期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Probiotic efficacy of Cetobacterium somerae(CGMCC No.28843):promoting intestinal digestion,absorption,and structural integrity in juvenile grass carp(Ctenopharyngodon idella)
1
作者 Yuanxin Chen Weidan Jiang +9 位作者 Pei Wu Yang Liu Yaobin Ma Hongmei Ren Xiaowan Jin Jun Jiang Ruinan Zhang Hua Li Lin Feng Xiaoqiu Zhou 《Journal of Animal Science and Biotechnology》 2025年第5期2370-2388,共19页
Background Cetobacterium somerae,a symbiotic microorganism resident in various fish intestines,is recognized for its beneficial effects on fish gut health.However,the mechanisms underlying the effects of C.somerae on ... Background Cetobacterium somerae,a symbiotic microorganism resident in various fish intestines,is recognized for its beneficial effects on fish gut health.However,the mechanisms underlying the effects of C.somerae on gut health remain unclear.In this experiment,we investigated the influence of C.somerae(CGMCC No.28843)on the growth performance,intestinal digestive and absorptive capacity,and intestinal structural integrity of juvenile grass carp(Ctenopharyngodon idella)and explored its potential mechanisms.Methods A cohort of 2,160 juvenile grass carp with an initial mean body weight of 11.30±0.01 g were randomly allocated into 6 treatment groups,each comprising 6 replicates(60 fish per replicate).The experimental diets were supplemented with C.somerae at graded levels of 0.00(control),0.68×10^(9),1.35×10^(9),2.04×10^(9),2.70×10^(9),and 3.40×10^(9)cells/kg feed.Following a 10-week experimental period,biological samples were collected for subsequent analyses.Results Dietary supplementation with C.somerae at 1.35×10^(9)cells/kg significantly enhanced growth performance,intestinal development,and nutrient retention rate in juvenile grass carp(P<0.05).The treatment resulted in increased intestinal acetic acid concentration and enhanced activities of digestive enzymes and brush border enzymes(P<0.05).Furthermore,it reduced intestinal permeability(P<0.05),preserved tight junctions(TJ)ultrastructural integrity,and increased the expression of TJ and adherens junctions(AJ)biomarkers at both protein and transcriptional levels(P<0.05).Mechanistically,these effects may be correlated with enhanced antioxidant capacity and coordinated modulation of the RhoA/ROCK,Sirt1,and PI3K/AKT signaling pathways.The appropriate supplementation levels,based on weight gain rate,feed conversion ratio,the activity of serum diamine oxidase and the content of lipopolysaccharide,were 1.27×10^(9),1.27×10^(9),1.34×10^(9)and 1.34×10^(9)cells/kg,respectively.Conclusions C.somerae improved intestinal digestive and absorptive capacity of juvenile grass carp,maintained intestinal structural integrity,and thus promoted their growth and development.This work demonstrates the potential of C.somerae as a probiotic for aquatic animals and provides a theoretical basis for its utilization in aquaculture. 展开更多
关键词 Cetobacterium somerae(CGMCC No.28843) Ctenopharyngodon idella Digestive and absorptive capacity Intestinal structural integrity Growth performance
在线阅读 下载PDF
Structural health monitoring of bridges in the State of Connecticut 被引量:3
2
作者 Chengyin Liu Joshua Olund +3 位作者 Alan Cardini Paul D'Attilio Eric Feldblum John DeWolf 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第4期427-437,共11页
A joint effort between the Connecticut Department of Transportation and the University of Connecticut has been underway for more than 20 years to utilize various structural monitoring approaches to assess different br... A joint effort between the Connecticut Department of Transportation and the University of Connecticut has been underway for more than 20 years to utilize various structural monitoring approaches to assess different bridges in Connecticut. This has been done to determine the performance of existing bridges, refine techniques needed to evaluate different bridge components, and develop approaches that can be used to provide a continuous status of a bridge's structural integrity. This paper briefly introduces the background of these studies, with emphasis on recent research and the development of structural health monitoring concepts. This paper presents the results from three different bridge types: a post-tensioned curved concrete box girder bridge, a curved steel box-girder bridge, and a steel multi-girder bridge. The structural health monitoring approaches to be discussed have been successfully tested using field data collected during multi-year monitoring periods, and are based on vibrations, rotations and strains. The goal has been to develop cost-effective strategies to provide critical information needed to manage the State of Connecticut's bridge infrastructure. 展开更多
关键词 structural integrity structural health monitoring field data vibrations
在线阅读 下载PDF
Theory and practice for assessing structural integrity and dynamical integrity of high-speed trains 被引量:3
3
作者 Weihua Zhang Yuanchen Zeng +1 位作者 Dongli Song Zhiwei Wang 《Railway Sciences》 2024年第2期113-127,共15页
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass... Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains. 展开更多
关键词 structural integrity Dynamical integrity Vehicle system dynamics High-speed trains BOGIE Integrity assessment FATIGUE
在线阅读 下载PDF
The hydraulic performance and structural integrity of A-Jack armour layer 被引量:2
4
作者 William G.McDougal 《水道港口》 2010年第5期319-319,共1页
A-Jacks are concrete armor units that are used in both open channel and coastal applications.In open channel applications,they are used for bank and toe protection,flow and grade control,bridge pier scour protection,e... A-Jacks are concrete armor units that are used in both open channel and coastal applications.In open channel applications,they are used for bank and toe protection,flow and grade control,bridge pier scour protection,energy dissipation,and habitat.These small units may be fabricated in standard block machines.In coastal applications,A-Jacks are used in breakwaters,jetties,revetments,and habitat development.Coastal units are generally much larger and more robust than the small open channel units.This paper focuses on coastal applications and in particular,combines results on three topics:(1)recent hydraulic model studies,(2)alternative fabrication methods,and(3)bundle placement construction methods.Hydraulic models studies were conducted that examined the standard random and uniform placement methods,and also the bundle placement method.In bundle placement,3~20 A-Jacks are banded together,lifted with a spreader bar,and placed as a single crane pick.This significantly decreases installation time during construction.It also provides a more hydraulically stable placement technique.The hydraulic model tests examined the bundle stability in random waves for cases where the binding remains in tack and is removed.The geometry of A-Jacks enables a variety of fabrication techniques.One option is to fabricate the A-Jacks as two pieces using flat forms and then grout the two pieces together.Flat forms may be used in conventional block machines for A-Jacks sizes up to 1.3 m.Larger sizes may be wet cast in flat forms or gang forms.The A-Jacks geometry has been recently modified to increase grouting efficient and strength.Large A- Jacks may also be cast in a single piece using 'clam shell' type forms. 展开更多
关键词 A-Jack armour layer hydraulic performance structural integrity
在线阅读 下载PDF
Structural integrity and damage of ZrB_(2) ceramics after 4 MeV Au ions irradiation 被引量:1
5
作者 Weichao Bao Stuart Robertson +4 位作者 Jia-Wei Zhao Ji-Xuan Liu Houzheng Wu Guo-Jun Zhang Fangfang Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第13期223-230,共8页
Ultra-high temperature ceramics have been considered as good candidates for plasma facing materials due to their combination of high melting point,high strength and hardness,high thermal conductivity as well as good c... Ultra-high temperature ceramics have been considered as good candidates for plasma facing materials due to their combination of high melting point,high strength and hardness,high thermal conductivity as well as good chemical inertness.In this study,zirconium diboride has been chosen to investigate its irradiation damage behavior.Irradiated by 4 MeV Au^(2+)with a total fluence of 2.5×10^(16)cm^(-2),zirconium diboride ceramic shows substantial resilience to irradiation-induced damage with its structural integrity well maintained but mild damage at lattice level.Grazing incident X-ray diffraction evidences no change of the hexagonal structure in the irradiated region but its lattice parameter a increased and c decreased,giving a volume shrinkage of 0.46%.Density functional theory calculation shows that such lattice shrinkage corresponds to a non-stoichiometric compound as ZrB1.97.Electron energy-loss spectroscopy in a transmission electron microscope revealed an increase of valence electrons in zirconium,suggesting boron vacancies were indeed developed by the irradiation.Alo ng the irradiation depth,long dislocations were observed inside top layer with a depth of 750 nm where the implanted Au ions reached the peak concentration.Underneath the top layer,a high density of Frank dislocations is formed by the cascade collision down to a depth of 1150 nm.All the features show the potential of ZrB_(2) to be used as structural material in nuclear system. 展开更多
关键词 Zirconium diboride Heavy ion irradiation Boron vacancy DISLOCATION Structure integration
原文传递
Reducing structural degradation of high-voltage single-crystal Ni-rich cathode through in situ doping strategy 被引量:1
6
作者 Xin-Ming Fan Zhi Zhang +6 位作者 Gao-Qiang Mao Ying-Jie Tong Ke-Bo Lin Hui Tong Wei-Feng Wei Qing-Hua Tian Xue-Yi Guo 《Rare Metals》 SCIE EI CAS CSCD 2023年第9期2993-3003,共11页
Polycrystalline Ni-rich layered oxide (Li Ni_(x)Co_(y)Mn_zO_(2)(NCM),x>0.8) cathode material with high specific capacity and low cost is considered as one of the most promising candidate materials for lithium-ion b... Polycrystalline Ni-rich layered oxide (Li Ni_(x)Co_(y)Mn_zO_(2)(NCM),x>0.8) cathode material with high specific capacity and low cost is considered as one of the most promising candidate materials for lithium-ion batteries (LIBs).However,it suffers from severe structural and capacity degradation during practical cycling,especially under harsh operation condition(ultrahigh cutoff voltage and elevated temperature,etc.).One promising approach to mitigate these issues is to develop a single-crystal Ni-rich NCM cathode,which could enhance structural integrity and improve capacity retention,due to its robust and stable micro-sized primary particles.However,the improved cyclic stability comes at the expense of reversible capacity and rate capability,owing to the relatively low Li^(+) diffusion efficiency for its micron-sized primary particles.Moreover,the structural degradation and exacerbation of interfacial reactions for the Ni-rich NCM cathode under highvoltage (≥4.5 V) would quickly trigger the poor electrochemical performance,limiting its practical applications.Herein,Li Ni_(0.827)Co_(0.11)Zr_(0.003)Mn_(0.06)O_(2)(Zr@SC-N_(83)) cathode material was successfully synthesized via the in situ doping strategy.It could not only effectively maintain the reversibility of phase transition between H2 and H3 after long-term cycling at high voltage (4.6 V),but also enhance lithium-ion diffusion,thus improving the cycling performance and good rate performance for the Zr@SC-N_(83)cathode.As a result,0.3 wt%Zrdoping cathode delivers an initial discharging capacity of 200.1 m Ah·g^(-1)at 1.0C and at the high cutoff voltage of 4.6 V,exhibiting the satisfactory capacity retention of 85.5%after 100cycles.It provides an effective route toward low-cost and higher energy density for lithium-ion batteries with Ni-rich cathode. 展开更多
关键词 Single-crystal Ni-rich LiNi_(x)Co_(y)Mn_zO_(2)(NCM) In situ doping strategy High voltage structural integrity Cycling stability
原文传递
On the necessity of an integrative approach to understand protein structural dynamics
7
作者 Qing-fen YANG Chun TANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2019年第6期496-502,共7页
Proteins are dynamic,fluctuating between multiple conformational states.Protein dynamics,spanning orders of magnitude in time and space,allow proteins to perform specific functions.Moreover,under certain conditions,pr... Proteins are dynamic,fluctuating between multiple conformational states.Protein dynamics,spanning orders of magnitude in time and space,allow proteins to perform specific functions.Moreover,under certain conditions,proteins can morph into a different set of conformations.Thus,a complete understanding of protein structural dynamics can provide mechanistic insights into protein function.Here,we review the latest developments in methods used to determine protein ensemble structures and to characterize protein dynamics.Techniques including X-ray crystallography,cryogenic electron microscopy,and small angle scattering can provide structural information on specific conformational states or on the averaged shape of the protein,whereas techniques including nuclear magnetic resonance,fluorescence resonance energy transfer(FRET),and chemical cross-linking coupled with mass spectrometry provide information on the fluctuation of the distances between protein domains,residues,and atoms for the multiple conformational states of the protein.In particular,FRET measurements at the single-molecule level allow rapid resolution of protein conformational states,where information is otherwise obscured in bulk measurements.Taken together,the different techniques complement each other and their integrated use can offer a clear picture of protein structure and dynamics. 展开更多
关键词 Conformational dynamics Integrative structural biology Distance restraint Ensemble averaging Nuclear magnetic resonance(NMR)
原文传递
Structural Integrity Analysis of Containers Lost at Sea Using Finite Element Method
8
作者 Selda Oterkus Bingquan Wang +7 位作者 Erkan Oterkus Yakubu Kasimu Galadima Margot Cocard Stefanos Mokas Jami Buckley Callum McCullough Dhruv Boruah Bob Gilchrist 《Sustainable Marine Structures》 2022年第2期11-17,共7页
Unlike traditional transportation,container transportation is a relatively new logistics transportation mode.Shipping containers lost at sea have raised safety concerns.In this study,finite element analysis of contain... Unlike traditional transportation,container transportation is a relatively new logistics transportation mode.Shipping containers lost at sea have raised safety concerns.In this study,finite element analysis of containers subjected to hydrostatic pressure,using commercial software ANSYS APDL was performed.A computer model that can reasonably predict the state of an ISO cargo shipping container was developed.The von Mises stress distribution of the container was determined and the yield strength was adopted as the failure criterion.Numerical investigations showed that the conventional ship container cannot withstand hydrostatic pressure in deep water conditions.A strengthened container option was considered for the container to retain its structural integrity in water conditions. 展开更多
关键词 CONTAINER Finite element method structural integrity SEA
在线阅读 下载PDF
Study of bonding layer for integrated structure of space gravitational wave detector telescope
9
作者 ZHAO Hong-chao LIU Chang +2 位作者 ZHOU Wen-ke ZHU Han-bin CHEN Wen-duo 《中国光学(中英文)》 北大核心 2025年第3期715-724,共10页
To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the... To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the glass-metal hetero-bonding process.This study focuses on the analysis and experimental re-search of the bonding layer in the integrated structure.By optimizing the structural configuration and select-ing suitable bonding processes,the reliability of the telescope system is enhanced.The research indicates that using J-133 adhesive achieves the best performance,with a bonding layer thickness of 0.30 mm and a metal substrate surface roughness of Ra 0.8.These findings significantly enhance the reliability of the optical sys-tem while minimizing potential risks. 展开更多
关键词 space gravitational-wave detector integrated structure glass-metal hetero-bonding
在线阅读 下载PDF
Use of Scaled Models to Evaluate Reinforcement Efficiency in Damaged Main Gas Pipelines to Prevent Avalanche Failure
10
作者 Nurlan Zhangabay Marco Bonopera +2 位作者 Konstantin Avramov Maryna Chernobryvko Svetlana Buganova 《Computer Modeling in Engineering & Sciences》 2025年第10期241-261,共21页
This research extends ongoing efforts to develop methods for reinforcing damaged main gas pipelines to prevent catastrophic failure.This study establishes the use of scaled-down experimental models for assessing the d... This research extends ongoing efforts to develop methods for reinforcing damaged main gas pipelines to prevent catastrophic failure.This study establishes the use of scaled-down experimental models for assessing the dynamic strength of damaged pipeline sections reinforced with wire wrapping or composite sleeves.A generalized dynamic model is introduced for numerical simulation to evaluate the effectiveness of reinforcement techniques.The model incorporates the elastoplastic behavior of pipe and wire materials,the influence of temperature on mechanical properties,the contact interaction between the pipe and the reinforcement components(including pretensioning),and local material failure under transient internal pressure.Based on these parameters,a finite element model was developed using ANSYS 19.2 to enable parametric studies.The accuracy of the proposed model was verified by comparing the simulation results with the experimental findings.Pipeline section samples containing non-penetrating longitudinal crackswere subjected to comparative analyses and transient pressure until critical failure.The unreinforced and steel wire-wrapped sections were investigated.The results confirm the feasibility of applying the computational model to study the dynamic strength of reinforced damaged pipe sections.Furthermore,pipelines with longitudinal cracks reinforced using circular composite overlays with orthotropic mechanical properties were examined,and recommendations are provided for selecting the geometric parameters of such overlays. 展开更多
关键词 Composite overlay crack-like defect FINITE-ELEMENT local failure multiscale modeling pipeline safety structural integrity thin-walled structure
在线阅读 下载PDF
Probability of detection and anomaly distribution modeling for surface defects in tenon-groove structures of aeroengine disks
11
作者 Hongzhuo LIU Disi YANG +3 位作者 Han YAN Zixu GUO Dawei HUANG Xiaojun YAN 《Chinese Journal of Aeronautics》 2025年第10期363-383,共21页
To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military ... To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF. 展开更多
关键词 Aeroengine disks Anomaly distribution Probabilistic damage tolerance Probability of detection(POD) structural integrity Tenon-groove structures Transfer functions
原文传递
Sulfur atom occupying surface oxygen vacancy to boost the charge transfer and stability for aqueous Bi_(2)O_(3)electrode
12
作者 Guangmin Yang Jianyan Lin +3 位作者 Guanwu Li Tian Li Dong Wang Weitao Zheng 《Journal of Energy Chemistry》 2025年第2期751-759,I0016,共10页
Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversibl... Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes. 展开更多
关键词 Oxygen vavancy Atomic heterostructure structural integrity Charge/mass transfer Anchoring effect
在线阅读 下载PDF
Stress Intensity Factor,Plastic Limit Pressure and Service Life Assessment of a Transportation-Damaged Pipe with a High-Aspect-Ratio Axial Surface Crack
13
作者 Božo Damjanovic´ Pejo Konjatic´ Marko Katinic´ 《Computer Modeling in Engineering & Sciences》 2025年第11期1735-1753,共19页
Ensuring the structural integrity of piping systems is crucial in industrial operations to prevent catastrophic failures and minimize shutdown time.This study investigates a transportation-damaged pipe exposed to high... Ensuring the structural integrity of piping systems is crucial in industrial operations to prevent catastrophic failures and minimize shutdown time.This study investigates a transportation-damaged pipe exposed to high-temperature conditions and cyclic loading,representing a realistic challenge in plant operation.The objective was to evaluate the service life and integrity assessment parameters of the damaged pipe,subjected to 22,000 operational cycles under two daily charge and discharge conditions.The flaw size in the damaged pipe was determined based on a failure assessment procedure,ensuring a conservative and reliable input.The damage was characterized as a long axial surface crack with a depth of a=2 mm and half-length c=50 mm(c/a=25),a geometry not well covered by existing Stress Intensity Factor solutions.To address this limitation,a modified magnification factor(M*)was introduced and tested for the present damage case(c/a=25)and for additional crack geometries(c/a=28–70),which showed improved agreement with Finite Element Analysis(FEA)than Newman’s original formulation.Stress Intensity Factor and Plastic Limit Pressure,essential parameters for structural integrity assessment,were computed numerically using FEA and validated against analytical predictions.Fatigue crack growth was evaluated using the Paris law with crack propagation simulated numerically by Ansys’s S.M.A.R.T.The Failure Assessment Diagram(FAD)was used to assess service life,incorporating constant working pressure and fracture toughness while considering evolving crack size during propagation.Results showed that analytical predictions with the modified magnification factor matched FEA within 5%,while the original Newman formulation overestimated results.The analytical service life solution predicted approximately 8500 fewer cycles than the numerical,remaining conservative but efficient.These findings are based on the present case of a long axial surface crack with high aspect ratios(c/a=25–70,depending on crack depth),and while the modified magnification factor may also improve predictions for other geometries,this requires structured validation in future studies. 展开更多
关键词 Stress intensity factor plastic limit pressure structural integrity fatigue crack growth failure assessment diagram(FAD)
在线阅读 下载PDF
Investigation of Residual Stress Distribution and Its Influence on Machining Deformation in 6061-T651 Aluminum Alloy Plates Using Crack Compliance Method
14
作者 HE Wenbo FAN Longxin +2 位作者 YUAN Weidong YANG Yinfei XU Jiuhua 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期287-296,共10页
To investigate the residual stress distribution and its influence on machining deformation in 6061-T651 aluminum alloy plates,this paper uses the crack compliance method to study the residual stress characteristics of... To investigate the residual stress distribution and its influence on machining deformation in 6061-T651 aluminum alloy plates,this paper uses the crack compliance method to study the residual stress characteristics of 6061-T651 aluminum alloy plates with a thickness of 75 mm produced by two domestic manufacturers in China.The results indicate that both types of plates exhibit highly consistent and symmetrical M-shaped residual stress profile along the thickness direction,manifested as surface layer compression and core tension.The strain energy density across all specimens ranges from 1.27 kJ/m^(3)to 1.43 kJ/m^(3).Machining deformation simulations of an aerospace component incorporating these measured stresses showed minimal final deformation difference between the material sources,with a maximum deviation of only 0.009 mm across specimens.These findings provide critical data for material selection and deformation control in aerospace manufacturing. 展开更多
关键词 residual stress aluminum alloy pre-stretched plate crack compliance method integrated structural components machining deformation
在线阅读 下载PDF
IRP/DSM and Sustainable Development
15
作者 胡兆光 《Electricity》 2001年第1期31-33,共3页
This paper introduces the energy consumption status in China, elaborate the affects of the unreasonable energy consumption structure on energy environment and sustainable development of economy. Simultaneously, it poi... This paper introduces the energy consumption status in China, elaborate the affects of the unreasonable energy consumption structure on energy environment and sustainable development of economy. Simultaneously, it points out the solution, i.e., to implement integrated resources planning (IRP)/demand side management (DSM), and gives some recommendations on the way of implementing IRP/DSM. 展开更多
关键词 energy consumption structure energy environment sustainable development integrated resources planning (IRP) demand side management (DSM)
在线阅读 下载PDF
Pulsed Eddy Current Non-destructive Testing and Evaluation:A Review 被引量:40
16
作者 Ali Sophian Guiyun Tian Mengbao Fan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期500-514,共15页
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th... Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented. 展开更多
关键词 Non-destructive testing - Pulsed eddy currentsMaterial characterization structural integrity Non-destructive evaluation
在线阅读 下载PDF
Improving the damage potential of W-Zr reactive structure material under extreme loading condition 被引量:6
17
作者 Lu-yao Wang Jian-wei Jiang +2 位作者 Mei Li Jian-bing Men Shu-you Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期467-477,共11页
Projectiles made of reactive structure materials(RSM)can damage the target with not only kinetic but also chemical energy,but the enhanced damage potential of RSM may become compromised if extreme loading condition di... Projectiles made of reactive structure materials(RSM)can damage the target with not only kinetic but also chemical energy,but the enhanced damage potential of RSM may become compromised if extreme loading condition disintegrates the projectile before the target is reached.In this work,a ductile coating of Ni was introduced to a tungsten-zirconium(W-Zr)alloy,a typical brittle RSM,to preserve the damage potential of the projectile.Detonation driving tests were carried out with X-ray photography and gunpowder deflagration driving tests were carried out with high-speed photography for the coated and uncoated RSM samples,respectively.The craters on the witness target were analyzed by scanning electron microscopy and X-ray diffraction.The Ni coating was found to effectively preserve the damage potential of the W-Zr alloy under extreme loading conditions,whereas the uncoated sample fractured and ignited before impacting the target in both detonation and deflagration driving.The crack propagation between the reactively brittle core and the ductile coating was analyzed based on the crack arrest theory to mechanistically demonstrate how the coating improves the structural integrity and preserves the damage potential of the projectile.Specifically,the Ni coating envelops theW-Zr core until the coated sphere penetrates the target,and the coating is then eroded and worn to release the reactive core for the projectile to damage the target more intensively. 展开更多
关键词 Reactive structure material Extreme loading structural integrity Damage potential
在线阅读 下载PDF
Analysis of vibration reduction characteristics and applicability of steel-spring floating-slab track 被引量:18
18
作者 Wanming ZHAI Peng XU Kai WEI 《Journal of Modern Transportation》 2011年第4期215-222,共8页
A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of ... A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided. 展开更多
关键词 integrated structures natural vibration characteristics subway vibration steel-spring floating-slab track steel-spring fulcrum force frequency spectrum analysis
在线阅读 下载PDF
Review on Artificial Intelligence-aided Life Extension Assessment of Offshore Wind Support Structures 被引量:3
19
作者 B.Yeter Y.Garbatov C.Guedes Soares 《Journal of Marine Science and Application》 CSCD 2022年第4期26-54,共29页
The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the... The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the fields of study that are building blocks of artificial intelligence-aided life extension assessment for offshore wind turbine support structures.The present review aims to set up the needed guidelines to develop a multi-disciplinary framework for life extension management and certification of the support structures for offshore wind turbines using artificial intelligence.The main focus of the literature review centres around the intelligent risk-based life extension management of offshore wind turbine support structures.In this regard,big data analytics,advanced signal processing techniques,supervised and unsupervised machine learning methods are discussed within the structural health monitoring and condition-based maintenance planning,the development of digital twins.Furthermore,the present review discusses the critical failure mechanisms affecting the structural condition,such as high-cycle fatigue,low-cycle fatigue,fracture,ultimate strength,and corrosion,considering deterministic and probabilistic approaches. 展开更多
关键词 Offshore wind Life extension Artificial intelligence FATIGUE structural integrity Corrosion-related cracking Risk-based maintenance
在线阅读 下载PDF
CoB and BN composites enabling integrated adsorption/catalysis to polysulfides for inhibiting shuttle-effect in Li-S batteries 被引量:3
20
作者 Tianli Wu Ting Yang +4 位作者 Jizong Zhang Xuewen Zheng Kunlin Liu Chengyang Wang Mingming Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期220-228,I0005,共10页
Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effe... Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effect between adsorption and catalysis is proposed to solve the above problems.The integrated CoB and BN are simultaneously and uniformly introduced on the rGO substrate through a one-step calcination strategy,applied to modify the cathode side of PP separator.The transition metal borides can catalyze the conversion of lithium polysulfides(Li_(2)Sn,n≥4),whereas the bond of B-S is too weak to absorb LPS.Thus BN introduced can effectively restrict the diffusion of polysulfides via strong chemisorption with LiSnLi+…N,while the rGO substrate ensures smooth electron transfer for redox reaction.Therefore,through the integrated adsorption/catalysis,the shuttle effect is suppressed,the kinetics of redox reaction is enhanced,and the capacity decay is reduced.Using CoB/BN@rGO modified PP separator,the Li-S batteries with high initial capacity(1450 mAh g^(-1)at 0.35 mA cm^(-2))and long-cycle stability(700 cycles at 1.74 mA cm^(-2)with a decay rate of 0.032%per cycle)are achieved.This work provides a novel insight for the preparation of bifunctional catalysis with integrated structure for long-life Li-S batteries. 展开更多
关键词 Integrated structure Synergy effect Bifunctional catalysis SEPARATOR Li-S batteries
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部