Optical temperature sensing based on the fluorescence intensity ratio(FIR)of red emission for lanthanide ions holds significant relevance in non-contact temperature measurement for biological application.In this study...Optical temperature sensing based on the fluorescence intensity ratio(FIR)of red emission for lanthanide ions holds significant relevance in non-contact temperature measurement for biological application.In this study,the perovskite-structured KZnF_(3)is utilized as a host material for Er^(3+)to achieve a high-purity upconversion(UC)red emission.The observed Stark splitting of the red emission peak provides evidence of the energy level splitting of Er^(3+).Group theory is employed to decompose the spectral branching of Er^(3+)under the point group symmetry of KZnF_(3),allowing for the derivation of Stark splitting energy levels induced by the crystal field effect.The optical temperature-sensing behavior of the red UC luminescence was investigated,specifically examining the FIR of the splitting sub-peaks,which exhibited an exponential relationship with temperature.The KZnF_(3):Yb^(3+),Er^(3+)demonstrated a relative sensitivity(S_(r))of 0.00182%·K^(-1)at 298 K,highlighting its excellent response to temperature.Ex vivo bio-thermometry experiments conducted on chicken breast validated the material's ability to penetrate biological tissues and showed its significant sensitivity of the FIR to temperature.These results establish KZnF_(3):Yb^(3+),Er^(3+)as a promising material for optical thermometry in various biological applications.展开更多
We established the passive-visible spectroscopy diagnostics(P-VSD)and active-VSD(A-VSD)spectral splitting models for the HL-2A tokamak.Spectral splitting due to the influence of electromagnetic fields on the spectra i...We established the passive-visible spectroscopy diagnostics(P-VSD)and active-VSD(A-VSD)spectral splitting models for the HL-2A tokamak.Spectral splitting due to the influence of electromagnetic fields on the spectra in VSD is studied.Zeeman splitting induced by the magnetic field(B)is used to distinguish reflected light overlap in the divertor for P-VSD.Stark splitting caused by the Lorentz electric field(E_(Lorentz))from the neutral beam injection particle’s interaction with the magnetic field(V_(beam)×B)is used to measure the safety factor q profile for A-VSD.We give a comparison and error analysis by fitting the experimental spectra with the simulation results.The distinguishing of edge(scrape-off layer and divertor)hydrogen/deuterium spectral lines and the q profile derived from the spectra provides a reference for HL-2M VSD.展开更多
Highly pure red phosphors LiM(PO_(3))_(3):Eu^(3+)(M=Sr,Ca) doped with Eu^(3+)(1 mol%) were synthesized via solution combustion method and their crystal structure and luminescence dynamics were studied to explore its s...Highly pure red phosphors LiM(PO_(3))_(3):Eu^(3+)(M=Sr,Ca) doped with Eu^(3+)(1 mol%) were synthesized via solution combustion method and their crystal structure and luminescence dynamics were studied to explore its suitability in white light emitting diodes.The Rietveld refinement analysis of the powder Xray diffraction patterns reveals that the phosphors belong to the pure triclinic phase of LiSr(PO_(3))_(3) and LiCa(PO_(3)) with space group P-1(2).The scanning electron microscopy images showed the agglomerated morphology.The photoluminescence emission spectra under 393 nm show an orange band at 594 nm and a red band at 613 nm ascribed to ^(5)D_(0)→^(7)F_(1).^(5)D_(0)→^(7)F_(2) transitions of Eu^(3+)ion in both the phosphors.Moreover,the spectroscopic properties such as luminescence behaviour,and Stark splitting were used to examine the symmetry of Eu^(3+)ions in LiM(PO_(3))_(3):Es^(3+)(M=Sr,Ca) phosphors in terms of distortion induced upon doping.The Stark splitting shows that the actual site symmetry for Eu^(3+)ion was estimated to be D_(2) type for both phosphors.The photometric properties of LiCa(PO_(3))_(3):Eu^(3+)such as Commission International de l'Eclairage coordinates(x=0.64,y=0.36) near to the standard one(red),high color purity(95%) and higher brightness reveal that the phosphor has the capability of acting as a red component in n-UV white light emitting diodes.展开更多
The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet...The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet dynamics method.There is a quantitative agreement in all dominant features between the experiment and the theory.Moreover,a peak-splitting phenomenon in the first energy peak has been observed at high pulse intensity.Further,through the theoretical analysis,an ac Stark splitting with evident resonant and nonresonant ionization pathways has been found to be the physical reason for the experimental observations.展开更多
Nonlinear optical properties of intersubband electrons in a 3-level quantum well under intense terahertz field are investigated by using a density matrix approach. The results show that the terahertz fields with diffe...Nonlinear optical properties of intersubband electrons in a 3-level quantum well under intense terahertz field are investigated by using a density matrix approach. The results show that the terahertz fields with different frequencies cause the distinct modulations of the intersubband absorptions. The terahertz-indueed sideband and Autler-Towns splitting in the absorption spectrum are obtained, respectively for the terahertz-photon energy below and close to the transition energy between the ground and first excited state.展开更多
基金financially supported by Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)"Qinglan Project"Young and Middle-aged Academic Leaders Program of Jiangsu Province。
文摘Optical temperature sensing based on the fluorescence intensity ratio(FIR)of red emission for lanthanide ions holds significant relevance in non-contact temperature measurement for biological application.In this study,the perovskite-structured KZnF_(3)is utilized as a host material for Er^(3+)to achieve a high-purity upconversion(UC)red emission.The observed Stark splitting of the red emission peak provides evidence of the energy level splitting of Er^(3+).Group theory is employed to decompose the spectral branching of Er^(3+)under the point group symmetry of KZnF_(3),allowing for the derivation of Stark splitting energy levels induced by the crystal field effect.The optical temperature-sensing behavior of the red UC luminescence was investigated,specifically examining the FIR of the splitting sub-peaks,which exhibited an exponential relationship with temperature.The KZnF_(3):Yb^(3+),Er^(3+)demonstrated a relative sensitivity(S_(r))of 0.00182%·K^(-1)at 298 K,highlighting its excellent response to temperature.Ex vivo bio-thermometry experiments conducted on chicken breast validated the material's ability to penetrate biological tissues and showed its significant sensitivity of the FIR to temperature.These results establish KZnF_(3):Yb^(3+),Er^(3+)as a promising material for optical thermometry in various biological applications.
基金the National Key Research and Development Program of China(No.2019YFE03020004)National Natural Science Foundation of China(No.12175228).
文摘We established the passive-visible spectroscopy diagnostics(P-VSD)and active-VSD(A-VSD)spectral splitting models for the HL-2A tokamak.Spectral splitting due to the influence of electromagnetic fields on the spectra in VSD is studied.Zeeman splitting induced by the magnetic field(B)is used to distinguish reflected light overlap in the divertor for P-VSD.Stark splitting caused by the Lorentz electric field(E_(Lorentz))from the neutral beam injection particle’s interaction with the magnetic field(V_(beam)×B)is used to measure the safety factor q profile for A-VSD.We give a comparison and error analysis by fitting the experimental spectra with the simulation results.The distinguishing of edge(scrape-off layer and divertor)hydrogen/deuterium spectral lines and the q profile derived from the spectra provides a reference for HL-2M VSD.
基金Defence Research and Development Organization (DRDO),Govt.of India for financial support under DIA -KCOE (Kalam Centre of Excellence) reference no.KCST-SS02/2020。
文摘Highly pure red phosphors LiM(PO_(3))_(3):Eu^(3+)(M=Sr,Ca) doped with Eu^(3+)(1 mol%) were synthesized via solution combustion method and their crystal structure and luminescence dynamics were studied to explore its suitability in white light emitting diodes.The Rietveld refinement analysis of the powder Xray diffraction patterns reveals that the phosphors belong to the pure triclinic phase of LiSr(PO_(3))_(3) and LiCa(PO_(3)) with space group P-1(2).The scanning electron microscopy images showed the agglomerated morphology.The photoluminescence emission spectra under 393 nm show an orange band at 594 nm and a red band at 613 nm ascribed to ^(5)D_(0)→^(7)F_(1).^(5)D_(0)→^(7)F_(2) transitions of Eu^(3+)ion in both the phosphors.Moreover,the spectroscopic properties such as luminescence behaviour,and Stark splitting were used to examine the symmetry of Eu^(3+)ions in LiM(PO_(3))_(3):Es^(3+)(M=Sr,Ca) phosphors in terms of distortion induced upon doping.The Stark splitting shows that the actual site symmetry for Eu^(3+)ion was estimated to be D_(2) type for both phosphors.The photometric properties of LiCa(PO_(3))_(3):Eu^(3+)such as Commission International de l'Eclairage coordinates(x=0.64,y=0.36) near to the standard one(red),high color purity(95%) and higher brightness reveal that the phosphor has the capability of acting as a red component in n-UV white light emitting diodes.
基金Project supported by the National Natural Science Foundations of China (Grant Nos. 10874096 and 20633070)
文摘The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet dynamics method.There is a quantitative agreement in all dominant features between the experiment and the theory.Moreover,a peak-splitting phenomenon in the first energy peak has been observed at high pulse intensity.Further,through the theoretical analysis,an ac Stark splitting with evident resonant and nonresonant ionization pathways has been found to be the physical reason for the experimental observations.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant Nos 60425415 and 605280058), the Major Program of the National Natural Science Foundation of China (Grant No 10390162), and the Shanghai Municipal Commission of Science and Technology of China (Grant Nos 03JC14082 and 05XD14020).
文摘Nonlinear optical properties of intersubband electrons in a 3-level quantum well under intense terahertz field are investigated by using a density matrix approach. The results show that the terahertz fields with different frequencies cause the distinct modulations of the intersubband absorptions. The terahertz-indueed sideband and Autler-Towns splitting in the absorption spectrum are obtained, respectively for the terahertz-photon energy below and close to the transition energy between the ground and first excited state.