Merged satellite altimeter products are widely used in ocean-related fields.Currently,the altimeter merged products of archiving validation and interpretation of satellite oceanographic(AVISO)data are widely used inte...Merged satellite altimeter products are widely used in ocean-related fields.Currently,the altimeter merged products of archiving validation and interpretation of satellite oceanographic(AVISO)data are widely used internationally.Chinese National Satellite Ocean Application Service also released merged altimeter products(ALT MUL)in 2023.However,there are few studies on the quality assessment of ALT MUL.Based on the data of AVISO merged products,Jason3 satellite,tide gauge and drifter buoy,the quality assessment and effect analysis of ALT MUL merged products were carried out by means of error evaluation index,interpolation along rails,velocity inversion and power spectrum.The result shows that the average sea level anomaly(SLA)of ALT MUL is about 2 cm smaller than that of AVISO.And they are consistent with the large-scale characteristics and spatial distribution.These two SLA products are both in accordance with normal distribution.Results indicate a lesser congruence between ALT MUL and Jason3 satellite compared to AVISO.This difference may be attributed to the fact that AVISO products use Jason3 satellite as crosscalibrated reference satellite during the merged process.Comparing the matching effect of the two merged products with the tide gauge and drifter buoy,ALT MUL merged products are superior to AVISO in general.The energy spectral density was calculated by using Jason3 satellite data along the orbit,and the two merged products were interpolated to the data points along the orbit.The effective resolution of AVISO and ALT MUL merged products was 180 km and 210 km respectively through spectral calculation,indicating that AVISO merged products have higher effective resolution.展开更多
目的:对比三维多回波恢复梯度回波(3D MERGE)、三维可变反转角快速自旋回波(3D SPACE STIR)序列在腰椎间盘突出症(LDH)检查中的应用效果。方法:选择2020年1月~2022年11月收治的135例LDH患者,回顾性分析患者临床和磁共振成像(MRI)资料,...目的:对比三维多回波恢复梯度回波(3D MERGE)、三维可变反转角快速自旋回波(3D SPACE STIR)序列在腰椎间盘突出症(LDH)检查中的应用效果。方法:选择2020年1月~2022年11月收治的135例LDH患者,回顾性分析患者临床和磁共振成像(MRI)资料,所有患者均接受常规MRI扫描及3D MERGE、3D SPACE STIR序列扫描,对比3D MERGE、3D SPACE STIR序列测量神经根直径的一致性,评价两种序列的图像质量参数[信噪比(SNR)、对比噪声比(CNR)]、图像清晰度评分。结果:3D MERGE和3D SPACE STIR序列测量的L3~S1神经根直径比较差异无统计学意义(P>0.05),且两组序列测量的L3、L4、L5和S1直径均显示出较高相关性(r=0.957,0.986,0.975,0.972,P<0.05);3D MERGE序列的SNR及CNR均高于3D SPACE STIR序列,神经根显示分级、图像清晰度评分优于3D SPACE STIR序列,差异有统计学意义(P<0.05)。结论:3D MERGE、3D SPACE STIR序列在LDH神经根直径测量中具有极高一致性,3D MERGE序列较3D SPACE STIR序列能够更清晰显示神经跟的解剖形态,图像质量更好。展开更多
在循证医学时代下,依托规范的技术方法和标准化的操作规程发掘中医药独特优势,是实现中医药现代化、国际化发展并惠泽人类的必由之路。中医理论、人用经验和研究证据三结合证据体系的提出标志着中医药特色评价体系思维方法取得了重要进...在循证医学时代下,依托规范的技术方法和标准化的操作规程发掘中医药独特优势,是实现中医药现代化、国际化发展并惠泽人类的必由之路。中医理论、人用经验和研究证据三结合证据体系的提出标志着中医药特色评价体系思维方法取得了重要进步,经过恰当方法整合后的多元证据体是中医药临床指南推荐意见和循证卫生决策的有力支撑。本文基于当前国际证据合成与分级方法学前沿进展,初步提出中医药多元证据整合的方法学框架——MERGE(Merge Evidence-based Research and artificial intelliGence to support smart dEcision)框架,以期为中医药循证医学方法学体系的完善和发展提供借鉴和参考。展开更多
Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with ...Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with a spatial resolution of approximately 0.2°×0.2°during 1980–2019.The newly developed precipitation product was validated at different temporal scales(e.g.,monthly,seasonally,and annually).The results show that the new product consistently aligns with the spatiotemporal distributions reported by the Chinese Meteorological Administration Land Data Assimilation System(CLDAS)product and Multi-Source Weighted Ensemble Precipitation(MSWEP).The merged product exhibits exceptional quality in describing the drylands of China,with a bias of–2.19 mm month^(–1)relative to MSWEP.In addition,the annual trend of the merged product(0.09 mm month^(–1)yr^(−1))also closely aligns with that of the MSWEP(0.11 mm month^(–1)yr^(−1))during 1980–2019.The increasing trend indicates that the water cycle and wetting process intensified in the drylands of China during this period.In particular,there was an increase in wetting during the period from 2001–2019.Generally,the merged product exhibits potential value for improving our understanding of the climate and water cycle in the drylands of China.展开更多
The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cub...The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.展开更多
This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abun...This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abundant heterogeneous interfaces and hierarchical nanostructures demonstrated outstanding oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performance,achieving low overpotentials of 212 and 35 mV at 10 mA cm^(-2)in 1 M KOH,respectively.As both anode and cathode in water splitting,they required only 1.47 V to reach 10 mA cm^(-2)and exhibited high structural robustness,maintaining stability at 1000 mA cm^(-2)for 300 h.In-situ Raman analysis revealed that the synergistic effects of metal nanoparticles and S doping significantly promote the transformation into the S-Co1-xFexOOH layer,which serves as the active phase for water oxidation.Additionally,ultraviolet photoelectron spectroscopy(UPS)and density functional theory(DFT)analyses indicated that incorporating metal nanoparticles and S doping increase electron density near the Fermi level and reduce reaction energy barriers,thus enhancing intrinsic OER and HER activities.This study provides a scalable strategy for synthesizing high-performance electrocatalysts for water splitting,with promising potential for broader applications.展开更多
1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-...1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.展开更多
The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e...The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.展开更多
Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the ...Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.展开更多
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-...The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.展开更多
The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplore...The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.展开更多
CuBi_(2)O_(4)is identified as a promising photocathode in photoelectrochemical(PEC)water splitting systems.However,the PEC performance of CuBi_(2)O_(4)is far from expected due to the limited separation and transport e...CuBi_(2)O_(4)is identified as a promising photocathode in photoelectrochemical(PEC)water splitting systems.However,the PEC performance of CuBi_(2)O_(4)is far from expected due to the limited separation and transport efficiency of photogenerated carriers.To address the above issues,a cost-effective ternary Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode was designed.Firstly,a thin Cu:NiO_(X)film was inserted between CuBi_(2)O_(4)and FTO conducting substrate as a hole-selective layer,which promotes the transmission of photogenerated holes to the FTO substrate effectively.Furthermore,the modification of CuO film on the CuBi_(2)O_(4)electrode not only increases the absorption of sunlight and generates more photogenerated carriers,but also constitutes a heterojunction with CuBi_(2)O_(4),creating a built-in electric field,which facilitates the separation of electrons and holes,and accelerates the electrons transfer to electrode–electrolyte interface.The fabricated Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode exhibits a surprisingly high photocurrent density of−1.51 mA·cm^(−2)at 0.4 V versus RHE,which is 2.6 times that of the pristine CuBi_(2)O_(4)photocathode.The improved PEC performance is attributed to the synergy effect of the Cu:NiO_(X)hole-selective layer and the CuBi_(2)O_(4)/CuO heterojunction.Moreover,the combination with the BiVO_(4)/CoS,an unbiased overall water splitting was achieved,which has a photocurrent of 0.193 mA·cm^(−2).展开更多
基金The National Key R&D Program of China under contract No.2021YFC3101503the National Natural Science Foundation of China under contract Nos 42276205 and 42406195+1 种基金the Hunan Provincial Natural Science Foundation of China under contract No.2023JJ10053the Youth Independent Innovation Science Foundation under contract No.ZK24-54.
文摘Merged satellite altimeter products are widely used in ocean-related fields.Currently,the altimeter merged products of archiving validation and interpretation of satellite oceanographic(AVISO)data are widely used internationally.Chinese National Satellite Ocean Application Service also released merged altimeter products(ALT MUL)in 2023.However,there are few studies on the quality assessment of ALT MUL.Based on the data of AVISO merged products,Jason3 satellite,tide gauge and drifter buoy,the quality assessment and effect analysis of ALT MUL merged products were carried out by means of error evaluation index,interpolation along rails,velocity inversion and power spectrum.The result shows that the average sea level anomaly(SLA)of ALT MUL is about 2 cm smaller than that of AVISO.And they are consistent with the large-scale characteristics and spatial distribution.These two SLA products are both in accordance with normal distribution.Results indicate a lesser congruence between ALT MUL and Jason3 satellite compared to AVISO.This difference may be attributed to the fact that AVISO products use Jason3 satellite as crosscalibrated reference satellite during the merged process.Comparing the matching effect of the two merged products with the tide gauge and drifter buoy,ALT MUL merged products are superior to AVISO in general.The energy spectral density was calculated by using Jason3 satellite data along the orbit,and the two merged products were interpolated to the data points along the orbit.The effective resolution of AVISO and ALT MUL merged products was 180 km and 210 km respectively through spectral calculation,indicating that AVISO merged products have higher effective resolution.
文摘目的:对比三维多回波恢复梯度回波(3D MERGE)、三维可变反转角快速自旋回波(3D SPACE STIR)序列在腰椎间盘突出症(LDH)检查中的应用效果。方法:选择2020年1月~2022年11月收治的135例LDH患者,回顾性分析患者临床和磁共振成像(MRI)资料,所有患者均接受常规MRI扫描及3D MERGE、3D SPACE STIR序列扫描,对比3D MERGE、3D SPACE STIR序列测量神经根直径的一致性,评价两种序列的图像质量参数[信噪比(SNR)、对比噪声比(CNR)]、图像清晰度评分。结果:3D MERGE和3D SPACE STIR序列测量的L3~S1神经根直径比较差异无统计学意义(P>0.05),且两组序列测量的L3、L4、L5和S1直径均显示出较高相关性(r=0.957,0.986,0.975,0.972,P<0.05);3D MERGE序列的SNR及CNR均高于3D SPACE STIR序列,神经根显示分级、图像清晰度评分优于3D SPACE STIR序列,差异有统计学意义(P<0.05)。结论:3D MERGE、3D SPACE STIR序列在LDH神经根直径测量中具有极高一致性,3D MERGE序列较3D SPACE STIR序列能够更清晰显示神经跟的解剖形态,图像质量更好。
文摘在循证医学时代下,依托规范的技术方法和标准化的操作规程发掘中医药独特优势,是实现中医药现代化、国际化发展并惠泽人类的必由之路。中医理论、人用经验和研究证据三结合证据体系的提出标志着中医药特色评价体系思维方法取得了重要进步,经过恰当方法整合后的多元证据体是中医药临床指南推荐意见和循证卫生决策的有力支撑。本文基于当前国际证据合成与分级方法学前沿进展,初步提出中医药多元证据整合的方法学框架——MERGE(Merge Evidence-based Research and artificial intelliGence to support smart dEcision)框架,以期为中医药循证医学方法学体系的完善和发展提供借鉴和参考。
基金supported by the National Natural Science Foundation of China the National Natural Science Foundation of China(Grant No.41991231)the Fundamental Research Funds for the Central Universities(lzujbky-2022-kb11).
文摘Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with a spatial resolution of approximately 0.2°×0.2°during 1980–2019.The newly developed precipitation product was validated at different temporal scales(e.g.,monthly,seasonally,and annually).The results show that the new product consistently aligns with the spatiotemporal distributions reported by the Chinese Meteorological Administration Land Data Assimilation System(CLDAS)product and Multi-Source Weighted Ensemble Precipitation(MSWEP).The merged product exhibits exceptional quality in describing the drylands of China,with a bias of–2.19 mm month^(–1)relative to MSWEP.In addition,the annual trend of the merged product(0.09 mm month^(–1)yr^(−1))also closely aligns with that of the MSWEP(0.11 mm month^(–1)yr^(−1))during 1980–2019.The increasing trend indicates that the water cycle and wetting process intensified in the drylands of China during this period.In particular,there was an increase in wetting during the period from 2001–2019.Generally,the merged product exhibits potential value for improving our understanding of the climate and water cycle in the drylands of China.
基金supported by the National Natural Science Foundation of China(No. 61032001)Shandong Provincial Natural Science Foundation of China (No. ZR2012FQ004)
文摘The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.
基金National Programs for NanoKey Project(2022YFA1504002)National Natural Science Foundation of China(22078233)。
文摘This study presents a novel method to fabricate metal-decorated,sulfur-doped layered double hydroxides(M/SLDH)through spontaneous redox and sulfurization processes.The developed Ag/SLDH and Pt/SLDH catalysts with abundant heterogeneous interfaces and hierarchical nanostructures demonstrated outstanding oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)performance,achieving low overpotentials of 212 and 35 mV at 10 mA cm^(-2)in 1 M KOH,respectively.As both anode and cathode in water splitting,they required only 1.47 V to reach 10 mA cm^(-2)and exhibited high structural robustness,maintaining stability at 1000 mA cm^(-2)for 300 h.In-situ Raman analysis revealed that the synergistic effects of metal nanoparticles and S doping significantly promote the transformation into the S-Co1-xFexOOH layer,which serves as the active phase for water oxidation.Additionally,ultraviolet photoelectron spectroscopy(UPS)and density functional theory(DFT)analyses indicated that incorporating metal nanoparticles and S doping increase electron density near the Fermi level and reduce reaction energy barriers,thus enhancing intrinsic OER and HER activities.This study provides a scalable strategy for synthesizing high-performance electrocatalysts for water splitting,with promising potential for broader applications.
基金supported by the National Natural Science Foundation of China(No.52061135101 and 52001078)the German Research Foundation(DFG,No.448318292)+3 种基金the Technology Innovation Guidance Special Foundation of Shaanxi Province(No.2023GXLH-085)the Fundamental Research Funds for the Central Universities(No.D5000240161)the Project of Key areas of innovation team in Shaanxi Province(No.2024RS-CXTD-20)The author Yingchun Xie thanks the support from the National Key R&D Program(No.2023YFE0108000).
文摘1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.
基金supported by the Natural Science Fund of China(31771724)the Key Research and Development Project of Shaanxi Province(2024NC-ZDCYL-01-10).
文摘The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.
基金support by National Key Research and Development Program of China(2022YFB3803502)National Natural Science Foundation of China(52103076)+5 种基金Science and Technology Commission of Shanghai Municipality(23ZR1400300)special fund of Beijing Key Laboratory of Indoor Air Quality Evaluat ion and Control(NO.BZ0344KF21-02)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22203)JLF is a member of LSRE-LCM–Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials,supported by national funds through FCT/MCTES(PIDDAC):LSRE-LCM,UIDB/50020/2020(DOI:10.54499/UIDB/50020/2020)UIDP/50020/2020(DOI:10.54499/UIDP/50020/2020)ALiCE,LA/P/0045/2020(DOI:10.54499/LA/P/0045/2020).
文摘Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.
基金sponsored by the National Natural Science Foundation of China(Nos.5210125 and 52375422)the Science Research Project of Hebei Education Department(No.BJK2023058)the Natural Science Foundation of Hebei Province(Nos.E2020208069,B2020208083 and E202320801).
文摘The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L574)the Guizhou Provincial Science and Technology Foundation([2024]ZK General 425 and 438)+1 种基金the National Natural Science Foundation of China(22309033)the Academic Young Talent Foundation of Guizhou Normal University([2022]B05 and B06)。
文摘The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.
基金supported by the National Natural Science Foundation of China(No.61804039)the University Natural Sciences Research Project of Anhui Province(No.2022AH010096)+1 种基金the Talent Research Fund of Hefei University(No.20RC35)the Natural Science Foundation of Anhui Higher Education Institution of China(No.2023AH040160).
文摘CuBi_(2)O_(4)is identified as a promising photocathode in photoelectrochemical(PEC)water splitting systems.However,the PEC performance of CuBi_(2)O_(4)is far from expected due to the limited separation and transport efficiency of photogenerated carriers.To address the above issues,a cost-effective ternary Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode was designed.Firstly,a thin Cu:NiO_(X)film was inserted between CuBi_(2)O_(4)and FTO conducting substrate as a hole-selective layer,which promotes the transmission of photogenerated holes to the FTO substrate effectively.Furthermore,the modification of CuO film on the CuBi_(2)O_(4)electrode not only increases the absorption of sunlight and generates more photogenerated carriers,but also constitutes a heterojunction with CuBi_(2)O_(4),creating a built-in electric field,which facilitates the separation of electrons and holes,and accelerates the electrons transfer to electrode–electrolyte interface.The fabricated Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode exhibits a surprisingly high photocurrent density of−1.51 mA·cm^(−2)at 0.4 V versus RHE,which is 2.6 times that of the pristine CuBi_(2)O_(4)photocathode.The improved PEC performance is attributed to the synergy effect of the Cu:NiO_(X)hole-selective layer and the CuBi_(2)O_(4)/CuO heterojunction.Moreover,the combination with the BiVO_(4)/CoS,an unbiased overall water splitting was achieved,which has a photocurrent of 0.193 mA·cm^(−2).