期刊文献+
共找到98,184篇文章
< 1 2 250 >
每页显示 20 50 100
基于SuperMap Object. NET的二三维一体化态势标绘系统研究与应用 被引量:4
1
作者 王洪昌 刘禹鑫 《安徽农业科学》 CAS 2014年第26期9222-9224,9251,共4页
态势标绘指在地图背景上标绘各种具有空间特征的事、物的分布状态或行动部署。给出了态势标绘系统中实现各种标绘符号算法的关键技术,提出并实现了基于SuperMap Object.NET的二三维一体化态势标绘系统的集成应用,并将成果成功应用于黑... 态势标绘指在地图背景上标绘各种具有空间特征的事、物的分布状态或行动部署。给出了态势标绘系统中实现各种标绘符号算法的关键技术,提出并实现了基于SuperMap Object.NET的二三维一体化态势标绘系统的集成应用,并将成果成功应用于黑龙江省森林防火电子沙盘指挥系统中,有效提高了系统态势标绘的表现效果。 展开更多
关键词 态势标绘 二三维一体化 森林防火
在线阅读 下载PDF
Hybrid receptive field network for small object detection on drone view
2
作者 Zhaodong CHEN Hongbing JI +2 位作者 Yongquan ZHANG Wenke LIU Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第2期322-338,共17页
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones... Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built. 展开更多
关键词 Drone remote sensing object detection on drone view Small object detector Hybrid receptive field Feature pyramid network Feature augmentation Multi-scale object detection
原文传递
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
3
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
YOLOv8s-DroneNet: Small Object Detection Algorithm Based on Feature Selection and ISIoU
4
作者 Jian Peng Hui He Dengyong Zhang 《Computers, Materials & Continua》 2025年第9期5047-5061,共15页
Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone... Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone imagery detection,most models still struggle with small object detection due to challenges such as object size,complex backgrounds.To address these issues,we propose a robust detection model based on You Only Look Once(YOLO)that balances accuracy and efficiency.The model mainly contains several major innovation:feature selection pyramid network,Inner-Shape Intersection over Union(ISIoU)loss function and small object detection head.To overcome the limitations of traditional fusion methods in handling multi-level features,we introduce a Feature Selection Pyramid Network integrated into the Neck component,which preserves shallow feature details critical for detecting small objects.Additionally,recognizing that deep network structures often neglect or degrade small object features,we design a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging targets.To effectively model both local and global dependencies,we introduce a Conv-Former module that simulates Transformer mechanisms using a convolutional structure,thereby improving feature enhancement.Furthermore,we employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and improves regression accuracy.Experimental results show that,compared to the baseline model,the proposed method significantly improves small object detection performance on the VisDrone2019 dataset,with mAP@50 increasing by 4.9%and mAP@50-95 rising by 6.7%.This model also outperforms other state-of-the-art algorithms,demonstrating its reliability and effectiveness in both small object detection and remote sensing image fusion tasks. 展开更多
关键词 Drone imagery small object detection feature selection convolutional attention
在线阅读 下载PDF
An Infrared-Visible Image Fusion Network with Channel-Switching for Low-Light Object Detection
5
作者 Tianzhe Jiao Yuming Chen +2 位作者 Xiaoyue Feng Chaopeng Guo Jie Song 《Computers, Materials & Continua》 2025年第11期2681-2700,共20页
Visible-infrared object detection leverages the day-night stable object perception capability of infrared images to enhance detection robustness in low-light environments by fusing the complementary information of vis... Visible-infrared object detection leverages the day-night stable object perception capability of infrared images to enhance detection robustness in low-light environments by fusing the complementary information of visible and infrared images.However,the inherent differences in the imaging mechanisms of visible and infrared modalities make effective cross-modal fusion challenging.Furthermore,constrained by the physical characteristics of sensors and thermal diffusion effects,infrared images generally suffer from blurred object contours and missing details,making it difficult to extract object features effectively.To address these issues,we propose an infrared-visible image fusion network that realizesmultimodal information fusion of infrared and visible images through a carefully designedmultiscale fusion strategy.First,we design an adaptive gray-radiance enhancement(AGRE)module to strengthen the detail representation in infrared images,improving their usability in complex lighting scenarios.Next,we introduce a channelspatial feature interaction(CSFI)module,which achieves efficient complementarity between the RGB and infrared(IR)modalities via dynamic channel switching and a spatial attention mechanism.Finally,we propose a multi-scale enhanced cross-attention fusion(MSECA)module,which optimizes the fusion ofmulti-level features through dynamic convolution and gating mechanisms and captures long-range complementary relationships of cross-modal features on a global scale,thereby enhancing the expressiveness of the fused features.Experiments on the KAIST,M3FD,and FLIR datasets demonstrate that our method delivers outstanding performance in daytime and nighttime scenarios.On the KAIST dataset,the miss rate drops to 5.99%,and further to 4.26% in night scenes.On the FLIR and M3FD datasets,it achieves AP50 scores of 79.4% and 88.9%,respectively. 展开更多
关键词 Infrared-visible image fusion channel switching low-light object detection cross-attention fusion
在线阅读 下载PDF
Meyer Wavelet Transform and Jaccard Deep Q Net for Small Object Classification Using Multi-Modal Images
6
作者 Mian Muhammad Kamal Syed Zain Ul Abideen +7 位作者 MAAl-Khasawneh Alaa MMomani Hala Mostafa Mohammed Salem Atoum Saeed Ullah Jamil Abedalrahim Jamil Alsayaydeh Mohd Faizal Bin Yusof Suhaila Binti Mohd Najib 《Computer Modeling in Engineering & Sciences》 2025年第9期3053-3083,共31页
Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small obje... Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small object detection a complex and demanding task.One effective approach to overcome these issues is the integration of multimodal image data to enhance detection capabilities.This paper proposes a novel small object detection method that utilizes three types of multimodal image combinations,such as Hyperspectral-Multispectral(HSMS),Hyperspectral-Synthetic Aperture Radar(HS-SAR),and HS-SAR-Digital Surface Model(HS-SAR-DSM).The detection process is done by the proposed Jaccard Deep Q-Net(JDQN),which integrates the Jaccard similarity measure with a Deep Q-Network(DQN)using regression modeling.To produce the final output,a Deep Maxout Network(DMN)is employed to fuse the detection results obtained from each modality.The effectiveness of the proposed JDQN is validated using performance metrics,such as accuracy,Mean Squared Error(MSE),precision,and Root Mean Squared Error(RMSE).Experimental results demonstrate that the proposed JDQN method outperforms existing approaches,achieving the highest accuracy of 0.907,a precision of 0.904,the lowest normalized MSE of 0.279,and a normalized RMSE of 0.528. 展开更多
关键词 Small object detection MULTIMODALITY deep learning jaccard deep Q-net deep maxout network
在线阅读 下载PDF
LR-Net:Lossless Feature Fusion and Revised SIoU for Small Object Detection
7
作者 Gang Li Ru Wang +5 位作者 Yang Zhang Chuanyun Xu Xinyu Fan Zheng Zhou Pengfei Lv Zihan Ruan 《Computers, Materials & Continua》 2025年第11期3267-3288,共22页
Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limi... Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limited,and mainstream downsampling convolution operations further exacerbate feature loss.Additionally,due to the occlusionprone nature of small objects and their higher sensitivity to localization deviations,conventional Intersection over Union(IoU)loss functions struggle to achieve stable convergence.To address these limitations,LR-Net is proposed for small object detection.Specifically,the proposed Lossless Feature Fusion(LFF)method transfers spatial features into the channel domain while leveraging a hybrid attentionmechanism to focus on critical features,mitigating feature loss caused by downsampling.Furthermore,RSIoU is proposed to enhance the convergence performance of IoU-based losses for small objects.RSIoU corrects the inherent convergence direction issues in SIoU and proposes a penalty term as a Dynamic Focusing Mechanism parameter,enabling it to dynamically emphasize the loss contribution of small object samples.Ultimately,RSIoU significantly improves the convergence performance of the loss function for small objects,particularly under occlusion scenarios.Experiments demonstrate that LR-Net achieves significant improvements across variousmetrics onmultiple datasets compared with YOLOv8n,achieving a 3.7% increase in mean Average Precision(AP)on the VisDrone2019 dataset,along with improvements of 3.3% on the AI-TOD dataset and 1.2% on the COCO dataset. 展开更多
关键词 Small object detection lossless feature fusion attention mechanisms loss function penalty term
在线阅读 下载PDF
RC2DNet:Real-Time Cable Defect Detection Network Based on Small Object Feature Extraction
8
作者 Zilu Liu Hongjin Zhu 《Computers, Materials & Continua》 2025年第10期681-694,共14页
Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,... Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds. 展开更多
关键词 Surface defect detection computer vision small object feature extraction boundary feature enhancement
在线阅读 下载PDF
DDFNet:real-time salient object detection with dual-branch decoding fusion for steel plate surface defects
9
作者 Tao Wang Wang-zhe Du +5 位作者 Xu-wei Li Hua-xin Liu Yuan-ming Liu Xiao-miao Niu Ya-xing Liu Tao Wang 《Journal of Iron and Steel Research International》 2025年第8期2421-2433,共13页
A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod... A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet. 展开更多
关键词 Steel plate surface defect Real-time detection Salient object detection Dual-branch decoder Multi-scale attention fusion Multi-scale residual fusion
原文传递
基于FPGA的MobileNetV1目标检测加速器设计 被引量:3
10
作者 严飞 郑绪文 +2 位作者 孟川 李楚 刘银萍 《现代电子技术》 北大核心 2025年第1期151-156,共6页
卷积神经网络是目标检测中的常用算法,但由于卷积神经网络参数量和计算量巨大导致检测速度慢、功耗高,且难以部署到硬件平台,故文中提出一种采用CPU与FPGA融合结构实现MobileNetV1目标检测加速的应用方法。首先,通过设置宽度超参数和分... 卷积神经网络是目标检测中的常用算法,但由于卷积神经网络参数量和计算量巨大导致检测速度慢、功耗高,且难以部署到硬件平台,故文中提出一种采用CPU与FPGA融合结构实现MobileNetV1目标检测加速的应用方法。首先,通过设置宽度超参数和分辨率超参数以及网络参数定点化来减少网络模型的参数量和计算量;其次,对卷积层和批量归一化层进行融合,减少网络复杂性,提升网络计算速度;然后,设计一种八通道核间并行卷积计算引擎,每个通道利用行缓存乘法和加法树结构实现卷积运算;最后,利用FPGA并行计算和流水线结构,通过对此八通道卷积计算引擎合理的复用完成三种不同类型的卷积计算,减少硬件资源使用量、降低功耗。实验结果表明,该设计可以对MobileNetV1目标检测进行硬件加速,帧率可达56.7 f/s,功耗仅为0.603 W。 展开更多
关键词 卷积神经网络 目标检测 FPGA MobilenetV1 并行计算 硬件加速
在线阅读 下载PDF
新型DRNet结合EIoU的遮挡目标分割模型
11
作者 陈丹 令陈佩 刘瑞瑜 《电子测量与仪器学报》 北大核心 2025年第8期209-217,共9页
实例分割是计算机视觉领域的重要研究方向,但由于遮挡问题的存在,使得该任务仍然没有得到充分探索。针对目前算法对遮挡物体的分割检测效果不佳,容易出现误检漏检问题,在Mask R-CNN框架基础上,提出一种新型双向残差网络(DRNet)结合EIoU... 实例分割是计算机视觉领域的重要研究方向,但由于遮挡问题的存在,使得该任务仍然没有得到充分探索。针对目前算法对遮挡物体的分割检测效果不佳,容易出现误检漏检问题,在Mask R-CNN框架基础上,提出一种新型双向残差网络(DRNet)结合EIoU的遮挡目标分割模型。首先,提出一种DRNet代替原有ResNet网络,使用更少的BN层和ReLU层取代传统Conv-BN-ReLU结构,利用传统卷积和深度可分离卷积串行连接增强图像感受野特征,通过跳跃连接减轻网络随深度增加出现退化问题,提升网络表征能力;其次,使用CEIoU NMS算法代替原有NMS算法,通过聚类思想有效处理重叠边界框抑制问题,引入EIoU评估指标增加边界框几何信息,更加精准地描述边界框之间的相似程度,减少网络对遮挡物体边界框的错误抑制;最后,使用EIoU损失替换原有Smooth L1损失,加速网络收敛速度,提升边界框检测精度。在公共COCO 2017数据集上进行预训练,再在不同程度的遮挡数据集上进行实验。实验结果表明,相比较于原网络,所提分割算法在COCO 2017数据集上Box AP和Mask AP分别提升了1.7%和1.3%;在遮挡数据集上对遮挡物体边界框检测精度和掩码分割精度均有明显提升,证实该方法对遮挡物体分割的有效性。 展开更多
关键词 遮挡物体 实例分割 DRnet Cluster EIoU NMS EIoU损失
原文传递
Online Multi-Object Tracking Under Moving Unmanned Aerial Vehicle Platform Based on Object Detection and Feature Extraction Network 被引量:1
12
作者 刘增敏 王申涛 +1 位作者 姚莉秀 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期388-399,共12页
In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion ... In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement. 展开更多
关键词 moving unmanned aerial vehicle(UAV)platform small object feature extraction image registration multi-object tracking
原文传递
基于改进CenterNet的遥感图像目标检测算法
13
作者 王大虎 张新科 +1 位作者 张艳伟 侯伟华 《兵器装备工程学报》 北大核心 2025年第9期303-313,共11页
现有的目标检测算法难以很好地处理尺度差异较大的遥感图像目标,容易产生误检和漏检。针对遥感图像中的目标重叠难以检测和小目标漏检的问题,提出了一种改进CenterNet算法。在Hourglass-104主干网络之后设计一种四元回归注意力,采用端... 现有的目标检测算法难以很好地处理尺度差异较大的遥感图像目标,容易产生误检和漏检。针对遥感图像中的目标重叠难以检测和小目标漏检的问题,提出了一种改进CenterNet算法。在Hourglass-104主干网络之后设计一种四元回归注意力,采用端到端可学习的标记采样方式来预测图像目标,使网络能够捕获丰富的上下文信息并对多尺度目标进行建模,实现计算效率与表征能力之间的良好平衡。设计中心偏移特征融合机制用于网络对多层次目标的整合,通过对检测目标四个矩点和中心点的权重进行动态调整,可以高效地提升网络检测性能。引入Soft-DTW损失函数从时间序列角度对损失梯度进行动态微分处理,有效实现遥感图像目标像素的最佳匹配,进一步促进损失曲线的回归拟合状态。改进后的CenterNet算法在RSOD和NWPU VHR-10遥感公共数据集上进行训练并测试,实验结果表明:在RSOD上的mAP可以达到97.0%,在NWPU VHR-10上的AP和mAP可以达到60.0%和95.4%。与当前主流的目标检测算法相比,改进后的CenterNet算法存在明显的提升和优势。 展开更多
关键词 深度学习 遥感图像 目标检测 Centernet Hourglass-104 损失函数
在线阅读 下载PDF
PillarTNet:基于Transformer的三维目标检测模型
14
作者 韩建栋 苏佳 《小型微型计算机系统》 北大核心 2025年第9期2168-2175,共8页
针对三维点云目标检测中传统的卷积神经网络在特征提取阶段因下采样导致分辨率降低,影响小目标的识别准确性问题,本文提出一种基于Transformer的三维目标检测模型:PillarTNet.该模型首先使用双重注意力融合模块强化特征编码,然后通过区... 针对三维点云目标检测中传统的卷积神经网络在特征提取阶段因下采样导致分辨率降低,影响小目标的识别准确性问题,本文提出一种基于Transformer的三维目标检测模型:PillarTNet.该模型首先使用双重注意力融合模块强化特征编码,然后通过区域扩张注意力模块提取特征,保持整个过程伪图像分辨率不变,更有利于小目标的检测,同时引入区域移位机制促进不同区域的信息交流.但是注意力操作会存在大量空体素,可能增加大目标的漏检与误检风险,为此,对检测头采用空体素关注模块以缓解这一问题.在KITTI数据集上的实验结果显示:PillarTNet在确保Car和Cyclist检测精度的同时,Pedestrian的检测在3个难度等级的AP 3D分别达到了62.48%、53.21%和49.57%,且本模型在推理速度和内存需求方面均表现出色,充分验证了PillarTNet的优越性和适应性. 展开更多
关键词 三维目标检测 点云 TRANSFORMER 双重注意力融合 空体素关注
在线阅读 下载PDF
新工科背景下基于ResNet的机械设计教学机器人设计研究
15
作者 郑默思 张亮 《自动化与仪器仪表》 2025年第8期143-147,共5页
为提高机械设计教学机器人对目标的自动抓取成功率,设计了一套基于改进ResNet101网络的机械设计教学机器人目标自动抓取系统。首先根据系统需求,将系统总体框架分为图像采集模块、目标检测模块、机器人自动抓取模块;然后从抓取工具、机... 为提高机械设计教学机器人对目标的自动抓取成功率,设计了一套基于改进ResNet101网络的机械设计教学机器人目标自动抓取系统。首先根据系统需求,将系统总体框架分为图像采集模块、目标检测模块、机器人自动抓取模块;然后从抓取工具、机器人、双目视觉相机方面,对系统硬件新型选型;接着对系统软件进行设计,并着重设计了机器人目标自动抓取算法,采用引入金字塔池化卷积组和网络剪枝的改进ResNet网络,对机器人目标进行检测;最后通过仿真对系统进行了验证。结果表明,改进ResNet网络对机器人目标检测的准确率为96.38%,平均绝对误差为1.58%;本系统在82次抓取测试中,仅存在1次目标自动抓取失败的情况,抓取成功率为98.78%。由此得出,本系统具有较高的目标自动抓取成功率,满足实际应用需求。 展开更多
关键词 机器人 自动抓取 目标检测 Resnet网络 注意力机制 网络剪枝
原文传递
DFA-CenterNet无锚框人车检测方法
16
作者 倪健 王毅飞 关帅鹏 《福建电脑》 2025年第9期16-23,共8页
针对复杂交通场景中的检测漏检率高和多尺度泛化能力不足的问题,本文提出一种基于无锚框架构的改进检测算法DFA-CenterNet。采用密集交互特征融合模块,通过特征叠加与差异双分支结构实现多分辨率特征互补,并结合卷积注意力与空间增强机... 针对复杂交通场景中的检测漏检率高和多尺度泛化能力不足的问题,本文提出一种基于无锚框架构的改进检测算法DFA-CenterNet。采用密集交互特征融合模块,通过特征叠加与差异双分支结构实现多分辨率特征互补,并结合卷积注意力与空间增强机制,在通道与空间维度动态优化特征权重分布来抑制遮挡区域的背景噪声干扰。本文方法在测试集上的mAP为89.76%,较原始CenterNet提升了10.31%,实时检测速度为40.79 FPS。实验结果表明,本文方法能够显著提升多尺度人车目标的检测鲁棒性,为复杂交通场景下的智能感知任务提供了可行的解决方案。 展开更多
关键词 目标检测 无锚框方法 注意力机制 交通场景
在线阅读 下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
17
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
在线阅读 下载PDF
Rail-Pillar Net:A 3D Detection Network for Railway Foreign Object Based on LiDAR
18
作者 Fan Li Shuyao Zhang +2 位作者 Jie Yang Zhicheng Feng Zhichao Chen 《Computers, Materials & Continua》 SCIE EI 2024年第9期3819-3833,共15页
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w... Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy. 展开更多
关键词 Railway foreign object light detection and ranging(LiDAR) 3D object detection PointPillars parallel attention mechanism transfer learning
在线阅读 下载PDF
Multi-Label Image Classification Based on Object Detection and Dynamic Graph Convolutional Networks
19
作者 Xiaoyu Liu Yong Hu 《Computers, Materials & Continua》 SCIE EI 2024年第9期4413-4432,共20页
Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread a... Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread adoption of convolutional neural networks(CNNs)has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification.However,inmulti-label image classification tasks,it is crucial to consider the correlation between labels.In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features,many existing studies use graph convolutional networks(GCN)for modeling.Object detection and multi-label image classification exhibit a degree of conceptual overlap;however,the integration of these two tasks within a unified framework has been relatively underexplored in the existing literature.In this paper,we come up with Object-GCN framework,a model combining object detection network YOLOv5 and graph convolutional network,and we carry out a thorough experimental analysis using a range of well-established public datasets.The designed framework Object-GCN achieves significantly better performance than existing studies in public datasets COCO2014,VOC2007,VOC2012.The final results achieved are 86.9%,96.7%,and 96.3%mean Average Precision(mAP)across the three datasets. 展开更多
关键词 Deep learning multi-label image recognition object detection graph convolution networks
在线阅读 下载PDF
Multi-Stream Temporally Enhanced Network for Video Salient Object Detection
20
作者 Dan Xu Jiale Ru Jinlong Shi 《Computers, Materials & Continua》 SCIE EI 2024年第1期85-104,共20页
Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com... Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet. 展开更多
关键词 Video salient object detection deep learning temporally enhanced foreground-background collaboration
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部