期刊文献+
共找到99,098篇文章
< 1 2 250 >
每页显示 20 50 100
基于SuperMap Object. NET的二三维一体化态势标绘系统研究与应用 被引量:4
1
作者 王洪昌 刘禹鑫 《安徽农业科学》 CAS 2014年第26期9222-9224,9251,共4页
态势标绘指在地图背景上标绘各种具有空间特征的事、物的分布状态或行动部署。给出了态势标绘系统中实现各种标绘符号算法的关键技术,提出并实现了基于SuperMap Object.NET的二三维一体化态势标绘系统的集成应用,并将成果成功应用于黑... 态势标绘指在地图背景上标绘各种具有空间特征的事、物的分布状态或行动部署。给出了态势标绘系统中实现各种标绘符号算法的关键技术,提出并实现了基于SuperMap Object.NET的二三维一体化态势标绘系统的集成应用,并将成果成功应用于黑龙江省森林防火电子沙盘指挥系统中,有效提高了系统态势标绘的表现效果。 展开更多
关键词 态势标绘 二三维一体化 森林防火
在线阅读 下载PDF
Hybrid receptive field network for small object detection on drone view 被引量:1
2
作者 Zhaodong CHEN Hongbing JI +2 位作者 Yongquan ZHANG Wenke LIU Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第2期322-338,共17页
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones... Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built. 展开更多
关键词 Drone remote sensing object detection on drone view Small object detector Hybrid receptive field Feature pyramid network Feature augmentation Multi-scale object detection
原文传递
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
3
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
YOLOv8s-DroneNet: Small Object Detection Algorithm Based on Feature Selection and ISIoU
4
作者 Jian Peng Hui He Dengyong Zhang 《Computers, Materials & Continua》 2025年第9期5047-5061,共15页
Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone... Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone imagery detection,most models still struggle with small object detection due to challenges such as object size,complex backgrounds.To address these issues,we propose a robust detection model based on You Only Look Once(YOLO)that balances accuracy and efficiency.The model mainly contains several major innovation:feature selection pyramid network,Inner-Shape Intersection over Union(ISIoU)loss function and small object detection head.To overcome the limitations of traditional fusion methods in handling multi-level features,we introduce a Feature Selection Pyramid Network integrated into the Neck component,which preserves shallow feature details critical for detecting small objects.Additionally,recognizing that deep network structures often neglect or degrade small object features,we design a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging targets.To effectively model both local and global dependencies,we introduce a Conv-Former module that simulates Transformer mechanisms using a convolutional structure,thereby improving feature enhancement.Furthermore,we employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and improves regression accuracy.Experimental results show that,compared to the baseline model,the proposed method significantly improves small object detection performance on the VisDrone2019 dataset,with mAP@50 increasing by 4.9%and mAP@50-95 rising by 6.7%.This model also outperforms other state-of-the-art algorithms,demonstrating its reliability and effectiveness in both small object detection and remote sensing image fusion tasks. 展开更多
关键词 Drone imagery small object detection feature selection convolutional attention
在线阅读 下载PDF
An Infrared-Visible Image Fusion Network with Channel-Switching for Low-Light Object Detection
5
作者 Tianzhe Jiao Yuming Chen +2 位作者 Xiaoyue Feng Chaopeng Guo Jie Song 《Computers, Materials & Continua》 2025年第11期2681-2700,共20页
Visible-infrared object detection leverages the day-night stable object perception capability of infrared images to enhance detection robustness in low-light environments by fusing the complementary information of vis... Visible-infrared object detection leverages the day-night stable object perception capability of infrared images to enhance detection robustness in low-light environments by fusing the complementary information of visible and infrared images.However,the inherent differences in the imaging mechanisms of visible and infrared modalities make effective cross-modal fusion challenging.Furthermore,constrained by the physical characteristics of sensors and thermal diffusion effects,infrared images generally suffer from blurred object contours and missing details,making it difficult to extract object features effectively.To address these issues,we propose an infrared-visible image fusion network that realizesmultimodal information fusion of infrared and visible images through a carefully designedmultiscale fusion strategy.First,we design an adaptive gray-radiance enhancement(AGRE)module to strengthen the detail representation in infrared images,improving their usability in complex lighting scenarios.Next,we introduce a channelspatial feature interaction(CSFI)module,which achieves efficient complementarity between the RGB and infrared(IR)modalities via dynamic channel switching and a spatial attention mechanism.Finally,we propose a multi-scale enhanced cross-attention fusion(MSECA)module,which optimizes the fusion ofmulti-level features through dynamic convolution and gating mechanisms and captures long-range complementary relationships of cross-modal features on a global scale,thereby enhancing the expressiveness of the fused features.Experiments on the KAIST,M3FD,and FLIR datasets demonstrate that our method delivers outstanding performance in daytime and nighttime scenarios.On the KAIST dataset,the miss rate drops to 5.99%,and further to 4.26% in night scenes.On the FLIR and M3FD datasets,it achieves AP50 scores of 79.4% and 88.9%,respectively. 展开更多
关键词 Infrared-visible image fusion channel switching low-light object detection cross-attention fusion
在线阅读 下载PDF
Meyer Wavelet Transform and Jaccard Deep Q Net for Small Object Classification Using Multi-Modal Images
6
作者 Mian Muhammad Kamal Syed Zain Ul Abideen +7 位作者 MAAl-Khasawneh Alaa MMomani Hala Mostafa Mohammed Salem Atoum Saeed Ullah Jamil Abedalrahim Jamil Alsayaydeh Mohd Faizal Bin Yusof Suhaila Binti Mohd Najib 《Computer Modeling in Engineering & Sciences》 2025年第9期3053-3083,共31页
Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small obje... Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small object detection a complex and demanding task.One effective approach to overcome these issues is the integration of multimodal image data to enhance detection capabilities.This paper proposes a novel small object detection method that utilizes three types of multimodal image combinations,such as Hyperspectral-Multispectral(HSMS),Hyperspectral-Synthetic Aperture Radar(HS-SAR),and HS-SAR-Digital Surface Model(HS-SAR-DSM).The detection process is done by the proposed Jaccard Deep Q-Net(JDQN),which integrates the Jaccard similarity measure with a Deep Q-Network(DQN)using regression modeling.To produce the final output,a Deep Maxout Network(DMN)is employed to fuse the detection results obtained from each modality.The effectiveness of the proposed JDQN is validated using performance metrics,such as accuracy,Mean Squared Error(MSE),precision,and Root Mean Squared Error(RMSE).Experimental results demonstrate that the proposed JDQN method outperforms existing approaches,achieving the highest accuracy of 0.907,a precision of 0.904,the lowest normalized MSE of 0.279,and a normalized RMSE of 0.528. 展开更多
关键词 Small object detection MULTIMODALITY deep learning jaccard deep Q-net deep maxout network
在线阅读 下载PDF
LR-Net:Lossless Feature Fusion and Revised SIoU for Small Object Detection
7
作者 Gang Li Ru Wang +5 位作者 Yang Zhang Chuanyun Xu Xinyu Fan Zheng Zhou Pengfei Lv Zihan Ruan 《Computers, Materials & Continua》 2025年第11期3267-3288,共22页
Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limi... Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limited,and mainstream downsampling convolution operations further exacerbate feature loss.Additionally,due to the occlusionprone nature of small objects and their higher sensitivity to localization deviations,conventional Intersection over Union(IoU)loss functions struggle to achieve stable convergence.To address these limitations,LR-Net is proposed for small object detection.Specifically,the proposed Lossless Feature Fusion(LFF)method transfers spatial features into the channel domain while leveraging a hybrid attentionmechanism to focus on critical features,mitigating feature loss caused by downsampling.Furthermore,RSIoU is proposed to enhance the convergence performance of IoU-based losses for small objects.RSIoU corrects the inherent convergence direction issues in SIoU and proposes a penalty term as a Dynamic Focusing Mechanism parameter,enabling it to dynamically emphasize the loss contribution of small object samples.Ultimately,RSIoU significantly improves the convergence performance of the loss function for small objects,particularly under occlusion scenarios.Experiments demonstrate that LR-Net achieves significant improvements across variousmetrics onmultiple datasets compared with YOLOv8n,achieving a 3.7% increase in mean Average Precision(AP)on the VisDrone2019 dataset,along with improvements of 3.3% on the AI-TOD dataset and 1.2% on the COCO dataset. 展开更多
关键词 Small object detection lossless feature fusion attention mechanisms loss function penalty term
在线阅读 下载PDF
RC2DNet:Real-Time Cable Defect Detection Network Based on Small Object Feature Extraction
8
作者 Zilu Liu Hongjin Zhu 《Computers, Materials & Continua》 2025年第10期681-694,共14页
Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,... Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds. 展开更多
关键词 Surface defect detection computer vision small object feature extraction boundary feature enhancement
在线阅读 下载PDF
MFR-YOLOv10:Object detection in UAV-taken images based on multilayer feature reconstruction network
9
作者 Mengchu TIAN Meiji CUI +2 位作者 Zhimin CHEN Yingliang MA Shaohua YU 《Chinese Journal of Aeronautics》 2025年第11期346-364,共19页
When detecting objects in Unmanned Aerial Vehicle(UAV)taken images,large number of objects and high proportion of small objects bring huge challenges for detection algorithms based on the You Only Look Once(YOLO)frame... When detecting objects in Unmanned Aerial Vehicle(UAV)taken images,large number of objects and high proportion of small objects bring huge challenges for detection algorithms based on the You Only Look Once(YOLO)framework,rendering them challenging to deal with tasks that demand high precision.To address these problems,this paper proposes a high-precision object detection algorithm based on YOLOv10s.Firstly,a Multi-branch Enhancement Coordinate Attention(MECA)module is proposed to enhance feature extraction capability.Secondly,a Multilayer Feature Reconstruction(MFR)mechanism is designed to fully exploit multilayer features,which can enrich object information as well as remove redundant information.Finally,an MFR Path Aggregation Network(MFR-Neck)is constructed,which integrates multi-scale features to improve the network's ability to perceive objects of var-ying sizes.The experimental results demonstrate that the proposed algorithm increases the average detection accuracy by 14.15%on the Vis Drone dataset compared to YOLOv10s,effectively enhancing object detection precision in UAV-taken images. 展开更多
关键词 object detection YOLOv10 Multi-branch enhancement coordinate attention Multilayer feature reconstruction mechanism UAV-taken images
原文传递
MAGPNet:Multi-Domain Attention-Guided Pyramid Network for Infrared Small Object Detection
10
作者 DING Leqi WANG Biyun +1 位作者 YAO Lixiu CAI Yunze 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期935-951,共17页
To overcome the obstacles of poor feature extraction and little prior information on the appearance of infrared dim small targets,we propose a multi-domain attention-guided pyramid network(MAGPNet).Specifically,we des... To overcome the obstacles of poor feature extraction and little prior information on the appearance of infrared dim small targets,we propose a multi-domain attention-guided pyramid network(MAGPNet).Specifically,we design three modules to ensure that salient features of small targets can be acquired and retained in the multi-scale feature maps.To improve the adaptability of the network for targets of different sizes,we design a kernel aggregation attention block with a receptive field attention branch and weight the feature maps under different perceptual fields with attention mechanism.Based on the research on human vision system,we further propose an adaptive local contrast measure module to enhance the local features of infrared small targets.With this parameterized component,we can implement the information aggregation of multi-scale contrast saliency maps.Finally,to fully utilize the information within spatial and channel domains in feature maps of different scales,we propose the mixed spatial-channel attention-guided fusion module to achieve high-quality fusion effects while ensuring that the small target features can be preserved at deep layers.Experiments on public datasets demonstrate that our MAGPNet can achieve a better performance over other state-of-the-art methods in terms of the intersection of union,Precision,Recall,and F-measure.In addition,we conduct detailed ablation studies to verify the effectiveness of each component in our network. 展开更多
关键词 infrared small objection detection kernel aggregation attention adaptive local contrast measure mixed spatial-channel attention
原文传递
DDFNet:real-time salient object detection with dual-branch decoding fusion for steel plate surface defects
11
作者 Tao Wang Wang-zhe Du +5 位作者 Xu-wei Li Hua-xin Liu Yuan-ming Liu Xiao-miao Niu Ya-xing Liu Tao Wang 《Journal of Iron and Steel Research International》 2025年第8期2421-2433,共13页
A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod... A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet. 展开更多
关键词 Steel plate surface defect Real-time detection Salient object detection Dual-branch decoder Multi-scale attention fusion Multi-scale residual fusion
原文传递
Implementing Convolutional Neural Networks to Detect Dangerous Objects in Video Surveillance Systems
12
作者 Carlos Rojas Cristian Bravo +1 位作者 Carlos Enrique Montenegro-Marín Rubén González-Crespo 《Computers, Materials & Continua》 2025年第12期5489-5507,共19页
The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance ... The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance relies on human monitoring,this approach suffers from limitations such as fatigue and delayed response times.This study addresses these challenges by developing an automated detection system using advanced deep learning techniques to enhance public safety.Our approach leverages state-of-the-art convolutional neural networks(CNNs),specifically You Only Look Once version 4(YOLOv4)and EfficientDet,for real-time object detection.The system was trained on a comprehensive dataset of over 50,000 images,enhanced through data augmentation techniques to improve robustness across varying lighting conditions and viewing angles.Cloud-based deployment on Amazon Web Services(AWS)ensured scalability and efficient processing.Experimental evaluations demonstrated high performance,with YOLOv4 achieving 92%accuracy and processing images in 0.45 s,while EfficientDet reached 93%accuracy with a slightly longer processing time of 0.55 s per image.Field tests in high-traffic environments such as train stations and shopping malls confirmed the system’s reliability,with a false alarm rate of only 4.5%.The integration of automatic alerts enabled rapid security responses to potential threats.The proposed CNN-based system provides an effective solution for real-time detection of dangerous objects in video surveillance,significantly improving response times and public safety.While YOLOv4 proved more suitable for speed-critical applications,EfficientDet offered marginally better accuracy.Future work will focus on optimizing the system for low-light conditions and further reducing false positives.This research contributes to the advancement of AI-driven surveillance technologies,offering a scalable framework adaptable to various security scenarios. 展开更多
关键词 Automatic detection of objects convolutional neural networks deep learning real-time image processing video surveillance systems automatic alerts
在线阅读 下载PDF
基于面向对象法与U-Net模型的广东省云浮市云城区耕地后备资源遥感提取
13
作者 于洋 李哲凡 +3 位作者 谢淑娟 刘振华 欧佳铭 司佳禾 《华南农业大学学报》 北大核心 2026年第1期42-51,共10页
【目的】提升耕地后备资源信息提取的效率与精度,满足现代农业发展对土地资源动态监测的需求。【方法】以广东省云浮市云城区为研究区域,提出一种融合面向对象规则构建与深度学习的耕地后备资源信息提取方法。利用高分6号高分辨率卫星... 【目的】提升耕地后备资源信息提取的效率与精度,满足现代农业发展对土地资源动态监测的需求。【方法】以广东省云浮市云城区为研究区域,提出一种融合面向对象规则构建与深度学习的耕地后备资源信息提取方法。利用高分6号高分辨率卫星影像开展多尺度图像分割,结合逐步剔除法构建地类识别规则,提取典型地类样本。随后,基于规则样本构建U-Net深度学习模型的训练标签数据集,完成耕地后备资源提取与分类。【结果】针对云城区的最佳分割尺度为300,在该尺度下,同类地物可以被有效分割,草地与裸地边界划分清晰。本研究方法在研究区的总体精确率达87.3%,平均交并比和F1分数分别达到75.4%和86.7%,能够实现复杂地物边界的精准提取。基于改进U-Net的深度学习方法能够有效减少误分类现象,特别是在边界模糊区域和混合像元区域,相较于传统面向对象方法,精确率提高了约5个百分点。【结论】本研究构建的遥感智能提取方法兼具高精度与时效性,能够为地方土地利用规划、耕地资源管理及生态保护提供有力支撑,具有良好的推广应用前景。 展开更多
关键词 遥感 耕地后备资源 面向对象 多尺度分割 规则集 深度学习
在线阅读 下载PDF
基于SuperMap Objects的水资源系统网络概化图绘制 被引量:5
14
作者 邢志 赵红莉 +1 位作者 蒋云钟 韩素华 《南水北调与水利科技》 CAS CSCD 2007年第5期31-34,共4页
水资源系统网络概化图绘制是进行水资源调配研究的重要基础,而利用GIS技术进行水资源系统网络图绘制是发展方向。从阐述目前水资源调配中网络概化图绘制过程中的问题着手,介绍了基于SuperMapObjects的GIS平台的水资源系统网络概化图软... 水资源系统网络概化图绘制是进行水资源调配研究的重要基础,而利用GIS技术进行水资源系统网络图绘制是发展方向。从阐述目前水资源调配中网络概化图绘制过程中的问题着手,介绍了基于SuperMapObjects的GIS平台的水资源系统网络概化图软件开发技术,实现的功能和工作流程等,并利用该软件完成了黑河流域水资源调配中系统网络概化图的制作。 展开更多
关键词 水资源 网络概化图 supermap objectS
在线阅读 下载PDF
基于SuperMap Objects组件式GIS的开发与研究 被引量:7
15
作者 贺振 贺俊平 张卫星 《商丘师范学院学报》 CAS 2008年第9期102-104,共3页
主要介绍了组件式地理信息系统(ComGIS)的基本概念,以及利用组件式GIS开发地理信息系统应用程序的特点.以SuperMap Objects组件式开发平台为例,阐述了其组件主要内容和功能,并介绍了利用ComGIS进行应用程序开发的方式和步骤.结果表明,利... 主要介绍了组件式地理信息系统(ComGIS)的基本概念,以及利用组件式GIS开发地理信息系统应用程序的特点.以SuperMap Objects组件式开发平台为例,阐述了其组件主要内容和功能,并介绍了利用ComGIS进行应用程序开发的方式和步骤.结果表明,利用ComGIS开发地理信息系统应用程序是非常高效的. 展开更多
关键词 地理信息系统 组件式GIS supermap objectS 程序开发
在线阅读 下载PDF
基于SuperMap Objects的农用地定级系统设计与开发 被引量:4
16
作者 雷少刚 张绍良 +3 位作者 卞正富 黄继辉 陈津浦 金波 《中国土地科学》 CSSCI 北大核心 2006年第2期28-32,共5页
研究目的:基于GIS进行农用地定级系统的设计与开发,解决现有农用地定级系统中存在的一些问题。研究方法:系统分析法、实证比较分析法。研究结果:指出了现有农用地定级系统中存在的三个问题,提出了系统设计原则、系统的功能设计、数据处... 研究目的:基于GIS进行农用地定级系统的设计与开发,解决现有农用地定级系统中存在的一些问题。研究方法:系统分析法、实证比较分析法。研究结果:指出了现有农用地定级系统中存在的三个问题,提出了系统设计原则、系统的功能设计、数据处理流程设计、数据组织结构设计以及对进一步开发农用地定级系统的建议与展望。研究结论:本系统成功地应用于安徽省宿州市桥区农用地级别的划分,该系统可靠,稳定,适应性较强。 展开更多
关键词 土地管理 农用地定级 SupcrMap objectS 系统设计
在线阅读 下载PDF
基于SuperMap Objects的尾矿资源管理系统设计实现 被引量:3
17
作者 侯春华 李富平 汪金花 《有色金属(矿山部分)》 2010年第6期33-38,共6页
本文采用GIS组件式开发模式,以河北省迁安市为例设计并开发基于GIS技术的尾矿资源管理系统,构建尾矿分布的数字地图,实现了尾矿信息属性信息与空间分布的实时查询与管理、地图导入和漫游、数据输入输出、尾矿信息专题图制作以及互联网... 本文采用GIS组件式开发模式,以河北省迁安市为例设计并开发基于GIS技术的尾矿资源管理系统,构建尾矿分布的数字地图,实现了尾矿信息属性信息与空间分布的实时查询与管理、地图导入和漫游、数据输入输出、尾矿信息专题图制作以及互联网链接等功能。系统的实现将为资源的合理开发利用以及再生资源的科学管理提供一个科学平台。 展开更多
关键词 尾矿资源 GIS 资源管理 supermap objectS
在线阅读 下载PDF
基于SuperMap Objects的森林资源管理系统设计与实现——以黑龙江省8511农场林业局为例 被引量:6
18
作者 王佳 臧淑英 《哈尔滨师范大学自然科学学报》 CAS 2006年第1期90-93,共4页
SuperMap Objects是基于ActiveX/COM技术开发的组件式GIS软件.本文以黑龙江省八五一一农场林业局为例,详细介绍了应用SuperMap Objects开发森林资源管理系统的方法,并对此系统的结构、功能及特点等方面进行重点介绍.
关键词 森林资源 管理信息系统 supermap objectS
在线阅读 下载PDF
基于SuperMap IS.NET的梅州地理信息服务平台设计与实现 被引量:2
19
作者 熊永柱 钟广锐 陈小明 《广东农业科学》 CAS CSCD 2008年第8期208-211,共4页
以GIS软件工程思想为指导,在系统分析的基础上,介绍了基于SuperMap IS.NET全组件技术的地理信息服务WebGIS平台的设计与实现,包括三层结构的系统框架结构设计、空间数据库设计与分层、系统功能模块设计及公交数据模型等。该WebGIS平台... 以GIS软件工程思想为指导,在系统分析的基础上,介绍了基于SuperMap IS.NET全组件技术的地理信息服务WebGIS平台的设计与实现,包括三层结构的系统框架结构设计、空间数据库设计与分层、系统功能模块设计及公交数据模型等。该WebGIS平台对于加快梅州信息化建设、推动数字梅州的信息共享与发布具有基础性作用。 展开更多
关键词 WEBGIS 地理信息服务平台 supermap IS.net 梅州
在线阅读 下载PDF
基于SuperMap IS.NET的渔港地理信息管理系统设计与实现 被引量:6
20
作者 徐硕 刘树 +1 位作者 孙璐 王立华 《测绘与空间地理信息》 2011年第6期61-63,共3页
随着渔港建设规模的不断扩大,渔港基础地理数据和建设信息数据不断增加,建立现代化的渔港地理信息管理系统迫在眉睫。文章介绍了渔港地理信息管理系统的设计与实现。该系统基于WebGIS技术,以SuperMap IS.NET为地图功能开发平台,实现了... 随着渔港建设规模的不断扩大,渔港基础地理数据和建设信息数据不断增加,建立现代化的渔港地理信息管理系统迫在眉睫。文章介绍了渔港地理信息管理系统的设计与实现。该系统基于WebGIS技术,以SuperMap IS.NET为地图功能开发平台,实现了渔港空间量算、地图浏览、数据查询与管理等功能。 展开更多
关键词 supermap IS.net WEBGIS Ajax控件
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部