This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadr...This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadratic Regulator (LQR) design. The proposed approach leverages NMSS to eliminate the need for state observers, enhancing robustness against model mismatch and improving overall system performance. The PIP controller extends traditional PI control by incorporating additional dynamic feedback. Experimental results demonstrate that the NMSS-PIP-LQR controlled buck converter achieves excellent dynamic performance. The design procedure is fully documented, and microcontroller implementation issues are discussed.展开更多
Certain deterministic nonlinear systems may show chaotic behavior. We consider the motion of qualitative information and the practicalities of extracting a part from chaotic experimental data. Our approach based on a ...Certain deterministic nonlinear systems may show chaotic behavior. We consider the motion of qualitative information and the practicalities of extracting a part from chaotic experimental data. Our approach based on a theorem of Takens draws on the ideas from the generalized theory of information known as singular system analysis. We illustrate this technique by numerical data from the chaotic region of the chaotic experimental data. The method of the singular-value decomposition is used to calculate the eigenvalues of embedding space matrix. The corresponding concrete algorithm to calculate eigenvectors and to obtain the basis of embedding vector space is proposed in this paper. The projection on the orthogonal basis generated by eigenvectors of timeseries data and concrete paradigm are also provided here. Meanwhile the state space reconstruction technology of different kinds of chaotic data obtained from dynamical system has also been discussed in detail.展开更多
Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF...Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods.展开更多
The configuration selection for reconfigurable manufacturing systems(RMS) have been tackled in a number of studies by using analytical or simulation models. The simulation models are usually based on fewer assumptio...The configuration selection for reconfigurable manufacturing systems(RMS) have been tackled in a number of studies by using analytical or simulation models. The simulation models are usually based on fewer assumptions than the analytical models and therefore are more wildly used in modeling complex RMS. But in the absence of an efficient gradient analysis method of the objective function, it is time-consuming in solving large-scale problems by using a simulation model coupled with a meta-heuristics algorithm. In this paper, a new approach by means of characteristic state space is presented to improve the efficiency of the configuration selection for an RMS. First, a characteristic state equation is set up to represent the input and the output resources of each basic activity in an RMS. A production process model in terms of matrix equations is established by iterating the equations of basic activities according to the resource flows. This model introduces the production process into a characteristic state space for further analysis. Second, the properties of the characteristic state space are presented. On the basis of these properties, the configuration selection in an RMS is considered as a path-planning problem, and the gradient of the objective function is computed. Modified simulated annealing(SA) is also presented, in which neighborhood generation is guided by the gradient to accelerate convergence and reduce the run time of the optimization procedure. Finally, several case studies on the configuration selection for some actual reconfigurable assembly job-shops are presented and compared to the classical SA. The comparison shows relatively positive results. This study provides a more efficient configuration selection approach by using the gradient of the objective function and presents the relevant theories on which it is based.展开更多
This paper proposes a general plan and coordination strategy for robot system. The state space for robot system is constructed according to the task requirement and system characteristic. Reachable state of the system...This paper proposes a general plan and coordination strategy for robot system. The state space for robot system is constructed according to the task requirement and system characteristic. Reachable state of the system is figured out by the system’s internal and external constraints. Task plan and coordination are then transformed as trajectory solving problem in the state space, by which the realizable conditions for the given task are discussed. If the task is realizable, the optimal strategy for task execution could be investigated and obtained in state space. Otherwise, it could be transformed to be realizable via adjusting the system configuration and/or task constraint, and the transformation condition could also be determined. This contributes to design, plan, and coordination of the robotic tasks. Experiments of the manipulator path planning and multi-robot formation movement are conducted to show the validity and generalization of the proposed method.展开更多
Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of qua...Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of quantum control systems must accord with Schrdinger equations, so it is foremost to obtain Hamiltonian operators of systems. There are corresponding relations between operators of quantum systems and corresponding physical quantities of classical systems, such as momentum, energy and Hamiltonian, so Schrdinger equation models of corresponding quantum control systems via quantization could been obtained from classical control systems, and then establish formal state space models through the suitable transformation from Schrdinger equations for these quantum control systems. This method provides a new kind of path for modeling in quantum control.展开更多
A new analytical method is proposed to analyze the force acting on a rectangular oscillating buoy due to linear waves.In the method a new analytical expression for the diffraction velocity potential is obtained first ...A new analytical method is proposed to analyze the force acting on a rectangular oscillating buoy due to linear waves.In the method a new analytical expression for the diffraction velocity potential is obtained first by use of theeigenfunction expansion method and then the wave excitation force is calculated by use of the known incident wavepotential and the diffraction potential. Compared with the classical analytical method, it can be seen that the presentmethod is simpler for a two-dimensional problem due to the comparable effort needed for the computation ofdiffraction potential and for that of radiated potential. To verify the correctness of the method, a classical example inthe reference is recomputed and the obtained results are in good accordance with those by use of other methods,which shows that the present method is correct.展开更多
The fixture layout is crucial to assure the product quality in a multistation assembly process (MAP). A well-designed fixture layout will make the final product's variability be insensitive to the fixture variation...The fixture layout is crucial to assure the product quality in a multistation assembly process (MAP). A well-designed fixture layout will make the final product's variability be insensitive to the fixture variation inputs. As the basis of the fixture layout design, the design criterion plays an important role in the effectiveness of a solution and the optimization efficiency. In this paper, an effective and efficient design criterion is proposed for the fixture layout with a fixed reference point (FRP) in an MAP. First of all, a state space model for the individual port's variation propagation and accumulation is developed, which is the mathematical foundation of the proposed criterion. Then, based on this model, a novel design criterion used to evaluate the performance of the fixture layout is proposed for the fixture layout with an FRP. Finally, a method extracted from the proposed design criterion is developed for quick fixture layout design. A four-station assembly process is used to validate the effectiveness and efficiency of the proposed models and methods.展开更多
Reliability analysis based on equipment's performance degradation characteristics is one of the significant research areas in reliability research. Nowadays, many researches are carried on multi-sample analysis. B...Reliability analysis based on equipment's performance degradation characteristics is one of the significant research areas in reliability research. Nowadays, many researches are carried on multi-sample analysis. But it is limited for a single equipment reliability prediction. Therefore, the method of reliability prediction based on state space model(SSM) is proposed in this research. Feature energy of the monitored signals is extracted with the wavelet packet analysis and the associated frequency band energy with online monitored data. Then,degradation feature is improved by moving average filtering processing taken as input pair model parameter of SSM to be estimated. In the end, state space predicting model of degradation index is established. The probability density distribution of the degradation index is predicted, and the degree of reliability is calculated. A real testing example of bearing is used to demonstrate the rationality and effectiveness of this method. It is a useful method for single sample reliability prediction.展开更多
This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's co...This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's convenience we first restate the existence theorems (Theorem 1 and 2) of the processes given in [4]. Then two existence theorems (Theorem 3 and 4) and a uniqueness theorem (Theorem 5) for the s. d.'s of the processes are presented. The last result (Theorem 6), as an application of the previous ones, is about the Schlgl model which comes from nonequilibrium statisticali physics. The details of the proofs of Theorem 3—6 are given in § 2—4.展开更多
State space approach is an effective method to mass-exchange network (MEN) synthesis. By decomposing the network into two interactive parts, a distribution network and a process operator, the synthesis problem can be ...State space approach is an effective method to mass-exchange network (MEN) synthesis. By decomposing the network into two interactive parts, a distribution network and a process operator, the synthesis problem can be formulated into a mixed integer nonlinear programming (MINLP) model. In this article, a generalized state space model based on typical MEN is established and verified in two cases. A new asymmetrical operator and cost index are also adopted to speed up the solution process. The results demonstrate the efficiency of the proposed approach.展开更多
A new method named the state space boundary element method (SSBEM) is estab- lished, in which the problem domain is divided into two parts. One is the boundary element domain which includes the interested inner poin...A new method named the state space boundary element method (SSBEM) is estab- lished, in which the problem domain is divided into two parts. One is the boundary element domain which includes the interested inner point, and the other is the state space domain. The boundary integral equation and the state space equation are combined together based on the interfacial continuity condition to form the system equation of the SSBEM. The SSBEM synthe- sizes both advantages of the boundary element method and the state space method. However, it can give inaccurate results when being used to evaluate the mechanical quantity of a point very close to the boundary element, because the Gaussian quadrature fails to calculate the nearly singular integrals. The analytical formulas were developed by part of the authors before intro- duced to deal with the nearly singular integrals. Thus, the SSBEM can yield accurate physical quantities for the points very close to the boundary element. The SSBEM results agree well with those of the finite element method (FEM), while the discretized elements are far fewer than those of the FEM. Meanwhile, the SSBEM can analyze very thin coating, while the FEM fails due to the limitation of tolerance for Boolean operations.展开更多
To overcome the drawbacks of current modelling method for aircraft engine state space model,a new method is introduced.The form of state space model is derived by using Talyor series to expand the nonlinear model that...To overcome the drawbacks of current modelling method for aircraft engine state space model,a new method is introduced.The form of state space model is derived by using Talyor series to expand the nonlinear model that is implicit equations and involves many iterations.A partial derivative calculation method for iterations is developed to handle the influence of iterations on parameters.The derivative calculation and the aerothermodynamics calculations are combined in the component level model with fixed number Newton-Raphson(N-R)iterations.Mathematical derivation and simulations show the convergence ability of proposed method.Simulations show that comparing with the linear parameter varying model and centered difference based state space model,much higher accuracy of proposed online modelling method is achieved.The accuracy of the state space model built by proposed method can be maintained when the step amplitudes of inputs are within 2%,and the responses of the state space model can match those of the component level model when each input steps larger amplitudes.In addition,an online verification was carried out to show the capability of modelling at any operating point and that state space model can predict future outputs accurately.Thus,the effectiveness of the proposed method is demonstrated.展开更多
A state space model(SSM) is derived for quantum-dot semiconductor optical amplifiers(QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along ...A state space model(SSM) is derived for quantum-dot semiconductor optical amplifiers(QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along QD-SOA cavity are considered as state variables of the system.Simulations show that SSM calculates QD-SOA′s static and dynamic characteristics with high accuracy.展开更多
Dimensional control is one of the most important challenges in the shipbuilding industry. In order to predict assembly dimensional variation in hull flat block construction, a variation stream model based on state spa...Dimensional control is one of the most important challenges in the shipbuilding industry. In order to predict assembly dimensional variation in hull flat block construction, a variation stream model based on state space was presented in this paper which can be further applied to accuracy control in shipbuilding. Part accumulative error, locating error, and welding deformation were taken into consideration in this model, and variation propagation mechanisms and the accumulative rule in the assembly process were analyzed. Then, a model was developed to describe the variation propagation throughout the assembly process. Finally, an example of fiat block construction from an actual shipyard was given. The result shows that this method is effective and useful.展开更多
The high potentiality of integrating renewable energies,such as photovoltaic,into a modern electrical microgrid system,using DC-to-DC converters,raises some issues associated with controller loop design and system sta...The high potentiality of integrating renewable energies,such as photovoltaic,into a modern electrical microgrid system,using DC-to-DC converters,raises some issues associated with controller loop design and system stability.The generalized state space average model(GSSAM)concept was consequently introduced to design a DC-to-DC converter controller in order to evaluate DC-to-DC converter performance and to conduct stability studies.This paper presents a GSSAM for parallel DC-to-DC converters,namely:buck,boost,and buck-boost converters.The rationale of this study is that modern electrical systems,such as DC networks,hybrid microgrids,and electric ships,are formed by parallel DC-to-DC converters with separate DC input sources.Therefore,this paper proposes a GSSAM for any number of parallel DC-to-DC converters.The proposed GSSAM is validated and investigated in a time-domain simulation environment,namely a MATLAB/SIMULINK.The study compares the steady-state,transient,and oscillatory performance of the state-space average model with a fully detailed switching model.展开更多
A variable dimensional state space(VDSS) has been proposed to improve the re-planning time when the robotic systems operate in large unknown environments.VDSS is constructed by uniforming lattice state space and grid ...A variable dimensional state space(VDSS) has been proposed to improve the re-planning time when the robotic systems operate in large unknown environments.VDSS is constructed by uniforming lattice state space and grid state space.In VDSS,the lattice state space is only used to construct search space in the local area which is a small circle area near the robot,and grid state space elsewhere.We have tested VDSS with up to 80 indoor and outdoor maps in simulation and on segbot robot platform.Through the simulation and segbot robot experiments,it shows that exploring on VDSS is significantly faster than exploring on lattice state space by Anytime Dynamic A*(AD*) planner and VDSS is feasible to be used on robotic systems.展开更多
A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task ...A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task definition and the system's internal and external constraints. Task accomplishment is considered a transition of the system state in its state space (SS) under the system's constraints. Therefore, if there exists a connectable path within reachable area of the SS from the initial state to the goal state, the task is realizable. The optimal strategy for the task realization under constraints is investigated and reached by searching for the optimal state transition trajectory of the robot system in the SS. Moreover, if there is no connectable path, which means the task cannot be performed Successfully, the task could be transformed to be realizable by making the initial state and the goal state connectable and finding a path connecting them in the system's SS. This might be done via adjusting the system's configuration and/or task constraints. Experiments of multi-robot formation control with obstacles in the environment are conducted and simulation results show the validity of the proposed method.展开更多
The efficient and accurate synthesis of physical parameter-controllable impact sounds is essential for sound source identification. In this study, an impact sound synthesis model of a cylinder is proposed based on dis...The efficient and accurate synthesis of physical parameter-controllable impact sounds is essential for sound source identification. In this study, an impact sound synthesis model of a cylinder is proposed based on discrete state space(DSS) method and modal extension method(MEM). This model is comprised of the whole three processes of the physical interaction, i.e., the Hertz contact process, the transient structural response process, and the sound radiation process. Firstly,the modal expanded DSS equations of the contact system are constructed and the transient structural response of the cylinder is obtained. Then the impact sound of the cylinder is acquired using improved discrete Raleigh integral. Finally, the proposed model is verified by comparing with existing models. The results show that the proposed impact sound synthesis model is more accurate and efficient than the existing methods and easy to be extended to the impact sound synthesis of other structures.展开更多
Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 a...Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 adaptive control, a novel Nonlinear State Space Equation(NSSE) based Adaptive neural network Control(NSSE-AC) method is proposed for the turbo-shaft engine control system design. The proposed NSSE model is derived from a special neural network with an extra layer, and the rotor speed of the gas turbine is taken as the main state variable which makes the NSSE model be able to capture the system dynamic better than the NARMA-L2 model. A hybrid Recursive Least-Square and Levenberg-Marquardt(RLS-LM) algorithm is advanced to perform the online learning of the neural network, which further enhances both the accuracy of the NSSE model and the performance of the adaptive controller. The feedback correction is also utilized in the NSSE-AC system to eliminate the steady-state tracking error. Simulation results show that, compared with the NARMA-L2 model, the NSSE model of the turboshaft engine is more accurate. The maximum modeling error is decreased from 5.92% to 0.97%when the LM algorithm is introduced to optimize the neural network parameters. The NSSE-AC method can not only achieve a better main control loop performance than the traditional controller but also limit all the constraint parameters efficiently with quick and accurate switching responses even if component degradation exists. Thus, the effectiveness of the NSSE-AC method is validated.展开更多
文摘This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadratic Regulator (LQR) design. The proposed approach leverages NMSS to eliminate the need for state observers, enhancing robustness against model mismatch and improving overall system performance. The PIP controller extends traditional PI control by incorporating additional dynamic feedback. Experimental results demonstrate that the NMSS-PIP-LQR controlled buck converter achieves excellent dynamic performance. The design procedure is fully documented, and microcontroller implementation issues are discussed.
基金The project supported by the National Natural Science Foundation of China(19672043)
文摘Certain deterministic nonlinear systems may show chaotic behavior. We consider the motion of qualitative information and the practicalities of extracting a part from chaotic experimental data. Our approach based on a theorem of Takens draws on the ideas from the generalized theory of information known as singular system analysis. We illustrate this technique by numerical data from the chaotic region of the chaotic experimental data. The method of the singular-value decomposition is used to calculate the eigenvalues of embedding space matrix. The corresponding concrete algorithm to calculate eigenvectors and to obtain the basis of embedding vector space is proposed in this paper. The projection on the orthogonal basis generated by eigenvectors of timeseries data and concrete paradigm are also provided here. Meanwhile the state space reconstruction technology of different kinds of chaotic data obtained from dynamical system has also been discussed in detail.
基金supported by the National Natural Science Foundation of China(7092100160574058)+1 种基金the Key International Cooperation Programs of Hunan Provincial Science & Technology Department (2009WK2009)the General Program of Hunan Provincial Education Department(11C0023)
文摘Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods.
基金supported by National High-tech Research and Development Program of China(863Program,Grant No.2006AA04Z101)Dalian Municipal Science and Technology Program of China(Grant No.2008J31JH011)
文摘The configuration selection for reconfigurable manufacturing systems(RMS) have been tackled in a number of studies by using analytical or simulation models. The simulation models are usually based on fewer assumptions than the analytical models and therefore are more wildly used in modeling complex RMS. But in the absence of an efficient gradient analysis method of the objective function, it is time-consuming in solving large-scale problems by using a simulation model coupled with a meta-heuristics algorithm. In this paper, a new approach by means of characteristic state space is presented to improve the efficiency of the configuration selection for an RMS. First, a characteristic state equation is set up to represent the input and the output resources of each basic activity in an RMS. A production process model in terms of matrix equations is established by iterating the equations of basic activities according to the resource flows. This model introduces the production process into a characteristic state space for further analysis. Second, the properties of the characteristic state space are presented. On the basis of these properties, the configuration selection in an RMS is considered as a path-planning problem, and the gradient of the objective function is computed. Modified simulated annealing(SA) is also presented, in which neighborhood generation is guided by the gradient to accelerate convergence and reduce the run time of the optimization procedure. Finally, several case studies on the configuration selection for some actual reconfigurable assembly job-shops are presented and compared to the classical SA. The comparison shows relatively positive results. This study provides a more efficient configuration selection approach by using the gradient of the objective function and presents the relevant theories on which it is based.
基金the National Natural Science Foundation of China (No. 60675041)the Program for New Century Excellent Talents in University (No. NCET-06-0398)
文摘This paper proposes a general plan and coordination strategy for robot system. The state space for robot system is constructed according to the task requirement and system characteristic. Reachable state of the system is figured out by the system’s internal and external constraints. Task plan and coordination are then transformed as trajectory solving problem in the state space, by which the realizable conditions for the given task are discussed. If the task is realizable, the optimal strategy for task execution could be investigated and obtained in state space. Otherwise, it could be transformed to be realizable via adjusting the system configuration and/or task constraint, and the transformation condition could also be determined. This contributes to design, plan, and coordination of the robotic tasks. Experiments of the manipulator path planning and multi-robot formation movement are conducted to show the validity and generalization of the proposed method.
文摘Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of quantum control systems must accord with Schrdinger equations, so it is foremost to obtain Hamiltonian operators of systems. There are corresponding relations between operators of quantum systems and corresponding physical quantities of classical systems, such as momentum, energy and Hamiltonian, so Schrdinger equation models of corresponding quantum control systems via quantization could been obtained from classical control systems, and then establish formal state space models through the suitable transformation from Schrdinger equations for these quantum control systems. This method provides a new kind of path for modeling in quantum control.
基金This work Was supported by the High Tech Research and Development(863)Program of China under Grant No.2003AA5 16010the Chinese Academy of Science Pilot Project of the National Knowledge Innovation Program under Grant No.KGCX2-SW-305Chinese National Science Fund for Distinguished Young Scholars under Grant No.50125924.
文摘A new analytical method is proposed to analyze the force acting on a rectangular oscillating buoy due to linear waves.In the method a new analytical expression for the diffraction velocity potential is obtained first by use of theeigenfunction expansion method and then the wave excitation force is calculated by use of the known incident wavepotential and the diffraction potential. Compared with the classical analytical method, it can be seen that the presentmethod is simpler for a two-dimensional problem due to the comparable effort needed for the computation ofdiffraction potential and for that of radiated potential. To verify the correctness of the method, a classical example inthe reference is recomputed and the obtained results are in good accordance with those by use of other methods,which shows that the present method is correct.
基金National Nature Science Foundation of China(No.71201025)Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20110092120007)Jiangsu Key Laboratory of Equipments Detection and Control,China(No.JSKLEDC201215)
文摘The fixture layout is crucial to assure the product quality in a multistation assembly process (MAP). A well-designed fixture layout will make the final product's variability be insensitive to the fixture variation inputs. As the basis of the fixture layout design, the design criterion plays an important role in the effectiveness of a solution and the optimization efficiency. In this paper, an effective and efficient design criterion is proposed for the fixture layout with a fixed reference point (FRP) in an MAP. First of all, a state space model for the individual port's variation propagation and accumulation is developed, which is the mathematical foundation of the proposed criterion. Then, based on this model, a novel design criterion used to evaluate the performance of the fixture layout is proposed for the fixture layout with an FRP. Finally, a method extracted from the proposed design criterion is developed for quick fixture layout design. A four-station assembly process is used to validate the effectiveness and efficiency of the proposed models and methods.
基金the National Science and Technology Major Project of China(No.2013ZX04012071)the National Natural Science Foundation of China(No.51175057)
文摘Reliability analysis based on equipment's performance degradation characteristics is one of the significant research areas in reliability research. Nowadays, many researches are carried on multi-sample analysis. But it is limited for a single equipment reliability prediction. Therefore, the method of reliability prediction based on state space model(SSM) is proposed in this research. Feature energy of the monitored signals is extracted with the wavelet packet analysis and the associated frequency band energy with online monitored data. Then,degradation feature is improved by moving average filtering processing taken as input pair model parameter of SSM to be estimated. In the end, state space predicting model of degradation index is established. The probability density distribution of the degradation index is predicted, and the degree of reliability is calculated. A real testing example of bearing is used to demonstrate the rationality and effectiveness of this method. It is a useful method for single sample reliability prediction.
文摘This paper deals with the preblem of existence and uniqueness of the stationary distributions (abbr., s. d.'s) for the processes constructed in [4] .The main results are stated in § 1. For the reader's convenience we first restate the existence theorems (Theorem 1 and 2) of the processes given in [4]. Then two existence theorems (Theorem 3 and 4) and a uniqueness theorem (Theorem 5) for the s. d.'s of the processes are presented. The last result (Theorem 6), as an application of the previous ones, is about the Schlgl model which comes from nonequilibrium statisticali physics. The details of the proofs of Theorem 3—6 are given in § 2—4.
基金Supported by the National Natural Science Foundation of China (NSF 29836140).
文摘State space approach is an effective method to mass-exchange network (MEN) synthesis. By decomposing the network into two interactive parts, a distribution network and a process operator, the synthesis problem can be formulated into a mixed integer nonlinear programming (MINLP) model. In this article, a generalized state space model based on typical MEN is established and verified in two cases. A new asymmetrical operator and cost index are also adopted to speed up the solution process. The results demonstrate the efficiency of the proposed approach.
基金This work was supported by National Natural Science Foundation of China (No.11772114) and Grants from China Scholarship Council (No. 201706690019).
文摘A new method named the state space boundary element method (SSBEM) is estab- lished, in which the problem domain is divided into two parts. One is the boundary element domain which includes the interested inner point, and the other is the state space domain. The boundary integral equation and the state space equation are combined together based on the interfacial continuity condition to form the system equation of the SSBEM. The SSBEM synthe- sizes both advantages of the boundary element method and the state space method. However, it can give inaccurate results when being used to evaluate the mechanical quantity of a point very close to the boundary element, because the Gaussian quadrature fails to calculate the nearly singular integrals. The analytical formulas were developed by part of the authors before intro- duced to deal with the nearly singular integrals. Thus, the SSBEM can yield accurate physical quantities for the points very close to the boundary element. The SSBEM results agree well with those of the finite element method (FEM), while the discretized elements are far fewer than those of the FEM. Meanwhile, the SSBEM can analyze very thin coating, while the FEM fails due to the limitation of tolerance for Boolean operations.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(No.KYCX180315)。
文摘To overcome the drawbacks of current modelling method for aircraft engine state space model,a new method is introduced.The form of state space model is derived by using Talyor series to expand the nonlinear model that is implicit equations and involves many iterations.A partial derivative calculation method for iterations is developed to handle the influence of iterations on parameters.The derivative calculation and the aerothermodynamics calculations are combined in the component level model with fixed number Newton-Raphson(N-R)iterations.Mathematical derivation and simulations show the convergence ability of proposed method.Simulations show that comparing with the linear parameter varying model and centered difference based state space model,much higher accuracy of proposed online modelling method is achieved.The accuracy of the state space model built by proposed method can be maintained when the step amplitudes of inputs are within 2%,and the responses of the state space model can match those of the component level model when each input steps larger amplitudes.In addition,an online verification was carried out to show the capability of modelling at any operating point and that state space model can predict future outputs accurately.Thus,the effectiveness of the proposed method is demonstrated.
文摘A state space model(SSM) is derived for quantum-dot semiconductor optical amplifiers(QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along QD-SOA cavity are considered as state variables of the system.Simulations show that SSM calculates QD-SOA′s static and dynamic characteristics with high accuracy.
基金Supported by the National Science Foundation of China (Granted No.70872076) and Science Innovation Action Planning of Shanghai 2011 (No.11dz1121803).
文摘Dimensional control is one of the most important challenges in the shipbuilding industry. In order to predict assembly dimensional variation in hull flat block construction, a variation stream model based on state space was presented in this paper which can be further applied to accuracy control in shipbuilding. Part accumulative error, locating error, and welding deformation were taken into consideration in this model, and variation propagation mechanisms and the accumulative rule in the assembly process were analyzed. Then, a model was developed to describe the variation propagation throughout the assembly process. Finally, an example of fiat block construction from an actual shipyard was given. The result shows that this method is effective and useful.
文摘The high potentiality of integrating renewable energies,such as photovoltaic,into a modern electrical microgrid system,using DC-to-DC converters,raises some issues associated with controller loop design and system stability.The generalized state space average model(GSSAM)concept was consequently introduced to design a DC-to-DC converter controller in order to evaluate DC-to-DC converter performance and to conduct stability studies.This paper presents a GSSAM for parallel DC-to-DC converters,namely:buck,boost,and buck-boost converters.The rationale of this study is that modern electrical systems,such as DC networks,hybrid microgrids,and electric ships,are formed by parallel DC-to-DC converters with separate DC input sources.Therefore,this paper proposes a GSSAM for any number of parallel DC-to-DC converters.The proposed GSSAM is validated and investigated in a time-domain simulation environment,namely a MATLAB/SIMULINK.The study compares the steady-state,transient,and oscillatory performance of the state-space average model with a fully detailed switching model.
基金Supported by the National Natural Science Foundation of China(90920304)
文摘A variable dimensional state space(VDSS) has been proposed to improve the re-planning time when the robotic systems operate in large unknown environments.VDSS is constructed by uniforming lattice state space and grid state space.In VDSS,the lattice state space is only used to construct search space in the local area which is a small circle area near the robot,and grid state space elsewhere.We have tested VDSS with up to 80 indoor and outdoor maps in simulation and on segbot robot platform.Through the simulation and segbot robot experiments,it shows that exploring on VDSS is significantly faster than exploring on lattice state space by Anytime Dynamic A*(AD*) planner and VDSS is feasible to be used on robotic systems.
基金the National Natural Science Foundation of China (60428303).
文摘A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task definition and the system's internal and external constraints. Task accomplishment is considered a transition of the system state in its state space (SS) under the system's constraints. Therefore, if there exists a connectable path within reachable area of the SS from the initial state to the goal state, the task is realizable. The optimal strategy for the task realization under constraints is investigated and reached by searching for the optimal state transition trajectory of the robot system in the SS. Moreover, if there is no connectable path, which means the task cannot be performed Successfully, the task could be transformed to be realizable by making the initial state and the goal state connectable and finding a path connecting them in the system's SS. This might be done via adjusting the system's configuration and/or task constraints. Experiments of multi-robot formation control with obstacles in the environment are conducted and simulation results show the validity of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574249 and 11874303)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2018JQ1001)
文摘The efficient and accurate synthesis of physical parameter-controllable impact sounds is essential for sound source identification. In this study, an impact sound synthesis model of a cylinder is proposed based on discrete state space(DSS) method and modal extension method(MEM). This model is comprised of the whole three processes of the physical interaction, i.e., the Hertz contact process, the transient structural response process, and the sound radiation process. Firstly,the modal expanded DSS equations of the contact system are constructed and the transient structural response of the cylinder is obtained. Then the impact sound of the cylinder is acquired using improved discrete Raleigh integral. Finally, the proposed model is verified by comparing with existing models. The results show that the proposed impact sound synthesis model is more accurate and efficient than the existing methods and easy to be extended to the impact sound synthesis of other structures.
基金co-supported by the National Science and Technology Major Project, China (No. J2019-Ⅰ-0010-0010)the Project funded by China Postdoctoral Science Foundation (No. 2021M701692)+3 种基金the Fundamental Research Funds for the Central Universities, China (No. NS2022029)the Postgraduate Research & Practice Innovation Program of NUAA, China (No. xcxjh20220206)the National Natural Science Foundation of China (No. 51976089)Jiangsu Funding Program for Excellent Postdoctoral Talent, China (No. 2022ZB202)。
文摘Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 adaptive control, a novel Nonlinear State Space Equation(NSSE) based Adaptive neural network Control(NSSE-AC) method is proposed for the turbo-shaft engine control system design. The proposed NSSE model is derived from a special neural network with an extra layer, and the rotor speed of the gas turbine is taken as the main state variable which makes the NSSE model be able to capture the system dynamic better than the NARMA-L2 model. A hybrid Recursive Least-Square and Levenberg-Marquardt(RLS-LM) algorithm is advanced to perform the online learning of the neural network, which further enhances both the accuracy of the NSSE model and the performance of the adaptive controller. The feedback correction is also utilized in the NSSE-AC system to eliminate the steady-state tracking error. Simulation results show that, compared with the NARMA-L2 model, the NSSE model of the turboshaft engine is more accurate. The maximum modeling error is decreased from 5.92% to 0.97%when the LM algorithm is introduced to optimize the neural network parameters. The NSSE-AC method can not only achieve a better main control loop performance than the traditional controller but also limit all the constraint parameters efficiently with quick and accurate switching responses even if component degradation exists. Thus, the effectiveness of the NSSE-AC method is validated.