In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicle...In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicles(UAVs)has garnered significant attention.The PEMFC,serving as the primary energy supply,markedly extends the UAV’s operational endurance.However,due to payload limitations and spatial constraints in the airframe layout of UAVs,the stack requires customized adaptation.Moreover,the implementation of auxiliary systems to facilitate cold starts of the PEMFC under low-temperature conditions is not feasible.Relying solely on thermal insulation measures also proves inadequate to address the challenges posed by complex low-temperature startup scenarios.To overcomethis,our study leverages the UAV’s lithium battery to heat the cathode inlet airflow,aiding the cathode-open PEMFC cold start process.To validate the feasibility of the proposed air-assisted heating strategy during the conceptual design phase,this study develops a transient,non-isothermal 3Dcathode-open PEMF Cunitmodel incorporating cathode air-assisted heating and gas-ice phase change.The model’s accuracy was verified against experimental cold-start data from a stack composed of identical single cells.This computational framework enables quantitative analysis of temperature fields and ice fraction distributions across domains under varying air-assisted heating powers during cold starts.Building upon this model,the study further investigates the improvement in cold start performance by heating the cathode intake air with varying power levels.The results demonstrate that the fuel cell achieves self-startup at temperatures as low as−13℃ under a constant current density of 100mA/cm^(2) without air-assisted heating.At an ambient temperature of−20℃,a successful start-up can be achieved with a heating power of 0.45 W/cm^(2).The temperature variation overtime during the cold start process can be represented by a sum of two exponential functions.The air-assisted heating scheme proposed in this study has significantly improved the cold start performance of fuel cells in low-temperature environments.Additionally,it provides critical reference data and validation support for component selection and feasibility assessment of hybrid power systems.展开更多
This paper investigates the start-up and shutdown phases of a five-bladed closed-impeller centrifugal pump through experimental analysis,capturing the temporal evolution of its hydraulic performances.The study also pr...This paper investigates the start-up and shutdown phases of a five-bladed closed-impeller centrifugal pump through experimental analysis,capturing the temporal evolution of its hydraulic performances.The study also predicts the transient characteristics of the pump under non-rated operating conditions to assess the accuracy of various machine learning methods in forecasting its instantaneous performance.Results indicate that the pump’s transient behavior in power-frequency mode markedly differs from that in frequency-conversion mode.Specifically,the power-frequency mode achieves steady-state values faster and exhibits smaller fluctuations before stabilization compared to the other mode.During the start-up phase,as the steady-state flow rate increases,inlet and outlet pressures and head also rise,while torque and shaft power decrease,with rotational speed remaining largely unchanged.Conversely,during the shutdown phase,no significant changes were observed in torque,shaft power,or rotational speed.Six machine learning models,including Gaussian Process Regression(GPR),Decision Tree Regression(DTR),and Deep Learning Networks(DLN),demonstrated high accuracy in predicting the hydraulic performance of the centrifugal pump during the start-up and shutdown phases in both power-frequency and frequency-conversion conditions.The findings provide a theoretical foundation for improved prediction of pump hydraulic performance.For instance,when predicting head and flow rate during power-frequency start-up,GPR achieved absolute and relative errors of 0.54 m(7.84%)and 0.21 m3/h(13.57%),respectively,while the Feedforward Neural Network(FNN)reported errors of 0.98 m(8.24%)and 0.10 m3/h(16.71%).By contrast,the Support Vector Machine Regression(SVMR)and Generalized Additive Model(GAM)generally yielded less satisfactory prediction accuracy compared to the other methods.展开更多
The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key ...The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.展开更多
The unstarted flow field in a hypersonic inlet model at a design point of Ma 6 is studied experimentally.The time-resolved spatial flow characteristics of the separation shock oscillation,which is induced by the unsta...The unstarted flow field in a hypersonic inlet model at a design point of Ma 6 is studied experimentally.The time-resolved spatial flow characteristics of the separation shock oscillation,which is induced by the unstarted flow,are analyzed based on a high-speed Schlieren system and an image processing method.The motion of the separation shock detected by the shock-detection algorithm is compared to the results of fast-response wall-pressure measurements,and good agreement is demonstrated by comparing the frequency components in the power spectral density contours between shock oscillation and pressure fluctuation.The hysteresis of the pressure and separation shock during oscillation cycles is observed from the time history of the shock motion,which means that the unsteady flow pattern of the unstarted hypersonic flow can be accurately clarified by time-resolved Schlieren image processing.These results convincingly demonstrate that the shock-detection technique is successfully applied to an unstarted hypersonic flow case.展开更多
In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight tech...In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.展开更多
The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting...The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.展开更多
真实世界证据的结构化模板和报告工具(structured template and reporting tool for real world evidence,STaRT-RWE)是由哈佛医学院布莱根妇女医院Shirley V Wang教授带领的团队制订的用于规划和报告关于治疗安全性和有效性的真实世界...真实世界证据的结构化模板和报告工具(structured template and reporting tool for real world evidence,STaRT-RWE)是由哈佛医学院布莱根妇女医院Shirley V Wang教授带领的团队制订的用于规划和报告关于治疗安全性和有效性的真实世界证据研究的实施情况,并于2021年1月发表在BMJ杂志,该模板已得到国际药物流行病学学会以及国际药物经济学和结局研究学会的透明度倡议的认可。本文对其条目进行解读,以促进国内从事真实世界研究的学者对STaRT-RWE的理解和应用,有助于提高RWE研究的透明度、可重复性和准确性。展开更多
Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone fe...Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.展开更多
【目的】抽水蓄能机组具有灰启动潜力,将其与综合能源系统(integrated energy system,IES)的多能互补优势相结合,可适用于系统在极端事件下恢复运行。为研究灾后IES的恢复机制,提出一种抽水蓄能灰启动下冷热电互补综合能源系统(cold-hea...【目的】抽水蓄能机组具有灰启动潜力,将其与综合能源系统(integrated energy system,IES)的多能互补优势相结合,可适用于系统在极端事件下恢复运行。为研究灾后IES的恢复机制,提出一种抽水蓄能灰启动下冷热电互补综合能源系统(cold-heat-electricity IES,CHEIES)优化调度模型。【方法】首先,通过随机场景优化处理风光冷热功率不确定性问题,采用拉丁超立方抽样生成大量随机风光冷热场景,并使用概率距离快速削减法对场景数量进行削减。然后,针对灰启动下的CHEIES,以抽水蓄能作为灰启动电源为热电联产机组提供启动电源,并以灰启动效益为核心考量因素,综合构建单目标优化调度模型,引入冷热电功率平衡约束,确保IES在各种负荷情况下的稳定运行。最后,对模型进行仿真求解,并分析了各种运行方案下的优化调度策略和经济效益。【结果】配置抽水蓄能灰启动的CHEIES在应对极端自然灾害情境下展现出较高的灵活性和运行效率,与未配置抽水蓄能灰启动的方案相比,系统运行成本降低了12.14%。【结论】所提方法可充分挖掘紧急状态下CHEIES的可靠性、经济性与灵活性,为极端事件灾后IES的快速恢复提供了策略支持。展开更多
基金funded by Zhejiang Province Spearhead and Leading Goose Research and Development Key Program,grant number 2023C01239.
文摘In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicles(UAVs)has garnered significant attention.The PEMFC,serving as the primary energy supply,markedly extends the UAV’s operational endurance.However,due to payload limitations and spatial constraints in the airframe layout of UAVs,the stack requires customized adaptation.Moreover,the implementation of auxiliary systems to facilitate cold starts of the PEMFC under low-temperature conditions is not feasible.Relying solely on thermal insulation measures also proves inadequate to address the challenges posed by complex low-temperature startup scenarios.To overcomethis,our study leverages the UAV’s lithium battery to heat the cathode inlet airflow,aiding the cathode-open PEMFC cold start process.To validate the feasibility of the proposed air-assisted heating strategy during the conceptual design phase,this study develops a transient,non-isothermal 3Dcathode-open PEMF Cunitmodel incorporating cathode air-assisted heating and gas-ice phase change.The model’s accuracy was verified against experimental cold-start data from a stack composed of identical single cells.This computational framework enables quantitative analysis of temperature fields and ice fraction distributions across domains under varying air-assisted heating powers during cold starts.Building upon this model,the study further investigates the improvement in cold start performance by heating the cathode intake air with varying power levels.The results demonstrate that the fuel cell achieves self-startup at temperatures as low as−13℃ under a constant current density of 100mA/cm^(2) without air-assisted heating.At an ambient temperature of−20℃,a successful start-up can be achieved with a heating power of 0.45 W/cm^(2).The temperature variation overtime during the cold start process can be represented by a sum of two exponential functions.The air-assisted heating scheme proposed in this study has significantly improved the cold start performance of fuel cells in low-temperature environments.Additionally,it provides critical reference data and validation support for component selection and feasibility assessment of hybrid power systems.
基金financially supported by Science and Technology Project of Quzhou(Grant Nos.2023K256,2023NC08)Research Grants Program of Department of Education of Zhejiang Province(No.Y202455709)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LZY21E050001)University-Enterprise Cooperation Program for Visiting Engineers in Higher Education Institutions in Zhejiang Province(No.FG2020215).
文摘This paper investigates the start-up and shutdown phases of a five-bladed closed-impeller centrifugal pump through experimental analysis,capturing the temporal evolution of its hydraulic performances.The study also predicts the transient characteristics of the pump under non-rated operating conditions to assess the accuracy of various machine learning methods in forecasting its instantaneous performance.Results indicate that the pump’s transient behavior in power-frequency mode markedly differs from that in frequency-conversion mode.Specifically,the power-frequency mode achieves steady-state values faster and exhibits smaller fluctuations before stabilization compared to the other mode.During the start-up phase,as the steady-state flow rate increases,inlet and outlet pressures and head also rise,while torque and shaft power decrease,with rotational speed remaining largely unchanged.Conversely,during the shutdown phase,no significant changes were observed in torque,shaft power,or rotational speed.Six machine learning models,including Gaussian Process Regression(GPR),Decision Tree Regression(DTR),and Deep Learning Networks(DLN),demonstrated high accuracy in predicting the hydraulic performance of the centrifugal pump during the start-up and shutdown phases in both power-frequency and frequency-conversion conditions.The findings provide a theoretical foundation for improved prediction of pump hydraulic performance.For instance,when predicting head and flow rate during power-frequency start-up,GPR achieved absolute and relative errors of 0.54 m(7.84%)and 0.21 m3/h(13.57%),respectively,while the Feedforward Neural Network(FNN)reported errors of 0.98 m(8.24%)and 0.10 m3/h(16.71%).By contrast,the Support Vector Machine Regression(SVMR)and Generalized Additive Model(GAM)generally yielded less satisfactory prediction accuracy compared to the other methods.
基金Project(2018XK2301) supported by the Change-Zhu-Tan National Independent Innavation Demonstration Zone Special Program,China。
文摘The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.
基金supported by National Natural Science Foundation of China (Nos. 51776096 and 51476076)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The unstarted flow field in a hypersonic inlet model at a design point of Ma 6 is studied experimentally.The time-resolved spatial flow characteristics of the separation shock oscillation,which is induced by the unstarted flow,are analyzed based on a high-speed Schlieren system and an image processing method.The motion of the separation shock detected by the shock-detection algorithm is compared to the results of fast-response wall-pressure measurements,and good agreement is demonstrated by comparing the frequency components in the power spectral density contours between shock oscillation and pressure fluctuation.The hysteresis of the pressure and separation shock during oscillation cycles is observed from the time history of the shock motion,which means that the unsteady flow pattern of the unstarted hypersonic flow can be accurately clarified by time-resolved Schlieren image processing.These results convincingly demonstrate that the shock-detection technique is successfully applied to an unstarted hypersonic flow case.
基金supported by the Foundation of Shanghai Aerospace Science and Technology(SAST2016077)。
文摘In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.
基金the continued support of Key Laboratory of Inlet and Exhaust system Technology (Nanjing University of Aeronautics and Astronautics), ChinaMinistry of Education, National Science and Technology Major Project of China (Nos. 2017-V-0004-0054, 2019-II-0007-0027, Y2022II-0005-0008)+6 种基金Defense Industrial Technology Development Program of China (No. JCKY2019605D001)Advanced Jet Propulsion Creativity Center of AEAC of China (No. HKCX2020-02-011)China Postdoctoral Science Foundation (No. 2022M721598)Jiangsu Funding Program for Excellent Postdoctoral Talent of China (No. 2022ZB214)the Youth Fund Project of Natural Science Foundation of Jiangsu Province of China (No. BK20230891)the National Natural Science Foundation of China (No. 12332018)Science Center for Gas Turbine Project, China (P2022-B-I-006-001) and some other related foundations
文摘The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.
文摘真实世界证据的结构化模板和报告工具(structured template and reporting tool for real world evidence,STaRT-RWE)是由哈佛医学院布莱根妇女医院Shirley V Wang教授带领的团队制订的用于规划和报告关于治疗安全性和有效性的真实世界证据研究的实施情况,并于2021年1月发表在BMJ杂志,该模板已得到国际药物流行病学学会以及国际药物经济学和结局研究学会的透明度倡议的认可。本文对其条目进行解读,以促进国内从事真实世界研究的学者对STaRT-RWE的理解和应用,有助于提高RWE研究的透明度、可重复性和准确性。
文摘Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.
文摘【目的】抽水蓄能机组具有灰启动潜力,将其与综合能源系统(integrated energy system,IES)的多能互补优势相结合,可适用于系统在极端事件下恢复运行。为研究灾后IES的恢复机制,提出一种抽水蓄能灰启动下冷热电互补综合能源系统(cold-heat-electricity IES,CHEIES)优化调度模型。【方法】首先,通过随机场景优化处理风光冷热功率不确定性问题,采用拉丁超立方抽样生成大量随机风光冷热场景,并使用概率距离快速削减法对场景数量进行削减。然后,针对灰启动下的CHEIES,以抽水蓄能作为灰启动电源为热电联产机组提供启动电源,并以灰启动效益为核心考量因素,综合构建单目标优化调度模型,引入冷热电功率平衡约束,确保IES在各种负荷情况下的稳定运行。最后,对模型进行仿真求解,并分析了各种运行方案下的优化调度策略和经济效益。【结果】配置抽水蓄能灰启动的CHEIES在应对极端自然灾害情境下展现出较高的灵活性和运行效率,与未配置抽水蓄能灰启动的方案相比,系统运行成本降低了12.14%。【结论】所提方法可充分挖掘紧急状态下CHEIES的可靠性、经济性与灵活性,为极端事件灾后IES的快速恢复提供了策略支持。