Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
To achieve an unmanned rice farm,in this study,a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting,unloading,and transportation.Additionally,two unloading and ...To achieve an unmanned rice farm,in this study,a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting,unloading,and transportation.Additionally,two unloading and transportation modes—harvester waiting for unloading(HWU)and transporter fol-lowing for unloading(TFU)—were proposed,and a harvesting-unloading-transportation(HUT)strategy was defined.By breaking down the main stages of the collaborative operation,designing module-state machines(MSMs),and constructing state-transition chains,a HUT collaborative operation logic frame-work suitable for the embedded navigation controller was designed using the concept and method of the finite-state machine(FSM).This method addresses the multiple-stage,nonsequential,and complex processes in HUT collaborative operations.Simulations and field-harvesting experiments were performed to evaluate the applicability of this proposed strategy and system.The experimental results showed that the HUT collaborative operation strategy effectively integrated path planning,path-tracking control,inter-vehicle communication,collaborative operation control,and implementation control.The cotrans-porter system completed the entire process of harvesting,unloading,and transportation.The field-harvesting experiment revealed that a harvest efficiency of 0.42 hm^(2)·h^(−1) was achieved.This study can provide insight into collaborative harvesting and solutions for the harvesting process of unmanned farms.展开更多
The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.Wh...The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.While the DR market offers the load aggregator(LA)additional profitable opportunities beyond the electricity spot market,it also introduces new trading risks due to the significant uncertainty in users’behaviors.Dispatching energy storage systems(ESSs)is an effective means to enhance the risk management capabilities of LAs;however,coordinating ESS operations with dual-market trading strategies remains an urgent challenge.To this end,this paper proposes a novel systematic risk-aware coordinated trading model for the LA in concurrently participating in the day-ahead electricity spot market and DR market,which incorporates the capacity allocation mechanism of ESS based on market clearing rules to jointly formulate bidding and pricing decisions for the dual market.First,the intrinsic coupling characteristics of the LA participating in the dual market are analyzed,and a joint optimization framework for formulating bidding and pricing strategies that integrates ESS facilities is proposed.Second,an uncertain user response model is developed based on price‒response mechanisms,and actual market settlement rules accounting for under-and over-responses are employed to calculate trading revenues,where possible revenue losses are quantified via conditional value at risk.Third,by imposing these terms and the capacity allocation mechanism of ESS,the risk-aware stochastic coordinated trading model of the LA is built,where the bidding and pricing strategies in the dual model that trade off risk and profit are derived.The simulation results of a case study validate the effectiveness of the proposed trading strategy in controlling trading risk and improving the trading income of the LA.展开更多
High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluct...High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems.展开更多
Antarctic telescopes,especially those located at Dome A,face significant reliability challenges owing to the extremely harsh working environment,among which the reliability of the control system is critical in ensurin...Antarctic telescopes,especially those located at Dome A,face significant reliability challenges owing to the extremely harsh working environment,among which the reliability of the control system is critical in ensuring stable operation.This paper describes various factors affecting the reliability of Antarctic telescopes,as well as the challenges of reliability improvement.Combined with the development of Antarctic telescopes and the experience of Antarctic scientific expeditions,we introduce,in detail,the optimization strategy for reliability enhancement,including the hardware layer,software layer,modular design to facilitate maintenance,and reliability management.The current status of the Antarctic Survey Telescope(AST3)is also briefly introduced,along with future development plans.We aim to provide ideas for the reliability design of Antarctic telescopes and provide technical support for the development of future Antarctic telescopes.展开更多
Anxiety,motivation,and strategy have long been seen as critical in second language acquisition.This study presents a systematic review of the literature on these variables in terms of their relationship with one anoth...Anxiety,motivation,and strategy have long been seen as critical in second language acquisition.This study presents a systematic review of the literature on these variables in terms of their relationship with one another,their effects on learning outcomes,and how they are affected by technology-assisted tools in the teaching of Chinese as a second language.This study includes 24 articles for the review study based on the criteria and process of the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol(PRISMA-P)and the clustering techniques of VOSviewer.It is found that 1)anxiety,motivation,and strategy were interrelated,that is,motivation was negatively associated with anxiety but positively related to strategy,while strategy could positively predict anxiety;2)anxiety could both positively and negatively affect learning outcomes,while motivation and strategy could both positively and insignificantly influence learning outcomes;3)the technology-assisted tools used in the classroom could both positively and negatively affect the levels of these variables and learning outcomes in the L2 Chinese context.The need to explore more complicated relationships between language-specific individual variables themselves and other possible factors that affect these variables,such as cultural ones,are also discussed for future research.展开更多
A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and metho...A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and method for the anti-typhoon evacuation strategies should be researched.Therefore,multi-objective functions are proposed based on operation time,evacuation speed stability,and steering stability.An evacuation path model and a dynamic model of risers with the new hang-off system are developed for design variables and constraints.A multi-objective optimization model with high-dimensional variables and complex constraints is established.Finally,a three-stage optimization method based on genetic algorithm,least square method,and the penalty function method is proposed to solve the multi-objective optimization model.Optimization results show that the operation time can be reduced through operation parameter optimization,especially evacuation heading optimization.The optimal anti-typhoon strategy is evacuation with all risers suspended along a variable path when the direction angle is large,while evacuation with all risers suspended along a straight path at another di-rection angle.Besides,the influencing factors on anti-typhoon evacuation strategies indicate that the proposed optimization model and method have strong applicability to working conditions and remarkable optimization effects.展开更多
The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe op...The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe optimization.Herein,we propose a novel“Enrichment-enhanced Detection”strategy and use carbon dots-dopamine detection system as a representative model to evaluate its feasibility.The composite probe carbon dots (CDs)-encapsulated in glycol-chitosan (GC)(i.e.,CDs@GC) was obtained by simply mixing GC and CDs through noncovalent interactions,including electrostatic interactions and hydrogen bonding.Dopamine (DA) could be detected through internal filter effect (IFE)-induced quenching of CDs.In the case of CDs@GC,noncovalent interactions (electrostatic interactions) between GC and the formed quinone (oxide of DA) could selectively extract and enrich the local concentration of DA,thus effectively improving the sensitivity and selectivity of the sensing system.The nanosensor had a low detection limit of 3.7 nmol/L,which was a 12-fold sensitivity improvement compared to the bare CDs probes with similar fluorescent profiles,proving the feasibility of the“Enrichment-enhanced Detection”strategy.Further,to examine this theory in real case,we designed a highly portable sensing platform to realize visual determination of DA.Overall,our work introduces a new strategy for accurately detecting DA and provides valuable insights for the universal design and optimization of superior nanoprobes.展开更多
Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected ...Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected power outages in mines because of drastic changes in load power,leading to significant fluctuations in the power demand of the grid,which in turn affects production.To solve the above problem,a pure electric-driven mining hydraulic excavator based on electric-motor-driven swing platform and hydraulic pumps was used as the research object.Moreover,supercapacitors and DC/DC converter,as the energy storage system(ESS)adjust the output power of the grid and recover the braking kinetic energy of the swing platform.Subsequently,a novel integrated energy management strategy for a DC bus voltage predictive controller based on the power feedforward of fuzzy rules is proposed to run mining excavators efficiently and reliably.Specifically,the working modes of the ESS are determined by the DC bus voltage and state of charge(SOC)of the supercapacitor.Next,the output power of the supercapacitor and the DC bus voltage were controlled by adjusting the charging and discharging currents of the DC/DC converter using a predictive controller and fuzzy rules.In addition,a digital prototype of the excavator was verified using an original machine test.The performance of the different strategies and driven systems were analyzed using digital prototypes.The results showed that,compared with traditional excavators with diesel engines,the operational cost of the developed excavators was reduced by 54.02%.Compared to pure electric-driven excavators without an ESS,the peak power of the grid for the developed excavators was reduced by 10%.This study designed an integrated energy management strategy for a pure electric mining excavator that can regulate the power output of the grid and maintain the stability of the bus voltage and SOC of the ESS.展开更多
In the context of the continuous deepening of the“Double Reduction”policy and the growing demand for quality education,leveled mathematics readers,as an emerging form of publishing that integrates subject education ...In the context of the continuous deepening of the“Double Reduction”policy and the growing demand for quality education,leveled mathematics readers,as an emerging form of publishing that integrates subject education and reading experience,face challenges such as unclear leveling logic,insufficient functional support,and weak user engagement.This paper introduces the 4V marketing theory and constructs an analytical framework from four dimensions:differentiation,functionality,added value,and resonance.Two representative products,“Climbing Mathematics”and“Spark Mathematics,”are selected for a typical case comparison to identify their strengths and weaknesses in content design,service systems,and brand operation,and to extract transferable strategic elements.The study finds that the user-value-oriented strategy based on the 4V model can effectively address the core issues in the market promotion and user relationship building of leveled mathematics readers,providing practical paths and theoretical support for educational publishing institutions to achieve product innovation and brand upgrading in this niche field.展开更多
In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are qu...In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are quantized before transmission.A specific type of perfect stealthy attack, which meets certain rather stringent conditions, is taken into account. Such attacks could be injected by adversaries into both the sensor-toestimator and controller-to-actuator channels, with the aim of disrupting the normal data flow. For the purpose of defending against these perfect stealthy attacks, a novel scheme based on watermarks is developed. This scheme includes the injection of watermarks(applied to data prior to quantization) and the recovery of data(implemented before the data reaches the estimator).The watermark-based scheme is designed to be both timevarying and hidden from adversaries through incorporating a time-varying and bounded watermark signal. Subsequently, a watermark-based attack detection strategy is proposed which thoroughly considers the characteristics of perfect stealthy attacks,thereby ensuring that an alarm is activated upon the occurrence of such attacks. An example is provided to demonstrate the efficacy of the proposed mechanism for detecting attacks.展开更多
This paper focused on the design and optimization of automatic sprinkler fire extinguishing systems in building fire protection.It was emphasized the importance of considering various factors in design,such as fire ri...This paper focused on the design and optimization of automatic sprinkler fire extinguishing systems in building fire protection.It was emphasized the importance of considering various factors in design,such as fire risk assessment and space utilization.Optimization strategies include enhancing water and energy efficiency,using ecofriendly materials,and smart monitoring.Practical implementation and validation in different building types were presented,along with performance benchmark analysis.Balancing fire safety and resource utilization is crucial,and future research in AI driven tuning and nano materials was promising.展开更多
As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy ...As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy consumption,how to improve the energy efficiency ratio of air conditioning systems and reduce energy consumption has become an important issue in research and practice.The purpose of this paper is to discuss the impact of humidity control strategies on energy saving in centralized central air conditioning systems,with a view to providing a theoretical basis and practical guidance for realizing building energy efficiency.展开更多
This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates senso...This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.展开更多
With the development of global economic integration,building a world-class facilitating business environment has become an urgent need for Hainan Free Trade Port.To solve the existing problems in financial policies,le...With the development of global economic integration,building a world-class facilitating business environment has become an urgent need for Hainan Free Trade Port.To solve the existing problems in financial policies,legal supervision,and other aspects,this paper takes Hainan Free Trade Port as an example to analyze and study its institutional integration strategy for creating a world-class facilitating business environment.The specific integration strategies are summarized to promote the internationalization and facilitation of the business environment of Hainan Free Trade Port and promote the high development of the local economy.展开更多
Conventional locking/release mechanisms often face challenges in aircraft wing separation processes,such as excessive impact loads and insufficient synchronization.These may cause structural damage to the airframe or ...Conventional locking/release mechanisms often face challenges in aircraft wing separation processes,such as excessive impact loads and insufficient synchronization.These may cause structural damage to the airframe or attitude instability,seriously compromising mission reliability.To address this engineering challenge,this paper proposes a multi-point low-impact locking/release mechanism based on the mobility model and energy conversion strategy.Through establishing a DOF constraint framework system,this paper systematically analyzes the energy transfer and conversion characteristics during the wing separation process,reveals the generation mechanism of impact loads,and conducts research on low-impact design based on energy conversion strategy.Building on this foundation,a single-point locking/release mechanism employing parallel trapezoidal key shaft structure was designed,which increases frictional contact time and reduces the energy release rate,thereby achieving low-impact characteristics.The mechanism's performance was validated through physical prototype development and systematic functional testing(including unlocking force,synchronization,and impact tests).Experimental results demonstrate:(1)Under 14 kN preload condition,the maximum unlocking force was only 92.54 N,showing a linear relationship with preload that satisfies the"strong-connection/weak-unlock"design requirement;(2)Wing separation was completed within 46 ms,with synchronization time difference among three separation mechanisms stably controlled within 12-14 ms,proving rapid and reliable operation;(3)The unlocking impact acceleration ranged between 26 and 73 g,below the 100 g design limit,confirming the effectiveness of the energy conversion strategy.The proposed low-impact locking/release mechanism design method based on energy conversion strategy resolves the traditional challenges of high impact and synchronization deficiencies.The synergistic optimization mechanism of"structural load reduction and performance improvement"provides a highly reliable technical solution for wing separable mechanisms while offering novel design insights for wing connection/separation systems engineering.展开更多
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
Aiming at the problems of power structure irrationality, lagging of power network behind power source development and high proportion of overdone and small sized units existing currently in power system in China, fina...Aiming at the problems of power structure irrationality, lagging of power network behind power source development and high proportion of overdone and small sized units existing currently in power system in China, financial and running strategies are set forth corresponding to power system restructuring.展开更多
An effective quality control system is the key to ensuring the quality, safety and efficacy of traditional Chinese medicines(TCMs). However, the current quality standard research lacks top-level design and systematic ...An effective quality control system is the key to ensuring the quality, safety and efficacy of traditional Chinese medicines(TCMs). However, the current quality standard research lacks top-level design and systematic design,mostly based on specific technologies or evaluation methods. To resolve the challenges and questions of quality control of TCMs, a brand-new quality standard system, named "iVarious", was proposed. The system comprises eight elements in a modular format. Meaning of every element was specifically illustrated via corresponding research instances. Furthermore, frankincense study was taken as an example for demonstrating standards and research process, based on the "i Various" system. This system highlighted a holistic strategy for effectiveness,security, integrity and systematization of quality and safety control standards of TCMs. The establishment of"i Various" integrates multi-disciplinary technologies and progressive methods, basis elements and key points of standard construction. The system provides a novel idea and technological demonstration for regulation establishment of TCMs quality standards.展开更多
The impact of unstable supercooled water droplets suspended in the cloud on the solid will cause its surface to freeze,and the flight safety of the aircraft will be seriously affected when flying in this environment.A...The impact of unstable supercooled water droplets suspended in the cloud on the solid will cause its surface to freeze,and the flight safety of the aircraft will be seriously affected when flying in this environment.Aircraft icing protection system is an important device to reduce icing accidents and improve aircraft safety performance,which is of great significance to ensure flight safety.Based on the energy source,this paper proposes a general strategy for constructing an aircraft icing protection system,including Active Anti-icing and De-icing(AAD)system,Passive Antiicing and De-icing(PAD)system and Composite Anti-icing and De-icing(CAD)system.The principle,scope of application,advantages and disadvantages of aircraft anti-icing and de-icing technologies such as electric pulse de-icing,low-frequency piezoelectric de-icing,and hydrophobic material anti-icing are explored in detail,and the corresponding improvement measures are proposed.The future development of aircraft anti-icing and de-icing technology is prospected,and some new ideas are provided for the improvement of aircraft anti-icing and de-icing technology.展开更多
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金the National Key Research and Development Program of China(2021YFD2000600)the National Natural Science Foundation of China(32071914)+1 种基金the Modern Agricultural Industry Technology System of China(CARS-170405)the Key Research and Development Program(Science and Technology Demonstration Project)project of Shandong Province(2022SFGC0202).
文摘To achieve an unmanned rice farm,in this study,a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting,unloading,and transportation.Additionally,two unloading and transportation modes—harvester waiting for unloading(HWU)and transporter fol-lowing for unloading(TFU)—were proposed,and a harvesting-unloading-transportation(HUT)strategy was defined.By breaking down the main stages of the collaborative operation,designing module-state machines(MSMs),and constructing state-transition chains,a HUT collaborative operation logic frame-work suitable for the embedded navigation controller was designed using the concept and method of the finite-state machine(FSM).This method addresses the multiple-stage,nonsequential,and complex processes in HUT collaborative operations.Simulations and field-harvesting experiments were performed to evaluate the applicability of this proposed strategy and system.The experimental results showed that the HUT collaborative operation strategy effectively integrated path planning,path-tracking control,inter-vehicle communication,collaborative operation control,and implementation control.The cotrans-porter system completed the entire process of harvesting,unloading,and transportation.The field-harvesting experiment revealed that a harvest efficiency of 0.42 hm^(2)·h^(−1) was achieved.This study can provide insight into collaborative harvesting and solutions for the harvesting process of unmanned farms.
基金supported by National Natural Science Foundation of China(52407126).
文摘The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.While the DR market offers the load aggregator(LA)additional profitable opportunities beyond the electricity spot market,it also introduces new trading risks due to the significant uncertainty in users’behaviors.Dispatching energy storage systems(ESSs)is an effective means to enhance the risk management capabilities of LAs;however,coordinating ESS operations with dual-market trading strategies remains an urgent challenge.To this end,this paper proposes a novel systematic risk-aware coordinated trading model for the LA in concurrently participating in the day-ahead electricity spot market and DR market,which incorporates the capacity allocation mechanism of ESS based on market clearing rules to jointly formulate bidding and pricing decisions for the dual market.First,the intrinsic coupling characteristics of the LA participating in the dual market are analyzed,and a joint optimization framework for formulating bidding and pricing strategies that integrates ESS facilities is proposed.Second,an uncertain user response model is developed based on price‒response mechanisms,and actual market settlement rules accounting for under-and over-responses are employed to calculate trading revenues,where possible revenue losses are quantified via conditional value at risk.Third,by imposing these terms and the capacity allocation mechanism of ESS,the risk-aware stochastic coordinated trading model of the LA is built,where the bidding and pricing strategies in the dual model that trade off risk and profit are derived.The simulation results of a case study validate the effectiveness of the proposed trading strategy in controlling trading risk and improving the trading income of the LA.
基金supported by the National Natural Science Foundation of China(Grant No.51976092)。
文摘High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems.
基金supported by the National Natural Science Foundation of China (12303089, 11973065)the Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB449)the Polar Research Institute of China (PRIC) for their support and help with the Antarctic telescope project
文摘Antarctic telescopes,especially those located at Dome A,face significant reliability challenges owing to the extremely harsh working environment,among which the reliability of the control system is critical in ensuring stable operation.This paper describes various factors affecting the reliability of Antarctic telescopes,as well as the challenges of reliability improvement.Combined with the development of Antarctic telescopes and the experience of Antarctic scientific expeditions,we introduce,in detail,the optimization strategy for reliability enhancement,including the hardware layer,software layer,modular design to facilitate maintenance,and reliability management.The current status of the Antarctic Survey Telescope(AST3)is also briefly introduced,along with future development plans.We aim to provide ideas for the reliability design of Antarctic telescopes and provide technical support for the development of future Antarctic telescopes.
文摘Anxiety,motivation,and strategy have long been seen as critical in second language acquisition.This study presents a systematic review of the literature on these variables in terms of their relationship with one another,their effects on learning outcomes,and how they are affected by technology-assisted tools in the teaching of Chinese as a second language.This study includes 24 articles for the review study based on the criteria and process of the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol(PRISMA-P)and the clustering techniques of VOSviewer.It is found that 1)anxiety,motivation,and strategy were interrelated,that is,motivation was negatively associated with anxiety but positively related to strategy,while strategy could positively predict anxiety;2)anxiety could both positively and negatively affect learning outcomes,while motivation and strategy could both positively and insignificantly influence learning outcomes;3)the technology-assisted tools used in the classroom could both positively and negatively affect the levels of these variables and learning outcomes in the L2 Chinese context.The need to explore more complicated relationships between language-specific individual variables themselves and other possible factors that affect these variables,such as cultural ones,are also discussed for future research.
基金supported by the National Natural Science Foundation of China(Grant No:52271300,52071337)National Key Research and Development Program of China(2022YFC2806501)+1 种基金High-tech Ship Research Projects Sponsored by MIIT(CBG2N21-4-25)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58).
文摘A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and method for the anti-typhoon evacuation strategies should be researched.Therefore,multi-objective functions are proposed based on operation time,evacuation speed stability,and steering stability.An evacuation path model and a dynamic model of risers with the new hang-off system are developed for design variables and constraints.A multi-objective optimization model with high-dimensional variables and complex constraints is established.Finally,a three-stage optimization method based on genetic algorithm,least square method,and the penalty function method is proposed to solve the multi-objective optimization model.Optimization results show that the operation time can be reduced through operation parameter optimization,especially evacuation heading optimization.The optimal anti-typhoon strategy is evacuation with all risers suspended along a variable path when the direction angle is large,while evacuation with all risers suspended along a straight path at another di-rection angle.Besides,the influencing factors on anti-typhoon evacuation strategies indicate that the proposed optimization model and method have strong applicability to working conditions and remarkable optimization effects.
基金the financial support from the National Natural Science Foundation of China(No.21904007)the Fundamental Research Funds for the Central Universities(China,No.2412022QD008)+1 种基金the Jilin Provincial Department of Education(China),the Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province(China)the Analysis and Testing Center of Northeast Normal University(China)。
文摘The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe optimization.Herein,we propose a novel“Enrichment-enhanced Detection”strategy and use carbon dots-dopamine detection system as a representative model to evaluate its feasibility.The composite probe carbon dots (CDs)-encapsulated in glycol-chitosan (GC)(i.e.,CDs@GC) was obtained by simply mixing GC and CDs through noncovalent interactions,including electrostatic interactions and hydrogen bonding.Dopamine (DA) could be detected through internal filter effect (IFE)-induced quenching of CDs.In the case of CDs@GC,noncovalent interactions (electrostatic interactions) between GC and the formed quinone (oxide of DA) could selectively extract and enrich the local concentration of DA,thus effectively improving the sensitivity and selectivity of the sensing system.The nanosensor had a low detection limit of 3.7 nmol/L,which was a 12-fold sensitivity improvement compared to the bare CDs probes with similar fluorescent profiles,proving the feasibility of the“Enrichment-enhanced Detection”strategy.Further,to examine this theory in real case,we designed a highly portable sensing platform to realize visual determination of DA.Overall,our work introduces a new strategy for accurately detecting DA and provides valuable insights for the universal design and optimization of superior nanoprobes.
基金Supported by National Natural Science Foundation of ChinaShanxi Coalbased Low-Carbon Joint Fund(Grant No.U1910211)。
文摘Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected power outages in mines because of drastic changes in load power,leading to significant fluctuations in the power demand of the grid,which in turn affects production.To solve the above problem,a pure electric-driven mining hydraulic excavator based on electric-motor-driven swing platform and hydraulic pumps was used as the research object.Moreover,supercapacitors and DC/DC converter,as the energy storage system(ESS)adjust the output power of the grid and recover the braking kinetic energy of the swing platform.Subsequently,a novel integrated energy management strategy for a DC bus voltage predictive controller based on the power feedforward of fuzzy rules is proposed to run mining excavators efficiently and reliably.Specifically,the working modes of the ESS are determined by the DC bus voltage and state of charge(SOC)of the supercapacitor.Next,the output power of the supercapacitor and the DC bus voltage were controlled by adjusting the charging and discharging currents of the DC/DC converter using a predictive controller and fuzzy rules.In addition,a digital prototype of the excavator was verified using an original machine test.The performance of the different strategies and driven systems were analyzed using digital prototypes.The results showed that,compared with traditional excavators with diesel engines,the operational cost of the developed excavators was reduced by 54.02%.Compared to pure electric-driven excavators without an ESS,the peak power of the grid for the developed excavators was reduced by 10%.This study designed an integrated energy management strategy for a pure electric mining excavator that can regulate the power output of the grid and maintain the stability of the bus voltage and SOC of the ESS.
文摘In the context of the continuous deepening of the“Double Reduction”policy and the growing demand for quality education,leveled mathematics readers,as an emerging form of publishing that integrates subject education and reading experience,face challenges such as unclear leveling logic,insufficient functional support,and weak user engagement.This paper introduces the 4V marketing theory and constructs an analytical framework from four dimensions:differentiation,functionality,added value,and resonance.Two representative products,“Climbing Mathematics”and“Spark Mathematics,”are selected for a typical case comparison to identify their strengths and weaknesses in content design,service systems,and brand operation,and to extract transferable strategic elements.The study finds that the user-value-oriented strategy based on the 4V model can effectively address the core issues in the market promotion and user relationship building of leveled mathematics readers,providing practical paths and theoretical support for educational publishing institutions to achieve product innovation and brand upgrading in this niche field.
基金supported in part by the National Natural Science Foundation of China(61933007,62273087,62273088,U21A2019)the Shanghai Pujiang Program of China(22PJ1400400)+2 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Royal Society of U.K.the Alexander von Humboldt Foundation of Germany
文摘In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are quantized before transmission.A specific type of perfect stealthy attack, which meets certain rather stringent conditions, is taken into account. Such attacks could be injected by adversaries into both the sensor-toestimator and controller-to-actuator channels, with the aim of disrupting the normal data flow. For the purpose of defending against these perfect stealthy attacks, a novel scheme based on watermarks is developed. This scheme includes the injection of watermarks(applied to data prior to quantization) and the recovery of data(implemented before the data reaches the estimator).The watermark-based scheme is designed to be both timevarying and hidden from adversaries through incorporating a time-varying and bounded watermark signal. Subsequently, a watermark-based attack detection strategy is proposed which thoroughly considers the characteristics of perfect stealthy attacks,thereby ensuring that an alarm is activated upon the occurrence of such attacks. An example is provided to demonstrate the efficacy of the proposed mechanism for detecting attacks.
文摘This paper focused on the design and optimization of automatic sprinkler fire extinguishing systems in building fire protection.It was emphasized the importance of considering various factors in design,such as fire risk assessment and space utilization.Optimization strategies include enhancing water and energy efficiency,using ecofriendly materials,and smart monitoring.Practical implementation and validation in different building types were presented,along with performance benchmark analysis.Balancing fire safety and resource utilization is crucial,and future research in AI driven tuning and nano materials was promising.
文摘As an indispensable part of modern buildings,centralized central air conditioning systems play an important role in maintaining the comfort and air quality of the indoor environment.However,with the increasing energy consumption,how to improve the energy efficiency ratio of air conditioning systems and reduce energy consumption has become an important issue in research and practice.The purpose of this paper is to discuss the impact of humidity control strategies on energy saving in centralized central air conditioning systems,with a view to providing a theoretical basis and practical guidance for realizing building energy efficiency.
文摘This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.
基金General Scientific Research Project of Hainan Vocational University of Science and Technology-—Exploration of the Impact of Financial Reform on Enterprises in Hainan Free Trade Port(HKKY2024-13)。
文摘With the development of global economic integration,building a world-class facilitating business environment has become an urgent need for Hainan Free Trade Port.To solve the existing problems in financial policies,legal supervision,and other aspects,this paper takes Hainan Free Trade Port as an example to analyze and study its institutional integration strategy for creating a world-class facilitating business environment.The specific integration strategies are summarized to promote the internationalization and facilitation of the business environment of Hainan Free Trade Port and promote the high development of the local economy.
文摘Conventional locking/release mechanisms often face challenges in aircraft wing separation processes,such as excessive impact loads and insufficient synchronization.These may cause structural damage to the airframe or attitude instability,seriously compromising mission reliability.To address this engineering challenge,this paper proposes a multi-point low-impact locking/release mechanism based on the mobility model and energy conversion strategy.Through establishing a DOF constraint framework system,this paper systematically analyzes the energy transfer and conversion characteristics during the wing separation process,reveals the generation mechanism of impact loads,and conducts research on low-impact design based on energy conversion strategy.Building on this foundation,a single-point locking/release mechanism employing parallel trapezoidal key shaft structure was designed,which increases frictional contact time and reduces the energy release rate,thereby achieving low-impact characteristics.The mechanism's performance was validated through physical prototype development and systematic functional testing(including unlocking force,synchronization,and impact tests).Experimental results demonstrate:(1)Under 14 kN preload condition,the maximum unlocking force was only 92.54 N,showing a linear relationship with preload that satisfies the"strong-connection/weak-unlock"design requirement;(2)Wing separation was completed within 46 ms,with synchronization time difference among three separation mechanisms stably controlled within 12-14 ms,proving rapid and reliable operation;(3)The unlocking impact acceleration ranged between 26 and 73 g,below the 100 g design limit,confirming the effectiveness of the energy conversion strategy.The proposed low-impact locking/release mechanism design method based on energy conversion strategy resolves the traditional challenges of high impact and synchronization deficiencies.The synergistic optimization mechanism of"structural load reduction and performance improvement"provides a highly reliable technical solution for wing separable mechanisms while offering novel design insights for wing connection/separation systems engineering.
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.
文摘Aiming at the problems of power structure irrationality, lagging of power network behind power source development and high proportion of overdone and small sized units existing currently in power system in China, financial and running strategies are set forth corresponding to power system restructuring.
基金financial support from National Major Scientific and Technological Special Project for "Significant New Drugs Development" (2014ZX09304307-002)Youth Development Research Foundation of NIFDC (2013WA8)the National Natural Foundation of China (81303214)
文摘An effective quality control system is the key to ensuring the quality, safety and efficacy of traditional Chinese medicines(TCMs). However, the current quality standard research lacks top-level design and systematic design,mostly based on specific technologies or evaluation methods. To resolve the challenges and questions of quality control of TCMs, a brand-new quality standard system, named "iVarious", was proposed. The system comprises eight elements in a modular format. Meaning of every element was specifically illustrated via corresponding research instances. Furthermore, frankincense study was taken as an example for demonstrating standards and research process, based on the "i Various" system. This system highlighted a holistic strategy for effectiveness,security, integrity and systematization of quality and safety control standards of TCMs. The establishment of"i Various" integrates multi-disciplinary technologies and progressive methods, basis elements and key points of standard construction. The system provides a novel idea and technological demonstration for regulation establishment of TCMs quality standards.
基金the Open Fund of Key Laboratory of Power Research of China and the National Natural Science Foundation of China(No.2018YFC0809500)the Sichuan Science and Technology Plan Project,China(No.23NSFSC1923)+2 种基金the Laboratory of Icing and Anti/De-icing of CARDC,China(No.IADL20220406)the Key R&D Special Projects in Henan Province,China(No.221111321000)the Basic Scientific Research Business Expenses of Central Universities,China(No.J2023-033)。
文摘The impact of unstable supercooled water droplets suspended in the cloud on the solid will cause its surface to freeze,and the flight safety of the aircraft will be seriously affected when flying in this environment.Aircraft icing protection system is an important device to reduce icing accidents and improve aircraft safety performance,which is of great significance to ensure flight safety.Based on the energy source,this paper proposes a general strategy for constructing an aircraft icing protection system,including Active Anti-icing and De-icing(AAD)system,Passive Antiicing and De-icing(PAD)system and Composite Anti-icing and De-icing(CAD)system.The principle,scope of application,advantages and disadvantages of aircraft anti-icing and de-icing technologies such as electric pulse de-icing,low-frequency piezoelectric de-icing,and hydrophobic material anti-icing are explored in detail,and the corresponding improvement measures are proposed.The future development of aircraft anti-icing and de-icing technology is prospected,and some new ideas are provided for the improvement of aircraft anti-icing and de-icing technology.