期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Application of machine learning in astronomical spectral data mining
1
作者 Ting Zhang Hailong Zhang +8 位作者 Yazhou Zhang Xu Du Wenna Cai Han Wu Yuyue Jiao Wanqiong Wang Jie Wang Xinchen Ye Jia Li 《Astronomical Techniques and Instruments》 2025年第2期73-87,共15页
Astronomical spectroscopy is crucial for exploring the physical properties,chemical composition,and kinematic behavior of celestial objects.With continuous advancements in observational technology,astronomical spectro... Astronomical spectroscopy is crucial for exploring the physical properties,chemical composition,and kinematic behavior of celestial objects.With continuous advancements in observational technology,astronomical spectroscopy faces the dual challenges of rapidly expanding data volumes and relatively lagging data processing capabilities.In this context,the rise of artificial intelligence technologies offers an innovative solution to address these challenges.This paper analyzes the latest developments in the application of machine learning for astronomical spectral data mining and discusses future research directions in AI-based spectral studies.However,the application of machine learning technologies presents several challenges.The high complexity of models often comes with insufficient interpretability,complicating scientific understanding.Moreover,the large-scale computational demands place higher requirements on hardware resources,leading to a significant increase in computational costs.AI-based astronomical spectroscopy research should advance in the following key directions.First,develop efficient data augmentation techniques to enhance model generalization capabilities.Second,explore more interpretable model designs to ensure the reliability and transparency of scientific conclusions.Third,optimize computational efficiency and reduce the threshold for deep-learning applications through collaborative innovations in algorithms and hardware.Furthermore,promoting the integration of cross-band data processing is essential to achieve seamless integration and comprehensive analysis of multi-source data,providing richer,multidimensional information to uncover the mysteries of the universe. 展开更多
关键词 Machine learning Neural networks Stellar atmospheric parameter prediction Stellar spectral classification
在线阅读 下载PDF
Hyper-spectral characteristics and classification of farmland soil in northeast of China 被引量:2
2
作者 LU Yan-li BAI You-lu +4 位作者 YANG Li-ping WANG Lei WANG Yi-lun NI Lu ZHOU Li-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2521-2528,共8页
The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classif... The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classification. This experiment was conducted under a controllable environment, and different soil samples from northeast of China were measured using ASD2500 hyperspectral instrument. The results showed that there are different reflectances in different soil types. There are statistically significant correlation between SOM and reflectence at 0.05 and 0.01 levels in 550–850 nm, and all soil types get significant at 0.01 level in 650–750 nm. The results indicated that soil types of the northeast can be divided into three categories: The first category shows relatively flat and low reflectance in the entire band; the second shows that the spectral reflectance curve raises fastest in 460–610 nm band, the sharp increase in the slope, but uneven slope changes; the third category slowly uplifts in the visible band, and its slope in the visible band is obviously higher than the first category. Except for the classification by curve shapes of reflectance, principal component analysis is one more effective method to classify soil types. The first principal component includes 62.13–97.19% of spectral information and it mainly relates to the information in 560–600, 630–690 and 690–760 nm. The second mainly represents spectral information in 1 640–1 740, 2 050–2 120 and 2 200–2 300 nm. The samples with high OM are often in the left, and the others with low OM are in the right of the scatter plot(the first principal component is the horizontal axis and the second is the longitudinal axis). Soil types in northeast of China can be classified effectively by those two principles; it is also a valuable reference to other soil in other areas. 展开更多
关键词 soil type spectral characteristics principle component classification
在线阅读 下载PDF
Two-level hierarchical feature learning for image classification 被引量:4
3
作者 Guang-hui SONG Xiao-gang JIN +1 位作者 Gen-lang CHEN Yan NIE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第9期897-906,共10页
In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific... In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network(CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count(CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods. 展开更多
关键词 Transfer learning Feature learning Deep convolutional neural network Hierarchical classification spectral clustering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部