detailed exploration of surface engineering offers a wealth of opportunities for creating next-generation implants that are not only biocompatible but also bioactive,laying the foundation for more effective solutions in bone reconstruction. 展开更多
关键词 surface modification Additive manufacturing Bone implants Defect mitigation Coatings MICROSTRUCTURES
暂未订购
Current status and perspectives on design,fabrication,surface modification,and clinical applications of biodegradable magnesium alloys
4
作者 Jianzeng Ren Zhou Jiang +3 位作者 Jianbing He Xiaoying Wang Weihong Jin Zhentao Yu 《Journal of Magnesium and Alloys》 2025年第8期3564-3595,共32页
Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the e... Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the essential prerequisites for their successful clinical translation.Subsequently,a detailed review of magnesium-based materials is presented from five critical areas of alloying,fabrication techniques,purification,surface modification,and structural design,systematically addressing their progress in biodegradation rate retardation,mechanical reinforcement,and biocompatibility enhancement.Furthermore,recent breakthroughs in vivo animal experiments and clinical translation of magnesium alloys are summarized.Finally,this review concludes with a critical assessment of the achievements and challenges encountered in the clinical application of these materials,and proposes practical strategies to address current limitations and guide future research perspectives. 展开更多
关键词 Magnesium-based biodegradable metals ALLOYING Fabrication techniques PURIFICATION surface modification Structural design
在线阅读 下载PDF
Suppression of Ag dewetting and sinterability improvement of submicron Ag-coated Cu particles as fillers in sintering paste by surface modification with stearic acid
5
作者 Yeongjung KIM Yong-Sung EOM +1 位作者 Kwang-Seong CHOI Jong-Hyun LEE 《Transactions of Nonferrous Metals Society of China》 2025年第6期2008-2020,共13页
Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(... Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles. 展开更多
关键词 submicron Ag-coated Cu particle SINTERING DEWETTING surface modification stearic acid electrical resistivity
在线阅读 下载PDF
Effect of Silica Fiber and Its Composite Properties by SiB_(6)/SiO_(2)Mixed Surface Modification
6
作者 DING Jie DUAN Jinzhe +5 位作者 YAN Xizhuo SHI Minxian HUANG Zhixiong YAN Haibo WANG Qingke LI Kai 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期325-329,共5页
Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resi... Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resin composites.The influences of the SiB_(6)/SiO_(2)mixed modification on silica fiber properties were analyzed through thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and X-ray diffraction(XRD),respectively.Additionally,the influence of the SiB_(6)/SiO_(2)mixed modification on the mechanical properties of phenolic resin matrix composites was evaluated through mechanical testing.The experimeatal results indicate that the SiB_(6)/SiO_(2)mixed surface modification shows significant improvement in strength at room temperature and high temperatures,and crystallization temperature of silica fiber increases.The SiB_(6)/Silica sol co-modified silica fiber shows potential for future application in thermal protection and other high-temperature conditions. 展开更多
关键词 SiB_6 fiber surface modification silica sol CRYSTALLIZATION silica fiber
原文传递
Surface modification of fabrics using dielectric barrier discharge plasma for improved antifouling performance
7
作者 Jian SHEN Fajun WANG +3 位作者 Wei WEI Jie MA Junjie WANG Liangliang LIN 《Plasma Science and Technology》 2025年第1期7-16,共10页
Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure die... Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities. 展开更多
关键词 DBD plasma plasma surface modification silk fabrics water and oil repellency antifouling property
在线阅读 下载PDF
Amine-reactive Polymer Platform for Engineering Surface Modification of Next-generation Sequencing Chips
8
作者 Wei Tian Xin-Yuan Wang +4 位作者 Die-Wen Feng Xiang-Qian Li Yue-Kang Jin Hui Li Hao Liu 《Chinese Journal of Polymer Science》 2025年第11期2030-2041,I0010,共13页
In this study,an amine-reactive poly(pentafluorophenyl acrylate)(PPFPA)platform was developed for advanced surface engineering of next-generation sequencing(NGS)chips.Through post-polymerization modification,PPFPA was... In this study,an amine-reactive poly(pentafluorophenyl acrylate)(PPFPA)platform was developed for advanced surface engineering of next-generation sequencing(NGS)chips.Through post-polymerization modification,PPFPA was functionalized with dual moieties:azide groups for covalent immobilization of DBCO-modified DNA primers via click chemistry and tunable hydrophilic side chains to optimize biocompatibility and surface properties.Systematic screening revealed that hydrophobic azide carriers combined with neutral hydroxyl groups maximized the DNA immobilization efficacy,approaching the performance of commercial polyacrylamide-based polymers.The negatively charged carboxyl groups severely impede DNA primer attachment.Higher molecular weight derivatives further enhance the efficacy of DNA immobilization.In NGS validation,optimized surface modification polymers achieved robust surface density of clustered DNA and high sequencing accuracy,surpassing quality benchmarks and comparable to those of conventional analogs.This platform demonstrates significant potential for tailoring high-sensitivity surfaces for genomic applications,advancing clinical diagnostics,and personalized medicine. 展开更多
关键词 Next-generation sequencing surface modification polymers Poly(pentafluorophenyl acrylate) DNA immobilization
原文传递
Molten salts assisted synthesis of single crystalline NCM811 with surface modification for high energy density lithium-ion batteries
9
作者 Bi-Fu Sheng Jun-Jie Lu +9 位作者 Zhe-Fei Sun Min-Feng Chen Min Xu Han-Rui Zhao Qing-Qing Zhou Chu-Yang Li Bin Wang Qiao-Bao Zhang Ji-Zhang Chen Xiang Han 《Rare Metals》 2025年第6期3749-3760,共12页
Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain b... Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain boundaries.However,it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM.Herein,take single crystalline nickel rich Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(SC811)as an example,a dual molten salts(LiOH and Li_(2)SO_(4))assisted secondary calcination method is proposed,for which LiOH salt improves primary crystal size and Li_(2)SO_(4)prevents the aggravation of NCM nanocrystals.To further reduce the interfacial side reactions,Mg-doping and B-coating surface modification was carried out,which effectively suppress anisotropic lattice changes and Li/Ni disorder.In addition,a thin and uniform H_(3)BO_(3)coating effectively prevents direct contact between the electrode and electrolyte,thus reducing harmful parasitic reactions.The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode.For example,during a long-term cycling of 470 cycles,a high-capacity retention of 74.2%obtained at 1C rate.Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes. 展开更多
关键词 Lithium-ion battery Nickel rich cathode Molten salts surface modification
原文传递
Ultrasonic Modification of Wood Surface:Study of Macro and Micro Properties after Long-Term Storage
10
作者 Alena Vjuginova Leonid Leontyev 《Journal of Renewable Materials》 2025年第9期1819-1828,共10页
In this paper,the stability of the results of ultrasonic wood surface modification after long-term storage,including macroscopic properties and microstructure of specimens,was investigated.Specimens of aspen wood(Popu... In this paper,the stability of the results of ultrasonic wood surface modification after long-term storage,including macroscopic properties and microstructure of specimens,was investigated.Specimens of aspen wood(Populus tremula)were processed by the developed ultrasonic method of wood surface modification in three different treatment modes and the surface hardness of the specimens was evaluated after processing and after storing the specimens for more than 5 years since long-term stability is an important factor for the use of ultrasonically modified sawn timber as construction and finishing materials.The obtained results of surface hardness measurements by the Leeb method showed that the decrease in hardness after long-term storage is approximately 6.6%for the lowest degree of treatment and approximately 3.4%and 2.4%for medium and high degrees of treatment,taking into account the fact of the average increase in surface hardness approximately 2–4 times,this decrease is insignificant.The internal structure of the specimens after storage was studied by scanning electron microscope(SEM),and deformations of the wood surface layer without damage or rupture were analyzed.The derived stable results confirm the potential of the ultrasonic method for wood surface modification. 展开更多
关键词 Wood modification wood densification wood hardness wood density wood surface ultrasonic technology power ultrasound
在线阅读 下载PDF
Oxalate modification enabled advanced phosphate removal of nZVI:In Situ formed surface ternary complex and altered multi-stage adsorption process
11
作者 Shiyu Cao Jiangshan Li +3 位作者 Yanbiao Shi Furong Guo Tingjuan Gao Lizhi Zhang 《Journal of Environmental Sciences》 2025年第3期79-87,共9页
Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal perform... Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal. 展开更多
关键词 Oxalate modification Advanced phosphate removal Nano zero-valent iron(nZVI) surface ternary complex Multi-stage adsorption
原文传递
Bioinspired Surface Engineering with Dual Covalent Receptors Incorporated via Precise Post-Imprinting Modification to Enhance the Specific Identification of Adenosine 5′-Monophosphate
12
作者 Pan Wang Tao Cheng +4 位作者 Zhuangxin Wei Lu Liu Yue Wang Xiaohua Tian Jianming Pan 《Engineering》 2025年第2期143-154,共12页
Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymer... Expanding the specific surface area of substrates and carrying out precise surface engineering of imprinted nanocavities are crucial methods for enhancing the identification efficiency of molecularly imprinted polymers(MIPs).To implement this synergistic strategy,bioinspired surface engineering was used to incorporate dual covalent receptors via precise post-imprinting modifications(PIMs)onto mesoporous silica nanosheets.The prepared sorbents(denoted as‘‘D-PMIPs”)were utilized to improve the specific identification of adenosine 5-monophosphate(AMP).Significantly,the mesoporous silica nanosheets possess a high surface area of approximately 498.73 m^(2)·g^(-1),which facilitates the formation of abundant specific recognition sites in the D-PMIPs.The dual covalent receptors are valuable for estab-lishing the spatial orientation and arrangement of AMP through multiple cooperative interactions.PIMs enable precise site-specific functionalization within the imprinted cavities,leading to the tailor-made formation of complementary binding sites.The maximum number of high-affinity binding sites(Nmax)of the D-PMIPs is 39.99 lmol·g^(-1),which is significantly higher than that of imprinted sorbents with a sin-gle receptor(i.e.,S-BMIPs or S-PMIPs).The kinetic data of the D-PMIPs can be effectively described by a pseudo-second-order model,indicating that the main binding mechanism involves synergistic chemisorption from boronate affinity and the pyrimidine base.This study suggests that using dual cova-lent receptors and PIMs is a reliable approach for creating imprinted sorbents with high selectivity,allow-ing for the controlled engineering of imprinted sites. 展开更多
关键词 Precise surface engineering Dual covalent receptor Precise post-imprinting modification Specific identification of adenosine 5-monophosphate
在线阅读 下载PDF
Surface/Interface Engineering for High‑Resolution Micro‑/Nano‑Photodetectors
13
作者 Jinlin Chang Ting Liu +7 位作者 Xiao Geng Genting Dai Liangliang Yang Mingjun Cheng Linpan Jiang Zhenyuan Sun Jianshe Liu Wei Chen 《Nano-Micro Letters》 2026年第3期499-553,共55页
Photodetectors can convert light energy into electrical signals,so are widely used in photovoltaics,photon counting,monitoring,and imaging.Photodetectors are easy to prepare high-resolution photochips because of their... Photodetectors can convert light energy into electrical signals,so are widely used in photovoltaics,photon counting,monitoring,and imaging.Photodetectors are easy to prepare high-resolution photochips because of their small size unit integration.However,these photodetector units often exhibit poor photoelectric performance due to material defects and inadequate structures,which greatly limit the functions of devices.Designing modification strategies and micro-/nanostructures can compensate for defects,adjust the bandgap,and develop novel quantum structures,which consequently optimize photovoltaic units and revolutionize optoelectronic devices.Here,this paper aims to comprehensively elaborate on the surface/interface engineering scheme of micro-/nano-photodetectors.It starts from the fundamentals of photodetectors,such as principles,types,and parameters,and describes the influence of material selection,manufacturing techniques,and post-processing.Then,we analyse in detail the great influence of surface/interface engineering on the performance of photovoltaic devices,including surface/interface modification and micro-/nanostructural design.Finally,the applications and prospects of optoelectronic devices in various fields such as miniaturization of electronic devices,robotics,and human–computer interaction are shown. 展开更多
关键词 PHOTODETECTORS surface modification HIGH-RESOLUTION Micro-/nanostructures
在线阅读 下载PDF
Achieving high capacity and ultra-stable sodium storage of Na_(2)TiV(PO_(4))_(3)cathode by integrated lattice regulation and surface modification 被引量:1
14
作者 Lin Zhu Miaomiao Wang +6 位作者 Kang Liang Shuang Xiang Dan Sun Xiaobing Huang Qi Zhang Haiyan Wang Yougen Tang 《Journal of Energy Chemistry》 2025年第4期793-802,共10页
The NASICON-structured Na_(2)VTi(PO_(4))_(3)(NVTPO)has attracted significant attention due to its exceptional structural stability and rapid Na~+mobility.However,the development of this material has been hindered by p... The NASICON-structured Na_(2)VTi(PO_(4))_(3)(NVTPO)has attracted significant attention due to its exceptional structural stability and rapid Na~+mobility.However,the development of this material has been hindered by poor electronic conductivity and inadequate low-temperature performance.Herein,a feasible strategy of lattice regulation integrated with surface modification for NVTPO by nitrogen(N)deep doping is proposed.Systematic characterizations and theoretical calculations confirm that N is doped into both the inner crystal structure of NVTPO and the outer carbon layer.The blueshift of the P—O bonds and charge redistribution induced by the V/Ti—N bonds strengthen the local environment and narrow the bandgap,thereby enabling reversible structural evolution and improving electronic conductivity.As expected,the optimized NVTPO/N@CN material achieves an ultra-high capacity of 188.48 mA h g^(-1)at 10 mA g^(-1)and a long-term lifespan of 2000 cycles at 1 A g^(-1).More importantly,it exhibits competitive low-temperature performance(92.15%retention after 1000 cycles at 300 mA g^(-1)and-15℃)due to reduced charge transfer impedance and activation energy.This deep doping strategy modification is expected to broaden the applications of NASICON-type cathodes. 展开更多
关键词 Sodium-ion batteries Na_(2)VTi(PO_(4))_(3) Dual-strategy modification V/Ti-N bonds Low temperature
在线阅读 下载PDF
Improving machinability and inhibiting surface damage of SiC wafer by ion implantation modification
15
作者 Qiang KANG Xianguang KONG +3 位作者 Jiantao CHANG Xudong FANG Chen WU Changsheng LI 《Chinese Journal of Aeronautics》 2025年第3期544-559,共16页
Silicon Carbide (SiC) wafers have been widely used in micro- and nano-devices due to their excellent optical and material properties. However, polishing SiC wafers has been challenging and inefficient, tending to caus... Silicon Carbide (SiC) wafers have been widely used in micro- and nano-devices due to their excellent optical and material properties. However, polishing SiC wafers has been challenging and inefficient, tending to cause significant surface crack and subsurface damage. This work proposed modifying SiC surface properties by ion implantation to improve machining efficiency, suppress surface crack, and reduce damage. High-energy ion implantation disrupted the SiC crystal lattice, reducing hardness and elastic modulus while increasing brittle-ductile transition depth, thus changing the removal mode from brittle fracture to plastic removal. Theoretical models of material removal rate and surface roughness were established for abrasive polishing of the SiC wafers. Polishing experiments were conducted on ion-implanted, modified SiC samples. The improvement mechanisms of ion implantation on surface damage, removal rate, morphology, and residual stress were investigated. The effect of ion implantation on the polished surface quality of SiC was investigated through orthogonal experiments. The results showed that ion implantation can significantly improve the average material removal rate of the SiC samples. Additionally, the ion-implanted samples had exhibited remarkable reductions in surface roughness, surface damage, and tensile residual stress. 展开更多
关键词 Ultra-precision polishing Ion implantation Material modification Orthogonal experiment Subsurface damage
原文传递
Optimization of Eu-doped lanthanum tungstate nanophosphors via surface modification for superior red luminescence and photonic applications
16
作者 K.Naveen Kumar L.Vijayalakshmi +4 位作者 P.K.Vishwakarma Jiseok Lim Mohammad Rezaul Karim Ibrahim A.Alnaser D.Rajesh 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2579-2591,共13页
The luminescence behavior of Eu^(3+)-activated lanthanum tungstate nanophosphors exhibiting intense red emission was systematically explored by modifying their surfaces using various agents,including polyvinylpyrrolid... The luminescence behavior of Eu^(3+)-activated lanthanum tungstate nanophosphors exhibiting intense red emission was systematically explored by modifying their surfaces using various agents,including polyvinylpyrrolidone(PVP),cetyltrimethylammonium bromide(CTAB),trisodium citrate(TC),polyvinyl alcohol(PVA),and ethylene glycol(EG).These nanophosphors were synthesized via a facile hydrothermal-assisted solid-state reaction.X-ray diffraction(XRD)analysis confirmed the orthorhombic crystal structure of all the prepared samples.Morphological and size analyses were performed using scanning electron microscopy(SEM)and particle size distribution profiling.High-resolution transmission electron microscopy(HRTEM)complemented by elemental mapping was used to evaluate the particle dimensions and interplanar spacing of the optimized sample.Fourier-transform infrared spectroscopy(FTIR)was used to identify functional groups and assign corresponding vibrational bands.X-ray photoelectron spectroscopy(XPS)provided insights into the elemental composition and binding energies of the optimized nanophosphors.Notably,the PVA-modified sample doped with 14mol%Eu3+exhibited pronounced red emission at 616 nm,attributed to the ^(5)D_(0)→^(7)F_(2) electric dipole transition of Eu3+ions under ultraviolet(UV)excitation.Detailed excitation and emission spectral analyses were performed,with band assignments corresponding to the relevant electronic transitions.Among the surface-treated variants,the PVA-modified nanophosphors demonstrated exceptional color purity of 99.6%,international commission on illumination(CIE)chromaticity coordinates of(0.6351,0.3644),and a correlated color temperature of 1147 K.These superior optical features are ascribed to the enhanced surface passivation and suppression of nonradiative recombination,facilitated effectively by the PVA surface layer.Lifetime decay analysis across all samples revealed a significantly extended lifetime for the optimized composition,further supporting its superior luminescence efficiency.In addition,evaluation of the biocompatibility of the nano-phosphors highlighted their potential for biomedical applications.Overall,these findings emphasize the efficacy of PVA-modified Eu^(3+)-doped lanthanum tungstate nanophosphors as highly efficient red emitters,suitable for application in white light-emitting diodes(WLEDs)and latent fingerprint detection while offering valuable insights into the role of surface modification in tuning the optical properties of nanophosphors. 展开更多
关键词 NANOPHOSPHORS surface modifiers PVA photoluminescence CYTOTOXICITY
在线阅读 下载PDF
Surface modification of high Cu-loaded activated carbon fiber adsorbent by air plasma
17
作者 Bei Huang Xinyu Yang +3 位作者 Shilin Song Shuangyan Zi Yixing Ma Kai Li 《Journal of Environmental Sciences》 2025年第8期402-414,共13页
The ACF adsorbent with high Cu loading was treated with dielectric barrier discharge plasma to mitigate the negative effects of high Cu loading and enhance PH_(3)and H_(2)S adsorption and oxidation.Bruno-Emmett-Taylor... The ACF adsorbent with high Cu loading was treated with dielectric barrier discharge plasma to mitigate the negative effects of high Cu loading and enhance PH_(3)and H_(2)S adsorption and oxidation.Bruno-Emmett-Taylor(BET)result showed that the specific surface area of the adsorbent after air plasma modification was almost three times that before modification.X-ray photoelectron spectroscopy(XPS)findings revealed that the amino group was added to the adsorbent's surface,increasing lattice oxygen and chemisorbed oxygen.The adsorbent's large specific surface area,excellent surface active oxygen,and abundance of basic groups facilitate PH_(3)and H_(2)S adsorption and oxidation.The scanning electron microscopy showed that air plasma modification exposed more active components and uniformly dispersed them on the surface of adsorbent,thereby improving the adsorption performance.Activity evaluation results showed that the adsorbent has the best ability to capture PH_(3)and H_(2)S after being modified by air plasma at 4 kV voltage for 10 min.The adsorbent's breakthrough ability at high space velocity(WHSV:60,000 h^(−1))is 190 mg P/g and 146 mg S/g,respectively,which is 74%and 60%greater than that before modification.This is a great improvement over previous studies.In addition,the possible mechanism of adsorbent deactivation was proposed. 展开更多
关键词 Air-plasma Activated carbon fiber Specific surface area Functional group
原文传递
Theoretical insights into the hydrogen peroxide oxidation and reduction reactions on low-index Pt surfaces
18
作者 WANG Qi CHEN Lifang +1 位作者 DING Ruimin YIN Xi 《燃料化学学报(中英文)》 北大核心 2026年第1期35-45,共11页
Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for ca... Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for catalyst design and performance improvement in these applications.In this work,we systematically investigate the HPOR/HPRR mechanisms on low-index Pt surfaces,specifically Pt(111),Pt(100)and Pt(110),through density functional theory(DFT)calculations combined with the computational hydrogen electrode(CHE)model.For HPOR,all the low-index Pt surfaces exhibit a unified potential-determining step(PDS)involving the electrochemical oxidation of hydroperoxyl intermediates(HOO*).The binding free energy of HOO*(Δ_(GHOO*))emerges as an activity descriptor,with Pt(110)exhibiting the highest HPOR activity.The HPRR mechanism follows a chem-electrochemical(C-EC)pathway.The rate-determining step(RDS)of HPRR is either the cleavage of the HO-OH bond(chemical)or the reduction of HO(electrochemical),depending on their respective activation energies.These activation energies are functions of the HO*binding free energy,Δ_(GHO*),establishingΔ_(GHO*)as the descriptor for HPRR activity prediction.Pt(111)and Pt(100)are identified as the most active HPRR catalysts among the studied metal surfaces,although they still experience a significant overpotential.The scaling relationship betweenΔ_(GHOO*)andΔ_(GHO*)reveals a thermodynamic coupling of HPOR and HPRR,explaining their occurrence on Pt surfaces.These findings provide important insights and activity descriptors for both HPOR and HPRR,providing valuable guidance for the design of electrocatalysts in H_(2)O_(2)-related energy applications and fuel cells. 展开更多
关键词 HPOR HPRR Pt low-index surfaces density functional theory
在线阅读 下载PDF
Lactylation modification of prostate apoptosis response protein-4(PAR-4)p otential driving immune tolerance of hepatocellular carcinoma cells
19
作者 Xue-Qin Wu Meng-Sen Li 《Cancer Advances》 2026年第1期1-4,共4页
Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immun... Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy. 展开更多
关键词 hepatocellular carcinoma lactylation promoting cancer prostate apoptosis response protein lactic acid modification immune tolerance lactylation modification regulate immune tolerance
暂未订购
Reducing bentonite usage in iron ore pelletization through synergistic modification with mechanical force and DMSO:Effects and mechanisms
20
作者 Yinrui Dong Yongbin Yang +4 位作者 Lin Wang Qianqian Duan Qian Li Yan Zhang Tao Jiang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期177-190,共14页
Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pell... Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders. 展开更多
关键词 PELLETS bentonite modification mechanical force dimethyl sulfoxide organic intercalation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部