The aim of the paper is to discover the general creep mechanisms for the short fiber reinforcement matrix composites (MMCs) under uniaxial stress states and to build a relationship between the macroscopic steady creep...The aim of the paper is to discover the general creep mechanisms for the short fiber reinforcement matrix composites (MMCs) under uniaxial stress states and to build a relationship between the macroscopic steady creep behavior and the material micro geometric parameters. The unit cell models were used to calculate the macroscopic creep behavior with different micro geometric parameters of fibers on different loading directions. The influence of the geometric parameters of the fibers and loading directions on the macroscopic creep behavior had been obtained, and described quantitatively. The matrix/fiber interface had been considered by a third layer, matrix/fiber interlayer, in the unit cells with different creep properties and thickness. Based on the numerical results of the unit cell models, a statistic model had been presented for the plane randomly-distributed-fiber MMCs. The fiber breakage had been taken into account in the statistic model for it starts experimentally early in the creep life. With the distribution of the geometric parameters of the fibers, the results of the statistic model agree well with the experiments. With the statistic model, the influence of the geometric parameters and the breakage of the fibers as well as the properties and thickness of, the interlayer on the macroscopic steady creep rate have been discussed.展开更多
An optimization method was presented to be easily applied in retargetable simulator. The substance of this method is to reduce the redundant information of operation code which is caused by the variety of execution fr...An optimization method was presented to be easily applied in retargetable simulator. The substance of this method is to reduce the redundant information of operation code which is caused by the variety of execution frequencies of instructions. By recoding the operation code in the loading part of simulator, times of bit comparison in identification of an instruction will get reduced. Thus the performance of the simulator will be improved. The theoretical analysis and experimental results both prove the validity of this method.展开更多
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su...Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.展开更多
Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experime...Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.展开更多
Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit signifi...Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.展开更多
Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a ...Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a statistical damage constitutive model and energy evolution mechanisms.Initially,integrating the principle of effective stress and the Hoek-Brown criterion,a statistical damage constitutive model for gas-bearing coal is established and validated through triaxial compression tests under different gas pressures to verify its accuracy and applicability.Subsequently,employing energy evolution mechanism,two energy characteristic parameters(elastic energy proportion and dissipated energy proportion)are analyzed.Based on the damage stress thresholds,the damage evolution characteristics of gas bearing coal were explored.Finally,by integrating energy characteristic parameters with damage parameters,a novel brittleness index is proposed.The results demonstrate that the theoretical curves derived from the statistical damage constitutive model closely align with the test curves,accurately reflecting the stress−strain characteristics of gas-bearing coal and revealing the stress drop and softening characteristics of coal in the post-peak stage.The shape parameter and scale parameter represent the brittleness and macroscopic strength of the coal,respectively.As gas pressure increases from 1 to 5 MPa,the shape parameter and the scale parameter decrease by 22.18%and 60.45%,respectively,indicating a reduction in both brittleness and strength of the coal.Parameters such as maximum damage rate and peak elastic energy storage limit positively correlate with coal brittleness.The brittleness index effectively captures the brittleness characteristics and reveals a decrease in brittleness and an increase in sensitivity to plastic deformation under higher gas pressure conditions.展开更多
Groundwater modeling remains challenging due to heterogeneity and complexity of aquifer systems,necessitating endeavors to quantify Groundwater Levels(GWL)dynamics to inform policymakers and hydrogeologists.This study...Groundwater modeling remains challenging due to heterogeneity and complexity of aquifer systems,necessitating endeavors to quantify Groundwater Levels(GWL)dynamics to inform policymakers and hydrogeologists.This study introduces a novel Fuzzy Nonlinear Additive Regression(FNAR)model to predict monthly GWL in an unconfined aquifer in eastern Iran,using a 19-year(1998–2017)dataset from 11 piezometric wells.Under three distinct scenarios with progressively increasing input complexity,the study utilized readily available climate data,including Precipitation(Prc),Temperature(Tave),Relative Humidity(RH),and Evapotranspiration(ETo).The dataset was split into training(70%)and validation(30%)subsets.Results showed that among three input scenarios,Scenario 3(Sc3,incorporating all four variables)achieved the best predictive performance,with RMSE ranging from 0.305 m to 0.768 m,MAE from 0.203 m to 0.522 m,NSE from 0.661 to 0.980,and PBIAS from 0.771%to 0.981%,indicating low bias and high reliability.However,Sc2(excluding ETo)with RMSE ranging from 0.4226 m to 0.9909 m,MAE from 0.3418 m to 0.8173 m,NSE from 0.2831 to 0.9674,and PBIAS from−0.598%to 0.968%across different months offers practical advantages in data-scarce settings.The FNAR model outperforms conventional Fuzzy Least Squares Regression(FLSR)and holds promise for GWL forecasting in data-scarce regions where physical or numerical models are impractical.Future research should focus on integrating FNAR with deep learning algorithms and real-time data assimilation expanding applications across diverse hydrogeological settings.展开更多
Damage statistical mechanics model of horizontal section height in the top caving was constructed in the paper. The influence factors including supporting pressure, dip angle and characteristic of coal on horizontal s...Damage statistical mechanics model of horizontal section height in the top caving was constructed in the paper. The influence factors including supporting pressure, dip angle and characteristic of coal on horizontal section height were analyzed as well. By terms of the practice project analysis, the horizontal section height increases with the increase of dip angle β and thickness of coal seam M. Dip angle of coal seam β has tremendous impact on horizontal section height, while thickness of coal seam M has slight impact. When thickness of coal seam is below 10m, horizontal section height increases sharply. While thickness exceeds 15m, it is not major factor influencing on horizontal section height any long.展开更多
Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common altern...Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.展开更多
Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.A...Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.After a review of the existing theories of wall turbulence,we present a new framework,called the structure ensemble dynamics (SED),which aims at integrating the turbulence dynamics into a quantitative description of the mean flow.The SED theory naturally evolves from a statistical physics understanding of non-equilibrium open systems,such as fluid turbulence, for which mean quantities are intimately coupled with the fluctuation dynamics.Starting from the ensemble-averaged Navier-Stokes(EANS) equations,the theory postulates the existence of a finite number of statistical states yielding a multi-layer picture for wall turbulence.Then,it uses order functions(ratios of terms in the mean momentum as well as energy equations) to characterize the states and transitions between states.Application of the SED analysis to an incompressible channel flow and a compressible turbulent boundary layer shows that the order functions successfully reveal the multi-layer structure for wall-bounded turbulence, which arises as a quantitative extension of the traditional view in terms of sub-layer,buffer layer,log layer and wake. Furthermore,an idea of using a set of hyperbolic functions for modeling transitions between layers is proposed for a quantitative model of order functions across the entire flow domain.We conclude that the SED provides a theoretical framework for expressing the yet-unknown effects of fluctuation structures on the mean quantities,and offers new methods to analyze experimental and simulation data.Combined with asymptotic analysis,it also offers a way to evaluate convergence of simulations.The SED approach successfully describes the dynamics at both momentum and energy levels, in contrast with all prevalent approaches describing the mean velocity profile only.Moreover,the SED theoretical framework is general,independent of the flow system to study, while the actual functional form of the order functions may vary from flow to flow.We assert that as the knowledge of order functions is accumulated and as more flows are analyzed, new principles(such as hierarchy,symmetry,group invariance,etc.) governing the role of turbulent structures in the mean flow properties will be clarified and a viable theory of turbulence might emerge.展开更多
Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation ind...Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation index (NDVI) from remotely-sensed imagery, dividing human-induced land degradation from vegetation dynamics due to climate change is not a trivial task. This paper presented a multilevel statistical modeling of the NDVI-rainfall relationship to detect human-induced land degradation at local and landscape scales in the Ordos Plateau of Inner Mongolia, China, and recognized that anthropogenic activities result in either positive (land restoration and re-vegetation) or negative (degradation) trends. Linear regressions were used to assess the accuracy of the multi- level statistical model. The results show that: (1) land restoration was the dominant process in the Ordos Plateau between 1998 and 2012; (2) the effect of the statistical removal of precipitation revealed areas of human-induced land degradation and improvement, the latter reflecting successful restoration projects and changes in land man- agement in many parts of the Ordos; (3) compared to a simple linear regression, multilevel statistical modeling could be used to analyze the relationship between the NDVI and rainfall and improve the accuracy of detecting the effect of human activities. Additional factors should be included when analyzing the NDVI-rainfall relationship and detecting human-induced loss of vegetation cover in drylands to improve the accuracy of the approach and elimi- nate some observed non-significant residual trends.展开更多
A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large esti...A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large estimation error and divergent tendencies in the presence of continuous maneuvering acceleration. A membership function is introduced in this algorithm to adaptively modify the upper and lower limits of loitering vehicles' maneuvering acceleration and for realtime adjustment of maneuvering acceleration variance. This allows the algorithm to have superior static and dynamic performance for loitering vehicles undergoing different maneuvers. Digital simulations and dynamic flight testing show that the yaw angle accuracy of the algorithm is 30% better than conventional algorithms, and pitch and roll angle calculation precision is improved by 60%.The mean square deviation of heading and attitude angle error during dynamic flight is less than3.05°. Experimental results show that CS-MAEKF meets the application requirements of miniature loitering vehicles.展开更多
Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly convergin...Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.展开更多
China has huge differences among its regions in terms of socio-economic development, industrial structure, natural resource endowments, and technological advancement. These differences have created complicated linkage...China has huge differences among its regions in terms of socio-economic development, industrial structure, natural resource endowments, and technological advancement. These differences have created complicated linkages between regions in China. In this study, building upon gravity model and location quotient techniques, we develop a sector-specific model to estimate inter-provincial trade flows, which is the base for making a multi-regional input-output table. In the model, we distinguish sectors with less intra-sector input from those with larger intra-sector input, and assume that the former sectors tend to compete among regions while the latter tend to cooperate among regions. Then we apply this new method of inter-regional trade estimation to three sectors: food and tobacco, metal smelting and proc- essing, and electrical equipment. The results show that selection of bandwidth has a significant impact on the assessment of inter-regional trade. Trade flows are more scattered with the increase of bandwidths. As a result, bandwidth reflects the spatial concentration of geo- graphical activities, which should be distinguishable for different industries. We conclude that the sector-specific spatial model can increase the credibility of estimates of inter-regional trade flows.展开更多
A two-phase trend model is presented to investigate the turning-point signals of evolution trend in long-term series of a climatic element. Based on nonlinear fitting, the revised model brings out more evident improve...A two-phase trend model is presented to investigate the turning-point signals of evolution trend in long-term series of a climatic element. Based on nonlinear fitting, the revised model brings out more evident improvement of the linear model proposed by Solow et al. (1987). Both theoretical deduction and case calculation show that our version can search the turning point and period accurately and objectively. In particular it is fit for computer exploring the turning points in long-range records from stations covering a large area, thus avoiding subjective judgement by a usual drawing method.展开更多
Based on the review and comparison of main statistical analysis models for estimating variety-environment cell means in regional crop trials, a new statistical model, LR-PCA composite model was proposed, and the predi...Based on the review and comparison of main statistical analysis models for estimating variety-environment cell means in regional crop trials, a new statistical model, LR-PCA composite model was proposed, and the predictive precision of these models were compared by cross validation of an example data. Results showed that the order of model precision was LR-PCA model > AMMI model > PCA model > Treatment Means (TM) model > Linear Regression (LR) model > Additive Main Effects ANOVA model. The precision gain factor of LR-PCA model was 1.55, increasing by 8.4% compared with AMMI.展开更多
The spring (March-April-May) rainfall over northern China (SPRNC) is predicted by using the interannual increment approach. DY denotes the difference between the current year and previous years. The seasonal forecast ...The spring (March-April-May) rainfall over northern China (SPRNC) is predicted by using the interannual increment approach. DY denotes the difference between the current year and previous years. The seasonal forecast model for the DY of SPRNC is constructed based on the data that are taken from the 1965-2002 period (38 years), in which six predictors are available no later than the current month of February. This is favorable so that the seasonal forecasts can be made one month ahead. Then, SPRNC and the percentage anomaly of SPRNC are obtained by the predicted DY of SPRNC. The model performs well in the prediction of the inter-annual variation of the DY of SPRNC during 1965-2002, with a correlation coefficient between the predicted and observed DY of SPRNC of 0.87. This accounts for 76% of the total variance, with a low value for the average root mean square error (RMSE) of 20%. Both the results of the hindcast for the period of 2003-2010 (eight years) and the cross-validation test for the period of 1965-2009 (45 years) illustrate the good prediction capability of the model, with a small mean relative error of 10%, an RMSE of 17% and a high rate of coherence of 87.5% for the hindcasts of the percentage anomaly of SPRNC.展开更多
Background:Survival from birth to slaughter is an important economic trait in commercial pig productions.Increasing survival can improve both economic efficiency and animal welfare.The aim of this study is to explore ...Background:Survival from birth to slaughter is an important economic trait in commercial pig productions.Increasing survival can improve both economic efficiency and animal welfare.The aim of this study is to explore the impact of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the total growing period from birth to slaughter.Results:We simulated pig populations with different direct and maternal heritabilities and used a linear mixed model,a logit model,and a probit model to predict genomic breeding values of pig survival based on data of individual survival records with binary outcomes(0,1).The results show that in the case of only alive animals having genotype data,unbiased genomic predictions can be achieved when using variances estimated from pedigreebased model.Models using genomic information achieved up to 59.2%higher accuracy of estimated breeding value compared to pedigree-based model,dependent on genotyping scenarios.The scenario of genotyping all individuals,both dead and alive individuals,obtained the highest accuracy.When an equal number of individuals(80%)were genotyped,random sample of individuals with genotypes achieved higher accuracy than only alive individuals with genotypes.The linear model,logit model and probit model achieved similar accuracy.Conclusions:Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs have genotypes,but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06%to 6.04%.展开更多
The water resources of the Nadhour-Sisseb-El Alem Basin in Tunisia exhibit semi-arid and arid climatic conditions.This induces an excessive pumping of groundwater,which creates drops in water level ranging about 1-2 m...The water resources of the Nadhour-Sisseb-El Alem Basin in Tunisia exhibit semi-arid and arid climatic conditions.This induces an excessive pumping of groundwater,which creates drops in water level ranging about 1-2 m/a.Indeed,these unfavorable conditions require interventions to rationalize integrated management in decision making.The aim of this study is to determine a water recharge index(WRI),delineate the potential groundwater recharge area and estimate the potential groundwater recharge rate based on the integration of statistical models resulted from remote sensing imagery,GIS digital data(e.g.,lithology,soil,runoff),measured artificial recharge data,fuzzy set theory and multi-criteria decision making(MCDM)using the analytical hierarchy process(AHP).Eight factors affecting potential groundwater recharge were determined,namely lithology,soil,slope,topography,land cover/use,runoff,drainage and lineaments.The WRI is between 1.2 and 3.1,which is classified into five classes as poor,weak,moderate,good and very good sites of potential groundwater recharge area.The very good and good classes occupied respectively 27%and 44%of the study area.The potential groundwater recharge rate was 43%of total precipitation.According to the results of the study,river beds are favorable sites for groundwater recharge.展开更多
The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,bot...The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of seaice cover in the future.Here,a novel data-driven method,the causal effect networks algorithm,is applied to identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea Route at different lead times so that statistical models can be constructed for sea-ice prediction.The whole study area was also divided into two parts:the northern region covered by multiyear ice and the southern region covered by seasonal ice.The forecast models of September sea-ice extent in the whole study area(TSIE)and southern region(SSIE)at lead times of 1–4 months can explain over 65%and 79%of the variances,respectively,but the forecast skill of sea-ice extent in the northern region(NSIE)is limited at a lead time of 1 month.At lead times of 1–4 months,local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE and SSIE than other teleconnection factors.When the lead time is more than 4 months,the surface meridional wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE variations but is comparable to thermodynamic factors for NSIE and SSIE.We suggest that this study provides a complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate models.展开更多
文摘The aim of the paper is to discover the general creep mechanisms for the short fiber reinforcement matrix composites (MMCs) under uniaxial stress states and to build a relationship between the macroscopic steady creep behavior and the material micro geometric parameters. The unit cell models were used to calculate the macroscopic creep behavior with different micro geometric parameters of fibers on different loading directions. The influence of the geometric parameters of the fibers and loading directions on the macroscopic creep behavior had been obtained, and described quantitatively. The matrix/fiber interface had been considered by a third layer, matrix/fiber interlayer, in the unit cells with different creep properties and thickness. Based on the numerical results of the unit cell models, a statistic model had been presented for the plane randomly-distributed-fiber MMCs. The fiber breakage had been taken into account in the statistic model for it starts experimentally early in the creep life. With the distribution of the geometric parameters of the fibers, the results of the statistic model agree well with the experiments. With the statistic model, the influence of the geometric parameters and the breakage of the fibers as well as the properties and thickness of, the interlayer on the macroscopic steady creep rate have been discussed.
文摘An optimization method was presented to be easily applied in retargetable simulator. The substance of this method is to reduce the redundant information of operation code which is caused by the variety of execution frequencies of instructions. By recoding the operation code in the loading part of simulator, times of bit comparison in identification of an instruction will get reduced. Thus the performance of the simulator will be improved. The theoretical analysis and experimental results both prove the validity of this method.
基金funded through India Meteorological Department,New Delhi,India under the Forecasting Agricultural output using Space,Agrometeorol ogy and Land based observations(FASAL)project and fund number:No.ASC/FASAL/KT-11/01/HQ-2010.
文摘Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.
基金National Key Research and Development Program of China (No.2021YFC3100800)the National Natural Science Foundation of China (Nos.42407235 and 42271026)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City (No.SCKJ-JYRC-2023-54)supported by the Hefei advanced computing center
文摘Coral reef limestone(CRL)constitutes a distinctive marine carbonate formation with complex mechanical properties.This study investigates the multiscale damage and fracture mechanisms of CRL through integrated experimental testing,digital core technology,and theoretical modelling.Two CRL types with contrasting mesostructures were characterized across three scales.Macroscopically,CRL-I and CRL-II exhibited mean compressive strengths of 8.46 and 5.17 MPa,respectively.Mesoscopically,CRL-I featured small-scale highly interconnected pores,whilst CRL-II developed larger stratified pores with diminished connectivity.Microscopically,both CRL matrices demonstrated remarkable similarity in mineral composition and mechanical properties.A novel voxel average-based digital core scaling methodology was developed to facilitate numerical simulation of cross-scale damage processes,revealing network-progressive failure in CRL-I versus directional-brittle failure in CRL-II.Furthermore,a damage statistical constitutive model based on digital core technology and mesoscopic homogenisation theory established quantitative relationships between microelement strength distribution and macroscopic mechanical behavior.These findings illuminate the fundamental mechanisms through which mesoscopic structure governs the macroscopic mechanical properties of CRL.
基金Supported by the Laoshan Laboratory(No.LSKJ 202202404)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 42000000)+1 种基金the National Natural Science Foundation of China(NSFC)(No.42030410)the Startup Foundation for Introducing Talent of NUIST,and the Jiangsu Innovation Research Group(No.JSSCTD 202346)。
文摘Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.
基金Project(52274096)supported by the National Natural Science Foundation of ChinaProject(WS2023A03)supported by the State Key Laboratory Cultivation Base for Gas Geology and Gas Control,China。
文摘Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a statistical damage constitutive model and energy evolution mechanisms.Initially,integrating the principle of effective stress and the Hoek-Brown criterion,a statistical damage constitutive model for gas-bearing coal is established and validated through triaxial compression tests under different gas pressures to verify its accuracy and applicability.Subsequently,employing energy evolution mechanism,two energy characteristic parameters(elastic energy proportion and dissipated energy proportion)are analyzed.Based on the damage stress thresholds,the damage evolution characteristics of gas bearing coal were explored.Finally,by integrating energy characteristic parameters with damage parameters,a novel brittleness index is proposed.The results demonstrate that the theoretical curves derived from the statistical damage constitutive model closely align with the test curves,accurately reflecting the stress−strain characteristics of gas-bearing coal and revealing the stress drop and softening characteristics of coal in the post-peak stage.The shape parameter and scale parameter represent the brittleness and macroscopic strength of the coal,respectively.As gas pressure increases from 1 to 5 MPa,the shape parameter and the scale parameter decrease by 22.18%and 60.45%,respectively,indicating a reduction in both brittleness and strength of the coal.Parameters such as maximum damage rate and peak elastic energy storage limit positively correlate with coal brittleness.The brittleness index effectively captures the brittleness characteristics and reveals a decrease in brittleness and an increase in sensitivity to plastic deformation under higher gas pressure conditions.
基金supported by the Iran National Science Foundation(INSF)the University of Birjand under grant number 4034771.
文摘Groundwater modeling remains challenging due to heterogeneity and complexity of aquifer systems,necessitating endeavors to quantify Groundwater Levels(GWL)dynamics to inform policymakers and hydrogeologists.This study introduces a novel Fuzzy Nonlinear Additive Regression(FNAR)model to predict monthly GWL in an unconfined aquifer in eastern Iran,using a 19-year(1998–2017)dataset from 11 piezometric wells.Under three distinct scenarios with progressively increasing input complexity,the study utilized readily available climate data,including Precipitation(Prc),Temperature(Tave),Relative Humidity(RH),and Evapotranspiration(ETo).The dataset was split into training(70%)and validation(30%)subsets.Results showed that among three input scenarios,Scenario 3(Sc3,incorporating all four variables)achieved the best predictive performance,with RMSE ranging from 0.305 m to 0.768 m,MAE from 0.203 m to 0.522 m,NSE from 0.661 to 0.980,and PBIAS from 0.771%to 0.981%,indicating low bias and high reliability.However,Sc2(excluding ETo)with RMSE ranging from 0.4226 m to 0.9909 m,MAE from 0.3418 m to 0.8173 m,NSE from 0.2831 to 0.9674,and PBIAS from−0.598%to 0.968%across different months offers practical advantages in data-scarce settings.The FNAR model outperforms conventional Fuzzy Least Squares Regression(FLSR)and holds promise for GWL forecasting in data-scarce regions where physical or numerical models are impractical.Future research should focus on integrating FNAR with deep learning algorithms and real-time data assimilation expanding applications across diverse hydrogeological settings.
基金This work was financially supported by the National Natural Science fund of China (No.50274058).
文摘Damage statistical mechanics model of horizontal section height in the top caving was constructed in the paper. The influence factors including supporting pressure, dip angle and characteristic of coal on horizontal section height were analyzed as well. By terms of the practice project analysis, the horizontal section height increases with the increase of dip angle β and thickness of coal seam M. Dip angle of coal seam β has tremendous impact on horizontal section height, while thickness of coal seam M has slight impact. When thickness of coal seam is below 10m, horizontal section height increases sharply. While thickness exceeds 15m, it is not major factor influencing on horizontal section height any long.
基金National Natural Science Foundation of China, No.41001057 The Science and Technology Strategic Pilot of the Chinese Academy of Sciences, No.XDA05090308+1 种基金 No.XDA05090310 Project Supported by State Key Laboratory of Earth Surface Processes and Resource Ecology, No.2011-KF-06
文摘Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.
基金supported by the National Natural Science Foundation of China(90716008)the National Basic Research Program of China(2009CB724100).
文摘Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.After a review of the existing theories of wall turbulence,we present a new framework,called the structure ensemble dynamics (SED),which aims at integrating the turbulence dynamics into a quantitative description of the mean flow.The SED theory naturally evolves from a statistical physics understanding of non-equilibrium open systems,such as fluid turbulence, for which mean quantities are intimately coupled with the fluctuation dynamics.Starting from the ensemble-averaged Navier-Stokes(EANS) equations,the theory postulates the existence of a finite number of statistical states yielding a multi-layer picture for wall turbulence.Then,it uses order functions(ratios of terms in the mean momentum as well as energy equations) to characterize the states and transitions between states.Application of the SED analysis to an incompressible channel flow and a compressible turbulent boundary layer shows that the order functions successfully reveal the multi-layer structure for wall-bounded turbulence, which arises as a quantitative extension of the traditional view in terms of sub-layer,buffer layer,log layer and wake. Furthermore,an idea of using a set of hyperbolic functions for modeling transitions between layers is proposed for a quantitative model of order functions across the entire flow domain.We conclude that the SED provides a theoretical framework for expressing the yet-unknown effects of fluctuation structures on the mean quantities,and offers new methods to analyze experimental and simulation data.Combined with asymptotic analysis,it also offers a way to evaluate convergence of simulations.The SED approach successfully describes the dynamics at both momentum and energy levels, in contrast with all prevalent approaches describing the mean velocity profile only.Moreover,the SED theoretical framework is general,independent of the flow system to study, while the actual functional form of the order functions may vary from flow to flow.We assert that as the knowledge of order functions is accumulated and as more flows are analyzed, new principles(such as hierarchy,symmetry,group invariance,etc.) governing the role of turbulent structures in the mean flow properties will be clarified and a viable theory of turbulence might emerge.
基金National Basic Research Program of China (2012CB722201)National Natural Science Foundation of China (30970504, 31060320)National Science and Technology Support Program (2011BAC07B01)
文摘Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation index (NDVI) from remotely-sensed imagery, dividing human-induced land degradation from vegetation dynamics due to climate change is not a trivial task. This paper presented a multilevel statistical modeling of the NDVI-rainfall relationship to detect human-induced land degradation at local and landscape scales in the Ordos Plateau of Inner Mongolia, China, and recognized that anthropogenic activities result in either positive (land restoration and re-vegetation) or negative (degradation) trends. Linear regressions were used to assess the accuracy of the multi- level statistical model. The results show that: (1) land restoration was the dominant process in the Ordos Plateau between 1998 and 2012; (2) the effect of the statistical removal of precipitation revealed areas of human-induced land degradation and improvement, the latter reflecting successful restoration projects and changes in land man- agement in many parts of the Ordos; (3) compared to a simple linear regression, multilevel statistical modeling could be used to analyze the relationship between the NDVI and rainfall and improve the accuracy of detecting the effect of human activities. Additional factors should be included when analyzing the NDVI-rainfall relationship and detecting human-induced loss of vegetation cover in drylands to improve the accuracy of the approach and elimi- nate some observed non-significant residual trends.
文摘A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large estimation error and divergent tendencies in the presence of continuous maneuvering acceleration. A membership function is introduced in this algorithm to adaptively modify the upper and lower limits of loitering vehicles' maneuvering acceleration and for realtime adjustment of maneuvering acceleration variance. This allows the algorithm to have superior static and dynamic performance for loitering vehicles undergoing different maneuvers. Digital simulations and dynamic flight testing show that the yaw angle accuracy of the algorithm is 30% better than conventional algorithms, and pitch and roll angle calculation precision is improved by 60%.The mean square deviation of heading and attitude angle error during dynamic flight is less than3.05°. Experimental results show that CS-MAEKF meets the application requirements of miniature loitering vehicles.
基金supported by Natural Science Foundation Research Project of Shanxi Science and Technology Department(2016JM1032)
文摘Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.
基金National Science Foundation for Distinguished Young Scholars of China, No.41125005
文摘China has huge differences among its regions in terms of socio-economic development, industrial structure, natural resource endowments, and technological advancement. These differences have created complicated linkages between regions in China. In this study, building upon gravity model and location quotient techniques, we develop a sector-specific model to estimate inter-provincial trade flows, which is the base for making a multi-regional input-output table. In the model, we distinguish sectors with less intra-sector input from those with larger intra-sector input, and assume that the former sectors tend to compete among regions while the latter tend to cooperate among regions. Then we apply this new method of inter-regional trade estimation to three sectors: food and tobacco, metal smelting and proc- essing, and electrical equipment. The results show that selection of bandwidth has a significant impact on the assessment of inter-regional trade. Trade flows are more scattered with the increase of bandwidths. As a result, bandwidth reflects the spatial concentration of geo- graphical activities, which should be distinguishable for different industries. We conclude that the sector-specific spatial model can increase the credibility of estimates of inter-regional trade flows.
基金This wirk is supported jointly National Natural Science Foundation of China and China Meteoroloical Administration 8th-Five-year Major Project Foundation.
文摘A two-phase trend model is presented to investigate the turning-point signals of evolution trend in long-term series of a climatic element. Based on nonlinear fitting, the revised model brings out more evident improvement of the linear model proposed by Solow et al. (1987). Both theoretical deduction and case calculation show that our version can search the turning point and period accurately and objectively. In particular it is fit for computer exploring the turning points in long-range records from stations covering a large area, thus avoiding subjective judgement by a usual drawing method.
文摘Based on the review and comparison of main statistical analysis models for estimating variety-environment cell means in regional crop trials, a new statistical model, LR-PCA composite model was proposed, and the predictive precision of these models were compared by cross validation of an example data. Results showed that the order of model precision was LR-PCA model > AMMI model > PCA model > Treatment Means (TM) model > Linear Regression (LR) model > Additive Main Effects ANOVA model. The precision gain factor of LR-PCA model was 1.55, increasing by 8.4% compared with AMMI.
基金Innovation Key Program of the Chinese Academy of Sciences(KZCX2-YW-QN202)Global Climate Change Research National Basic Research Program of China(2010CB950304)+1 种基金Innovation Key Program of the Chinese Academy of Sciences (KZCX2-YW-BR-14)Special Fund for Public Welfare Industry (Meteorology) (GYHY200906018)
文摘The spring (March-April-May) rainfall over northern China (SPRNC) is predicted by using the interannual increment approach. DY denotes the difference between the current year and previous years. The seasonal forecast model for the DY of SPRNC is constructed based on the data that are taken from the 1965-2002 period (38 years), in which six predictors are available no later than the current month of February. This is favorable so that the seasonal forecasts can be made one month ahead. Then, SPRNC and the percentage anomaly of SPRNC are obtained by the predicted DY of SPRNC. The model performs well in the prediction of the inter-annual variation of the DY of SPRNC during 1965-2002, with a correlation coefficient between the predicted and observed DY of SPRNC of 0.87. This accounts for 76% of the total variance, with a low value for the average root mean square error (RMSE) of 20%. Both the results of the hindcast for the period of 2003-2010 (eight years) and the cross-validation test for the period of 1965-2009 (45 years) illustrate the good prediction capability of the model, with a small mean relative error of 10%, an RMSE of 17% and a high rate of coherence of 87.5% for the hindcasts of the percentage anomaly of SPRNC.
基金funded by the"Genetic improvement of pig survival"project from Danish Pig Levy Foundation (Aarhus,Denmark)The China Scholarship Council (CSC)for providing scholarship to the first author。
文摘Background:Survival from birth to slaughter is an important economic trait in commercial pig productions.Increasing survival can improve both economic efficiency and animal welfare.The aim of this study is to explore the impact of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the total growing period from birth to slaughter.Results:We simulated pig populations with different direct and maternal heritabilities and used a linear mixed model,a logit model,and a probit model to predict genomic breeding values of pig survival based on data of individual survival records with binary outcomes(0,1).The results show that in the case of only alive animals having genotype data,unbiased genomic predictions can be achieved when using variances estimated from pedigreebased model.Models using genomic information achieved up to 59.2%higher accuracy of estimated breeding value compared to pedigree-based model,dependent on genotyping scenarios.The scenario of genotyping all individuals,both dead and alive individuals,obtained the highest accuracy.When an equal number of individuals(80%)were genotyped,random sample of individuals with genotypes achieved higher accuracy than only alive individuals with genotypes.The linear model,logit model and probit model achieved similar accuracy.Conclusions:Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs have genotypes,but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06%to 6.04%.
文摘The water resources of the Nadhour-Sisseb-El Alem Basin in Tunisia exhibit semi-arid and arid climatic conditions.This induces an excessive pumping of groundwater,which creates drops in water level ranging about 1-2 m/a.Indeed,these unfavorable conditions require interventions to rationalize integrated management in decision making.The aim of this study is to determine a water recharge index(WRI),delineate the potential groundwater recharge area and estimate the potential groundwater recharge rate based on the integration of statistical models resulted from remote sensing imagery,GIS digital data(e.g.,lithology,soil,runoff),measured artificial recharge data,fuzzy set theory and multi-criteria decision making(MCDM)using the analytical hierarchy process(AHP).Eight factors affecting potential groundwater recharge were determined,namely lithology,soil,slope,topography,land cover/use,runoff,drainage and lineaments.The WRI is between 1.2 and 3.1,which is classified into five classes as poor,weak,moderate,good and very good sites of potential groundwater recharge area.The very good and good classes occupied respectively 27%and 44%of the study area.The potential groundwater recharge rate was 43%of total precipitation.According to the results of the study,river beds are favorable sites for groundwater recharge.
基金The National Key Research and Development Program of China under contract Nos 2016YFF0202705 and2018YFA0605904the Joint Institute for the Study of the Atmosphere and Ocean(JISAO)under contract NOAA Cooperative Agreement NA15OAR4320063,contribution No.2019-1044,and PMEL contribution No.5052。
文摘The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of seaice cover in the future.Here,a novel data-driven method,the causal effect networks algorithm,is applied to identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea Route at different lead times so that statistical models can be constructed for sea-ice prediction.The whole study area was also divided into two parts:the northern region covered by multiyear ice and the southern region covered by seasonal ice.The forecast models of September sea-ice extent in the whole study area(TSIE)and southern region(SSIE)at lead times of 1–4 months can explain over 65%and 79%of the variances,respectively,but the forecast skill of sea-ice extent in the northern region(NSIE)is limited at a lead time of 1 month.At lead times of 1–4 months,local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE and SSIE than other teleconnection factors.When the lead time is more than 4 months,the surface meridional wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE variations but is comparable to thermodynamic factors for NSIE and SSIE.We suggest that this study provides a complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate models.