期刊文献+
共找到107,084篇文章
< 1 2 250 >
每页显示 20 50 100
双区间删失数据下基于Stochastic EM算法的比例优势模型的估计研究
1
作者 王淑影 李红伟 赵波 《应用概率统计》 北大核心 2025年第3期434-447,共14页
潜伏期是流行病学、疾病进展研究等关心的重要指标之一,对疾病防控及治疗具有重要作用.潜伏期是从病毒感染到产生症状这两个事件发生时间的间隔时间,并且这两个发生时间均有可能出现删失,于是产生了双区间删失数据.在双区间删失数据的... 潜伏期是流行病学、疾病进展研究等关心的重要指标之一,对疾病防控及治疗具有重要作用.潜伏期是从病毒感染到产生症状这两个事件发生时间的间隔时间,并且这两个发生时间均有可能出现删失,于是产生了双区间删失数据.在双区间删失数据的研究中,后续时间仅考虑发生右删失或区间删失的研究很多,考虑右删失和区间删失同时存在的研究成果相对较少;此外研究方法大多基于Cox模型.本文在后续时间同时存在右删失和区间删失的这类双区间删失数据下建立比例优势模型,利用Stochastic EM算法处理双区间删失数据并进行极大似然估计.通过模拟研究评估了所提方法在有限样本下的优良性,接着利用该方法分析了AIDS数据. 展开更多
关键词 双区间删失数据 比例优势模型 stochastic EM算法 拒绝抽样
在线阅读 下载PDF
Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation
2
作者 Hengyang Liu Yang Yuan +2 位作者 Pengcheng Ren Chengyun Song Fen Luo 《Computers, Materials & Continua》 SCIE EI 2025年第1期543-560,共18页
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t... Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset. 展开更多
关键词 SEMI-SUPERVISED medical image segmentation contrastive learning stochastic augmented
在线阅读 下载PDF
Pricing Multi-Strike Quanto Call Options on Multiple Assets with Stochastic Volatility, Correlation, and Exchange Rates
3
作者 Boris Ter-Avanesov Gunter Meissner 《Applied Mathematics》 2025年第1期113-142,共30页
Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign cur... Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed. 展开更多
关键词 Quanto Option Multi-Strike Option stochastic Volatility (SV) stochastic Correlation (SC) stochastic Exchange Rates (SER) CORA GORA Correlation Risk
在线阅读 下载PDF
Stochastic Periodic Solutions for Two Populations Game Models with Impulses
4
作者 HOU Meiting QIU Xiaoling 《应用数学》 北大核心 2025年第2期453-467,共15页
The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding sto... The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change. 展开更多
关键词 Periodic solution stochastic game IMPULSES Strategy extinct
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
5
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
Transportation Cost-information Inequalities for Stochastic Heat Equations Driven by Fractional Noise
6
作者 ZHANG Bin YAO Zhigang LIU Junfeng 《数学进展》 北大核心 2025年第1期212-224,共13页
In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat eq... In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat equation defined on[0,T]×[0,1]driven by double-parameter fractional noise. 展开更多
关键词 transportation cost-information inequality stochastic heat equation fractional noise
原文传递
Some studies on stochastic optimization based quantitative risk management
7
作者 HU Zhaolin 《运筹学学报(中英文)》 北大核心 2025年第3期135-159,共25页
Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical... Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems. 展开更多
关键词 stochastic optimization quantitative risk management risk measure computing technique statistical property
在线阅读 下载PDF
Smoluchowski-Kramers Approximation for Stochastic Differential Equations under Discretization
8
作者 Li Ge 《应用概率统计》 北大核心 2025年第4期622-635,共14页
This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–M... This paper studies the Smoluchowski–Kramers approximation for a discrete-time dynamical system modeled as the motion of a particle in a force field.We show that the approximation holds for the drift-implicit Euler–Maruyama discretization and derive its convergence rate.In particular,the solution of the discretized system converges to the solution of the first-order limit equation in the mean-square sense,and this convergence is independent of the order in which the mass parameterμand the step size h tend to zero. 展开更多
关键词 stochastic differential equations Smoluchowski-Kramers approximation driftimplicit Euler-Maruyama scheme convergence rate
在线阅读 下载PDF
Power Options Pricing under Markov Regime-Switching Two-Factor Stochastic Volatility Jump-Diffusion Model
9
作者 HAN Shu-shu WEI Yu-ming 《Chinese Quarterly Journal of Mathematics》 2025年第1期59-73,共15页
In this paper,we incorporate Markov regime-switching into a two-factor stochastic volatility jump-diffusion model to enhance the pricing of power options.Furthermore,we assume that the interest rates and the jump inte... In this paper,we incorporate Markov regime-switching into a two-factor stochastic volatility jump-diffusion model to enhance the pricing of power options.Furthermore,we assume that the interest rates and the jump intensities of the assets are stochastic.Under the proposed framework,first,we derive the analytical pricing formula for power options by using Fourier transform technique,Esscher transform and characteristic function.Then we provide the efficient approximation to calculate the analytical pricing formula of power options by using the FFT approach and examine the accuracy of the approximation by Monte Carlo simulation.Finally,we provide some sensitivity analysis of the model parameters to power options.Numerical examples show this model is suitable for empirical work in practice. 展开更多
关键词 Power options Markov regime-switching stochastic volatility stochastic interest rate stochastic intensity
在线阅读 下载PDF
The Convergence Analyzed by Stochastic C-Stability and Stochastic B-Consistency of Split-Step Theta Method for the Stochastic Differential Equations
10
作者 Ping GUO Ye WANG Yining GAO 《Journal of Mathematical Research with Applications》 2025年第3期362-376,共15页
In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both... In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both stochastically C-stable and stochastically B-consistent,is convergent has been proved in a previous paper.In order to analyze the convergence of the split-step theta method(θ∈[1/2,1]),the stochastic C-stability and stochastic B-consistency under the condition of global monotonicity have been researched,and the rate of convergence 1/2 has been explored in this paper.It can be seen that the convergence does not require the drift function should satisfy the linear growth condition whenθ=1/2 Furthermore,the rate of the convergence of the split-step scheme for stochastic differential equations with additive noise has been researched and found to be 1.Finally,an example is given to illustrate the convergence with the theoretical results. 展开更多
关键词 stochastic differential equation stochastic C-stability stochastic B-consistency CONVERGENCE split-step theta method
原文传递
First-principles prediction of shock Hugoniot curves of boron,aluminum,and silicon from stochastic density functional theory
11
作者 Tao Chen Qianrui Liu +1 位作者 Chang Gao Mohan Chen 《Matter and Radiation at Extremes》 2025年第5期73-83,共11页
By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pr... By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures. 展开更多
关键词 mixed stochastic deterministic density functional theory BORON shock hugoniot curves stochastic density functional theory stochastic density functional theory sdft ALUMINUM SILICON first principles calculations
在线阅读 下载PDF
Study and circuit design of stochastic resonance system based on memristor chaos induction
12
作者 Qi Liang Wen-Xin Yu Qiu-Mei Xiao 《Chinese Physics B》 2025年第4期312-321,共10页
Memristor chaotic research has become a hotspot in the academic world.However,there is little exploration combining memristor and stochastic resonance,and the correlation research between chaos and stochastic resonanc... Memristor chaotic research has become a hotspot in the academic world.However,there is little exploration combining memristor and stochastic resonance,and the correlation research between chaos and stochastic resonance is still in the preliminary stage.In this paper,we focus on the stochastic resonance induced by memristor chaos,which enhances the dynamics of chaotic systems through the introduction of memristor and induces memristor stochastic resonance under certain conditions.First,the memristor chaos model is constructed,and the memristor stochastic resonance model is constructed by adjusting the parameters of the memristor chaos model.Second,the combination of dynamic analysis and experimental verification is used to analyze the memristor stochastic resonance and to investigate the trend of the output signal of the system under different amplitudes of the input signal.Finally,the practicality and reliability of the constructed model are further verified through the design and testing of the analog circuit,which provides strong support for the practical application of the memristor chaos-induced stochastic resonance model. 展开更多
关键词 MEMRISTOR CHAOS stochastic resonance CIRCUITS
原文传递
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
13
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed Kalman filtering algorithm stochastic cooperative information condition Sensor networks (L_(p))-exponential stability stochastic regression model
原文传递
Utility-Driven Edge Caching Optimization with Deep Reinforcement Learning under Uncertain Content Popularity
14
作者 Mingoo Kwon Kyeongmin Kim Minseok Song 《Computers, Materials & Continua》 2025年第10期519-537,共19页
Efficient edge caching is essential for maximizing utility in video streaming systems,especially under constraints such as limited storage capacity and dynamically fluctuating content popularity.Utility,defined as the... Efficient edge caching is essential for maximizing utility in video streaming systems,especially under constraints such as limited storage capacity and dynamically fluctuating content popularity.Utility,defined as the benefit obtained per unit of cache bandwidth usage,degrades when static or greedy caching strategies fail to adapt to changing demand patterns.To address this,we propose a deep reinforcement learning(DRL)-based caching framework built upon the proximal policy optimization(PPO)algorithm.Our approach formulates edge caching as a sequential decision-making problem and introduces a reward model that balances cache hit performance and utility by prioritizing high-demand,high-quality content while penalizing degraded quality delivery.We construct a realistic synthetic dataset that captures both temporal variations and shifting content popularity to validate our model.Experimental results demonstrate that our proposed method improves utility by up to 135.9%and achieves an average improvement of 22.6%compared to traditional greedy algorithms and long short-term memory(LSTM)-based prediction models.Moreover,our method consistently performs well across a variety of utility functions,workload distributions,and storage limitations,underscoring its adaptability and robustness in dynamic video caching environments. 展开更多
关键词 Edge caching video-on-demand reinforcement learning utility optimization
在线阅读 下载PDF
Periodic solution of parabolic equations and stochastic process
15
作者 WANG Xiao-huan 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期78-84,共7页
In this short paper, we first establish the existence of periodic solutions to parabolic equation in the whole space by using the probability method. Then, the periodicity of some function of stochastic process is als... In this short paper, we first establish the existence of periodic solutions to parabolic equation in the whole space by using the probability method. Then, the periodicity of some function of stochastic process is also studied. 展开更多
关键词 periodic solutions Ito's formula stochastic process
在线阅读 下载PDF
Adaptive multi-stable stochastic resonance assisted by neural network and physical supervision
16
作者 Xucan Li Deming Nie +1 位作者 Ming Xu Kai Zhang 《Chinese Physics B》 2025年第5期210-219,共10页
Stochastic resonance can utilize the energy of noise to enhance weak frequency characteristic.This paper proposes an adaptive multi-stable stochastic resonance method assisted by the neural network(NN)and physics supe... Stochastic resonance can utilize the energy of noise to enhance weak frequency characteristic.This paper proposes an adaptive multi-stable stochastic resonance method assisted by the neural network(NN)and physics supervision(directly numerical simulation of the physical system).Different from traditional adaptive algorithm,the evaluation of the objective function(i.e.,fitness function)in iteration process of adaptive algorithm is through a trained neural network instead of the numerical simulation.It will bring a dramatically reduction in computation time.Considering predictive bias from the neural network,a secondary correction procedure is introduced to the reevaluate the top performers and then resort them in iteration process through physics supervision.Though it may increase the computing cost,the accuracy will be enhanced.Two examples are given to illustrate the proposed method.For a classical multi-stable stochastic resonance system,the results show that the proposed method not only amplifies weak signals effectively but also significantly reduces computing time.For the detection of weak signal from outer ring in bearings,by introducing a variable scale coefficient,the proposed method can also give a satisfactory result,and the characteristic frequency of the fault signal can be extracted correctly. 展开更多
关键词 stochastic resonance multi-stable physical supervision neural network fault diagnosis
原文传递
Periodic Event-Triggered Consensus of Stochastic Multiagent Systems Under Switching Topology
17
作者 Boqian LI Linhao ZHAO Shiping WEN 《Artificial Intelligence Science and Engineering》 2025年第2期147-156,共10页
The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the ... The event-triggered mechanism serves as an effective discontinuous control strategy for addressing the consensus tracking problem in multiagent systems(MASs).This approach optimizes energy consumption by updating the controller only when some observed errors exceed a predefined threshold.Considering the influence of noise on agent dynamics in complex control environments,this study investigates an event-triggered control scheme for stochastic MASs,where noise is modeled as Brownian motion.Furthermore,the communication topology of the stochastic MASs is assumed to exhibit a Markovian switching mechanism.Analytical criteria are derived to guarantee consensus tracking in the mean square sense,and a numerical example is provided to validate the effectiveness of the proposed control methods. 展开更多
关键词 cooperative control stochastic systems event-triggered mechanism switching topology
在线阅读 下载PDF
Utility and influence mechanism of densification modulation on grain boundary diffusion in NdFeB magnets
18
作者 San'gen Luo Munan Yang +4 位作者 Shuwei Zhong Sajjad Ur Rehman Jiajie Li Xiaoqiang Yu Bin Yang 《Journal of Rare Earths》 2025年第3期569-577,I0006,共10页
Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properti... Grain boundary diffusion technology is pivotal in the preparation of high-performance NdFeB magnets.This study investigates the factors that affect the efficiency of grain boundary diffusion,starting from the properties of the diffusion matrix.Through the adjustment of the sintering process,we effectively prepared magnets with varied densities that serve as the matrix for grain boundary diffusion with TbH,diffusion.The mobility characteristics of the Nd-rich phase during the densification stage are leveraged to ensure a more extensive distribution of heavy rare earth elements within the magnets.According to the experimental results,the increase in coercivity of low-density magnets after diffusion is significantly greater than that of relatively high-density magnets.The coercivity values measured are 805.32 kA/m for low-density magnets and 470.3 kA/m for high-density magnets.Additionally,grain boundary diffusion notably enhances the density of initial low-density magnets,addressing the issue of low density during the sintering stage.Before the diffusion treatment,the Nd-rich phases primarily concentrate at the triangular grain boundaries,resulting in an increased number of cavity defects in the magnets.These cavity defects contain atoms in a higher energy state,making them more prone to transition.Consequently,the diffusion activation energy at the void defects is lower than the intracrystalline diffusion activation energy,accelerating atom diffusion.The presence of larger cavities also provides more space for atom migration,thereby promoting the diffusion process.After the diffusion treatment,the proportion of bulk Nd-rich phases significantly decreases,and they infiltrate between the grains to fill the cavity defects,forming continuous fine grain boundaries.Based on these observations,the study aims to explore how to utilize this information to develop an efficient technique for grain boundary diffusion. 展开更多
关键词 NdFeB magnets DENSITY Grain boundary diffusion Defect utility Rare earths
原文传递
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
19
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 Wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
Selective maintenance decision optimization for systems executing multi-mission under stochastic mission duration
20
作者 MA Weining DONG Enzhi +1 位作者 LI Hua ZHAO Mei 《Journal of Systems Engineering and Electronics》 2025年第1期209-223,共15页
This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. I... This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers. 展开更多
关键词 multi-mission system selective maintenance problem stochastic duration Monte Carlo simulation AVAILABILITY
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部