Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para...Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.展开更多
As a frequently occurred marine pollution phenomenon,red tides of water body due to eutrophication cause massive mortality of marine organisms and serious ecological problems.The early warning and prediction of red ti...As a frequently occurred marine pollution phenomenon,red tides of water body due to eutrophication cause massive mortality of marine organisms and serious ecological problems.The early warning and prediction of red tide outbreak can provide guidance to the coastal management,and is of great value to the aquaculture industry and marine environment protection.An approach for the risk assessment of red tide occurrence using spectral indices was made.The optimal spectral indices were explored from three candidates,namely two-band ratio(TBR)method,three-band spectral index(TBSI)method,and fluorescence baseline(FLB)method.The correlations between the spectral indices and the red tide occurrence were quantitatively evaluated through analysis of variance(ANOVA).The risk maps for the Beibu Gulf and the Bohai Bay in China were produced with the normalized spectral indices based on the multi-spectral observation from Sentinel-3 satellite.Results show that both TBR and TBSI values have significant correlations with the occurrences of red tide as the ANOVA results.TBSI illustrated correctly the risk of red tide occurrence in the risk maps and was the optimal spectral index offshore risk assessment of red tide.FLB method failed to recognize the high-risk regions and may not be the appropriate spectral index.The risk assessment method proposed in this study can provide early alarms on red tide occurrence and help timely the countermeasure against potential harms.展开更多
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr...The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.展开更多
Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on ...Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.展开更多
To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed,...To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed, based on the principle of bidirectional reflectance distribution function(BRDF), to obtain spectral reflection intensities of coatings at full spatial angles, and use polarization images to calculate the refractive index by the Fresnel equation. The index is then coupled into TorranceSparrow model to simulate the spectral scattering intensity to mutually verify the experimental results. The spectral scattering characteristics of standard camouflage patterns are then revealed and pinpoint the signature band and the angle of reflecting sensitivity.展开更多
BACKGROUND The diagnostic accuracy for detecting metastatic lymph nodes in colorectal cancer(CRC)remains suboptimal.To address this limitation,our study investigates the potential of gemstone spectral computed tomogra...BACKGROUND The diagnostic accuracy for detecting metastatic lymph nodes in colorectal cancer(CRC)remains suboptimal.To address this limitation,our study investigates the potential of gemstone spectral computed tomography imaging(GSI)to improve diagnostic accuracy in lymph node metastasis(LNM)assessment.AIM To extensively investigate the clinical utility of GSI in the preoperative assessment of CRC.METHODS The subject population included 200 patients with CRC who were admitted to Zibo Central Hospital from January 2022 to December 2023.All patients underwent dual-phase contrast-enhanced scans in the arterial and venous phases using GSI before surgical intervention.During the research,meticulous quantification was conducted regarding the number of patients with CRC with LNM as well as the exact count of metastatic lymph nodes.Moreover,for both metastatic and non-metastatic lymph nodes,the short diameter at the maximum crosssectional area(covering the axial,sagittal,and coronal planes),morphological features(including manifestations such as margin blurring,aggregation,and enhancement),and spectral parameters in the arterial and venous phases[specifically iodine concentration(IC),normalized IC(NIC),and the slope of the spectral curve(λHU)]were measured and recorded,and a comparative analysis was conducted.The diagnostic efficacy of each index with differences was systematically assessed using the receiver operating characteristic(ROC)curve.Concurrently,receiver operating characteristic curves were constructed for LNM screening based on the short diameter at the maximum cross-sectional area of lymph nodes and each spectral parameter in the arterial and venous phases.RESULTS The area under the curve of GSI for diagnosing LNM in patients with CRC can reach 0.897,with sensitivity,specificity,and accuracy of 92.59%,85.87%,and 89.50%,respectively.A total of 265 lymph nodes were analyzed from the 200 participants with CRC,with metastatic lymph nodes accounting for 56.60%.Compared with nonmetastatic lymph nodes,the short diameters of metastatic lymph nodes in the axial,sagittal,and coronal planes were significantly increased,whereas the IC values in the arterial and venous phases,the NIC value in the arterial phase,and theλHU values in the arterial and venous phases were significantly decreased.The short axial,sagittal,and coronal diameters,arterial-phase IC,venous-phase IC,arterial-phase NIC,arterial-phaseλHU,and venousphaseλHU for diagnosing metastatic lymph nodes demonstrated area under the curve values of 0.631,0.681,0.659,0.862,0.808,0.831,0.801,and 0.706,respectively.CONCLUSION GSI exhibits substantial clinical significance in the preoperative assessment of CRC.Among the parameters assessed,the arterial-phase IC demonstrates the most outstanding diagnostic performance,effectively improving the diagnostic efficacy for preoperative LNM in CRC.展开更多
In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)deriva...In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.展开更多
This study presents a new boundary element method(BEM)framework for the numerical solution of general time-dependent or transient problems.By reformulating the time derivative as a domain integral,the framework effect...This study presents a new boundary element method(BEM)framework for the numerical solution of general time-dependent or transient problems.By reformulating the time derivative as a domain integral,the framework effectively decouples the treatment of spatial and temporal variables,allowing for the independent application of specialized discretization methods.For the temporal domain,we introduce an innovative time-spectral integration technique,which is based on Gaussian-quadrature-based orthogonal polynomial expansions.This method not only achieves arbitrary orders of accuracy but also significantly enhances computational efficiency and stability,particularly for simulations involving rapid transients or long-time dynamic simulations.The domain integrals in the spatial domain are calculated using the scaled coordinate transformation BEM(SCT-BEM),a mathematically rigorous technique that converts domain integrals into equivalent boundary integrals,preserving the boundary-only discretization advantage inherent in BEM.Numerical experiments on transient heat conduction and dynamic wave propagation further demonstrate the framework’s performance and capabilities.These experiments show that the proposed framework outperforms traditional time-stepping BEM methods,particularly in terms of stability,convergence rates,and computational cost,making it a highly promising tool for practical engineering applications.展开更多
Aerosol dynamics in semi-arid cities are key to understanding air quality and climate interactions.This study examines the spatiotemporal variability of Aerosol Optical Depth(AOD)over Jaipur,India,from 2018 to 2024 us...Aerosol dynamics in semi-arid cities are key to understanding air quality and climate interactions.This study examines the spatiotemporal variability of Aerosol Optical Depth(AOD)over Jaipur,India,from 2018 to 2024 using MODIS observations at 470,500,and 550 nm,combined with meteorological data and ground-based air quality records.The Mann–Kendall test identified a statistically significant decreasing trend at 500 nm(slope=–2.07,p<0.05),while 470 and 550 nm showed weak,nonsignificant declines.AOD peaked in April–June,declined during the monsoon,and rose again in October–November due to burning and festivals.Correlation analysis demonstrated strong positive associations with PM_(2.5),PM_(10),and temperature,with minimum temperature emerging as the most influential predictor,whereas relative humidity showed weak or negative relationships.Anomaly detection confirmed episodic high-AOD events during dust storms,winter inversions,and agricultural burning.Predictive modelling using Multiple Linear Regression(MLR)and Random Forest highlighted the complementary roles of linear drivers.Nonlinear dynamics,with Random Forest achieving high predictive accuracy(R^(2)=0.892 for training,0.588 for testing).These findings demonstrate that aerosol variability in Jaipur is governed by a dual influence of natural dust and anthropogenic emissions,with wavelength-specific responses.The results provide scientific evidence for integrating satellite monitoring,ground observations,and predictive models into urban air quality management and climate adaptation strategies in semi-arid regions.展开更多
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'...Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.展开更多
Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macro...Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.展开更多
Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-ban...Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.展开更多
Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations...Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.展开更多
The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.A...The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.展开更多
AIM:To present an overview of the research on global glaucoma treatment in the last decade in terms of publication year,journals,countries/regions,organizations,references,and keywords,to investigate the current resea...AIM:To present an overview of the research on global glaucoma treatment in the last decade in terms of publication year,journals,countries/regions,organizations,references,and keywords,to investigate the current research international trends and hot topics in this area.METHODS:Bibliometric analysis was conducted on 9128 articles in the Web of Science Core Collection(WoSCC;Clarivate)database.Quantitative and qualitative analysis was employed using VOSviewer(v1.6.18),Pajek(v1.0.0.0),and CiteSpace(v6.1.R2)software.RESULTS:The 9128 papers relating to glaucoma treatment were published from April 2013 to April 2023,of which 7482 articles(82%)were original research articles and 1464(18%)were review articles.The United States(2867)and Johns Hopkins University(166)were the most productive country and institution,respectively,but the University College London had the highest h-index(54).The Journal of Glaucoma was the most productive and Ophthalmology had the highest h-index compared with other journals.The Keywords of interest included treatment surgery,cyclophotocoagulation,minimally invasive glaucoma surgery(MIGS),trabeculectomy,baerveldt,epidemiology,medication adherence,nanoparticle,optical coherence tomography(OCT),gene therapy,and artificial intelligence(AI).Glaucoma surgery appeared as a current research hotspot through the analysis of keywords.CONCLUSION:This study provides insights into the research trends and potential research hotspots in the treatment of glaucoma.This will help researchers to evaluate research policies and to promote international cooperation.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
To ensure the safe transportation of radioactive materials,numerous countries have established specific standards.For the transfer of fissile materials,it is imperative that the material within the packaging remains i...To ensure the safe transportation of radioactive materials,numerous countries have established specific standards.For the transfer of fissile materials,it is imperative that the material within the packaging remains in a subcritical state during routine,normal,and accidental transport conditions.In the event of an accident,the rods within the storage tank may become rearranged,introducing uncertainty that must be accounted for to ensure that criticality analysis results are conservative.Historically,this uncertainty was addressed overly conservatively due to limited research on non-uniform arrangement scenarios,which proved unsuitable for criticality safety analysis of spent fuel packages.This paper introduced three distinct methods to non-uniformly rearrange fuel rods—Uniform Arrangement by Blocks,Layer-by-Layer Determination,and Birdcage Deformation—and meticulously evaluates the influences of rod rearrangement on the effective multiplication factor of neutrons,k eff,utilizing the Monte Carlo method.Ultimately,this study presents a holistic method capable of encompassing the entire spectrum of potential effects stemming from the rearrangement of fuel rods during rods mispositioning accident.By augmenting the safety margin,this approach proves to be adeptly suited for the criticality safety analysis of nuclear fuel transport containers.展开更多
Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may po...Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management.展开更多
Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to i...Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.展开更多
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
基金supported by the National Natural Science Foundation of China(No.41804141)。
文摘Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.
基金Supported by the National Key R&D Program of China(No.2023YFC3108300)the Dalian High-level Talent Innovation Program(No.2022RG02)the Fundamental Research Funds for the Central Universities(No.3132023507)。
文摘As a frequently occurred marine pollution phenomenon,red tides of water body due to eutrophication cause massive mortality of marine organisms and serious ecological problems.The early warning and prediction of red tide outbreak can provide guidance to the coastal management,and is of great value to the aquaculture industry and marine environment protection.An approach for the risk assessment of red tide occurrence using spectral indices was made.The optimal spectral indices were explored from three candidates,namely two-band ratio(TBR)method,three-band spectral index(TBSI)method,and fluorescence baseline(FLB)method.The correlations between the spectral indices and the red tide occurrence were quantitatively evaluated through analysis of variance(ANOVA).The risk maps for the Beibu Gulf and the Bohai Bay in China were produced with the normalized spectral indices based on the multi-spectral observation from Sentinel-3 satellite.Results show that both TBR and TBSI values have significant correlations with the occurrences of red tide as the ANOVA results.TBSI illustrated correctly the risk of red tide occurrence in the risk maps and was the optimal spectral index offshore risk assessment of red tide.FLB method failed to recognize the high-risk regions and may not be the appropriate spectral index.The risk assessment method proposed in this study can provide early alarms on red tide occurrence and help timely the countermeasure against potential harms.
基金supported by the National Science Foundation of China(Grant Nos.42374205 and 41974179)the Specialized Research Fund of the National Space Science Center,Chinese Academy of Sciences(Grant No.E4PD3010)supported by the Specialized Research Fund for State Key Laboratories.
文摘The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs.
基金support from the National Natural Science Foundation of China(Grant Nos:52379103 and 52279103)the Natural Science Foundation of Shandong Province(Grant No:ZR2023YQ049).
文摘Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.
基金supported by the Jilin Province Science and Technology Development Plan Item (No.20240402068GH)。
文摘To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed, based on the principle of bidirectional reflectance distribution function(BRDF), to obtain spectral reflection intensities of coatings at full spatial angles, and use polarization images to calculate the refractive index by the Fresnel equation. The index is then coupled into TorranceSparrow model to simulate the spectral scattering intensity to mutually verify the experimental results. The spectral scattering characteristics of standard camouflage patterns are then revealed and pinpoint the signature band and the angle of reflecting sensitivity.
文摘BACKGROUND The diagnostic accuracy for detecting metastatic lymph nodes in colorectal cancer(CRC)remains suboptimal.To address this limitation,our study investigates the potential of gemstone spectral computed tomography imaging(GSI)to improve diagnostic accuracy in lymph node metastasis(LNM)assessment.AIM To extensively investigate the clinical utility of GSI in the preoperative assessment of CRC.METHODS The subject population included 200 patients with CRC who were admitted to Zibo Central Hospital from January 2022 to December 2023.All patients underwent dual-phase contrast-enhanced scans in the arterial and venous phases using GSI before surgical intervention.During the research,meticulous quantification was conducted regarding the number of patients with CRC with LNM as well as the exact count of metastatic lymph nodes.Moreover,for both metastatic and non-metastatic lymph nodes,the short diameter at the maximum crosssectional area(covering the axial,sagittal,and coronal planes),morphological features(including manifestations such as margin blurring,aggregation,and enhancement),and spectral parameters in the arterial and venous phases[specifically iodine concentration(IC),normalized IC(NIC),and the slope of the spectral curve(λHU)]were measured and recorded,and a comparative analysis was conducted.The diagnostic efficacy of each index with differences was systematically assessed using the receiver operating characteristic(ROC)curve.Concurrently,receiver operating characteristic curves were constructed for LNM screening based on the short diameter at the maximum cross-sectional area of lymph nodes and each spectral parameter in the arterial and venous phases.RESULTS The area under the curve of GSI for diagnosing LNM in patients with CRC can reach 0.897,with sensitivity,specificity,and accuracy of 92.59%,85.87%,and 89.50%,respectively.A total of 265 lymph nodes were analyzed from the 200 participants with CRC,with metastatic lymph nodes accounting for 56.60%.Compared with nonmetastatic lymph nodes,the short diameters of metastatic lymph nodes in the axial,sagittal,and coronal planes were significantly increased,whereas the IC values in the arterial and venous phases,the NIC value in the arterial phase,and theλHU values in the arterial and venous phases were significantly decreased.The short axial,sagittal,and coronal diameters,arterial-phase IC,venous-phase IC,arterial-phase NIC,arterial-phaseλHU,and venousphaseλHU for diagnosing metastatic lymph nodes demonstrated area under the curve values of 0.631,0.681,0.659,0.862,0.808,0.831,0.801,and 0.706,respectively.CONCLUSION GSI exhibits substantial clinical significance in the preoperative assessment of CRC.Among the parameters assessed,the arterial-phase IC demonstrates the most outstanding diagnostic performance,effectively improving the diagnostic efficacy for preoperative LNM in CRC.
基金extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/174/46.
文摘In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.
基金supported by the National Natural Science Foundation of China(Grant Nos.12372199,12422207,and W2431010)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2021JQ02)the Ningbo Municipal Excellence Research Program(Zhejiang Province,China).
文摘This study presents a new boundary element method(BEM)framework for the numerical solution of general time-dependent or transient problems.By reformulating the time derivative as a domain integral,the framework effectively decouples the treatment of spatial and temporal variables,allowing for the independent application of specialized discretization methods.For the temporal domain,we introduce an innovative time-spectral integration technique,which is based on Gaussian-quadrature-based orthogonal polynomial expansions.This method not only achieves arbitrary orders of accuracy but also significantly enhances computational efficiency and stability,particularly for simulations involving rapid transients or long-time dynamic simulations.The domain integrals in the spatial domain are calculated using the scaled coordinate transformation BEM(SCT-BEM),a mathematically rigorous technique that converts domain integrals into equivalent boundary integrals,preserving the boundary-only discretization advantage inherent in BEM.Numerical experiments on transient heat conduction and dynamic wave propagation further demonstrate the framework’s performance and capabilities.These experiments show that the proposed framework outperforms traditional time-stepping BEM methods,particularly in terms of stability,convergence rates,and computational cost,making it a highly promising tool for practical engineering applications.
文摘Aerosol dynamics in semi-arid cities are key to understanding air quality and climate interactions.This study examines the spatiotemporal variability of Aerosol Optical Depth(AOD)over Jaipur,India,from 2018 to 2024 using MODIS observations at 470,500,and 550 nm,combined with meteorological data and ground-based air quality records.The Mann–Kendall test identified a statistically significant decreasing trend at 500 nm(slope=–2.07,p<0.05),while 470 and 550 nm showed weak,nonsignificant declines.AOD peaked in April–June,declined during the monsoon,and rose again in October–November due to burning and festivals.Correlation analysis demonstrated strong positive associations with PM_(2.5),PM_(10),and temperature,with minimum temperature emerging as the most influential predictor,whereas relative humidity showed weak or negative relationships.Anomaly detection confirmed episodic high-AOD events during dust storms,winter inversions,and agricultural burning.Predictive modelling using Multiple Linear Regression(MLR)and Random Forest highlighted the complementary roles of linear drivers.Nonlinear dynamics,with Random Forest achieving high predictive accuracy(R^(2)=0.892 for training,0.588 for testing).These findings demonstrate that aerosol variability in Jaipur is governed by a dual influence of natural dust and anthropogenic emissions,with wavelength-specific responses.The results provide scientific evidence for integrating satellite monitoring,ground observations,and predictive models into urban air quality management and climate adaptation strategies in semi-arid regions.
文摘Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6.
基金supported by Qingdao Key Medical and Health Discipline ProjectThe Intramural Research Program of the Affiliated Hospital of Qingdao University,No. 4910Qingdao West Coast New Area Science and Technology Project,No. 2020-55 (all to SW)。
文摘Border-associated macrophages are located at the interface between the brain and the periphery, including the perivascular spaces, choroid plexus, and meninges. Until recently, the functions of border-associated macrophages have been poorly understood and largely overlooked. However, a recent study reported that border-associated macrophages participate in stroke-induced inflammation, although many details and the underlying mechanisms remain unclear. In this study, we performed a comprehensive single-cell analysis of mouse border-associated macrophages using sequencing data obtained from the Gene Expression Omnibus(GEO) database(GSE174574 and GSE225948). Differentially expressed genes were identified, and enrichment analysis was performed to identify the transcription profile of border-associated macrophages. CellChat analysis was conducted to determine the cell communication network of border-associated macrophages. Transcription factors were predicted using the ‘pySCENIC' tool. We found that, in response to hypoxia, borderassociated macrophages underwent dynamic transcriptional changes and participated in the regulation of inflammatory-related pathways. Notably, the tumor necrosis factor pathway was activated by border-associated macrophages following ischemic stroke. The pySCENIC analysis indicated that the activity of signal transducer and activator of transcription 3(Stat3) was obviously upregulated in stroke, suggesting that Stat3 inhibition may be a promising strategy for treating border-associated macrophages-induced neuroinflammation. Finally, we constructed an animal model to investigate the effects of border-associated macrophages depletion following a stroke. Treatment with liposomes containing clodronate significantly reduced infarct volume in the animals and improved neurological scores compared with untreated animals. Taken together, our results demonstrate comprehensive changes in border-associated macrophages following a stroke, providing a theoretical basis for targeting border-associated macrophages-induced neuroinflammation in stroke treatment.
基金supported by the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(Grant No.2023C02018)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002)+2 种基金National Natural Science Foundation of China(Grant No.42371385)Funds of the Natural Science Foundation of Hangzhou(Grant No.2024SZRYBD010001)Nanxun Scholars Program of ZJWEU(Grant No.RC2022010755).
文摘Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.
基金supported by grants from the Tianjin Health Technology Project(Grant no.2022QN106).
文摘Background:Receptor-interacting protein kinases(RIPKs)regulate cell death,inflammation,and immune responses,yet their roles in cancer are not fully understood.This study investigates the expression,genomic alterations,and functional implications of RIPK family members across various cancers.Methods:We collected multi-omics data from The Cancer Genome Atlas and other public databases,including gene expression,copy number variation(CNV),mutation,methylation,tumor mutation burden(TMB),and microsatellite instability(MSI).Differential expression and survival analyses were performed using DESeq2 and Cox proportional hazards models.CNV and mutation data were analyzed with GISTIC2 and Mutect2,and methylation data with the ChAMP package.Correlations with TMB and MSI were assessed using Pearson coefficients,and gene set enrichment analysis was conducted with the MSigDB Hallmark gene sets.Results:RIPK family members show significant differential expression in various cancers,with RIPK1 and RIPK4 frequently altered.Survival analysis reveals heterogeneous impacts on overall survival.CNV and mutation analyses identify high alteration frequencies for RIPK2 and RIPK7,affecting gene expression.RIPK1 and RIPK7 are hypermethylated in several cancers,inversely correlating with RIPK3 expression.RIPK1,RIPK2,RIPK5,RIPK6,and RIPK7 correlate positively with TMB,while RIPK3 shows negative correlations in some cancers.MSI analysis indicates associations with DNA mismatch repair.G ene set enrichment analysis highlights immune-related pathway enrichment for RIPK1,RIPK2,RIPK3,and RIPK6,and cell proliferation and DNA repair pathways for RIPK4 and RIPK5.RIPK family members showed heterogeneous alterations across cancers:for example,RIPK7 was mutated in up to~15%of u terine c orpus e ndometrial c arcinoma and l ung s quamous c ell c arcinoma cases,and RIPK1 and RIPK7 exhibited frequent promoter hypermethylation in multiple tumor types.Several genes displayed context-dependent associations with overall survival and with TMB/MSI.Conclusion:This pan-cancer analysis of the RIPK family reveals their diverse roles and potential as biomarkers and therapeutic targets.The findings emphasize the importance of RIPK genes in tumorigenesis and suggest context-dependent functions across cancer types.Further studies are needed to explore their mechanisms in cancer development and clinical applications.
基金financially supported by the National Natural Science Foundation of China(Nos.52034002 and U2202254)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-19-001)。
文摘The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium.
基金Suppotred by Tianjin Key Medical Discipline Construction Project(No.TJYXZDXK-3-004A-2).
文摘AIM:To present an overview of the research on global glaucoma treatment in the last decade in terms of publication year,journals,countries/regions,organizations,references,and keywords,to investigate the current research international trends and hot topics in this area.METHODS:Bibliometric analysis was conducted on 9128 articles in the Web of Science Core Collection(WoSCC;Clarivate)database.Quantitative and qualitative analysis was employed using VOSviewer(v1.6.18),Pajek(v1.0.0.0),and CiteSpace(v6.1.R2)software.RESULTS:The 9128 papers relating to glaucoma treatment were published from April 2013 to April 2023,of which 7482 articles(82%)were original research articles and 1464(18%)were review articles.The United States(2867)and Johns Hopkins University(166)were the most productive country and institution,respectively,but the University College London had the highest h-index(54).The Journal of Glaucoma was the most productive and Ophthalmology had the highest h-index compared with other journals.The Keywords of interest included treatment surgery,cyclophotocoagulation,minimally invasive glaucoma surgery(MIGS),trabeculectomy,baerveldt,epidemiology,medication adherence,nanoparticle,optical coherence tomography(OCT),gene therapy,and artificial intelligence(AI).Glaucoma surgery appeared as a current research hotspot through the analysis of keywords.CONCLUSION:This study provides insights into the research trends and potential research hotspots in the treatment of glaucoma.This will help researchers to evaluate research policies and to promote international cooperation.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
文摘To ensure the safe transportation of radioactive materials,numerous countries have established specific standards.For the transfer of fissile materials,it is imperative that the material within the packaging remains in a subcritical state during routine,normal,and accidental transport conditions.In the event of an accident,the rods within the storage tank may become rearranged,introducing uncertainty that must be accounted for to ensure that criticality analysis results are conservative.Historically,this uncertainty was addressed overly conservatively due to limited research on non-uniform arrangement scenarios,which proved unsuitable for criticality safety analysis of spent fuel packages.This paper introduced three distinct methods to non-uniformly rearrange fuel rods—Uniform Arrangement by Blocks,Layer-by-Layer Determination,and Birdcage Deformation—and meticulously evaluates the influences of rod rearrangement on the effective multiplication factor of neutrons,k eff,utilizing the Monte Carlo method.Ultimately,this study presents a holistic method capable of encompassing the entire spectrum of potential effects stemming from the rearrangement of fuel rods during rods mispositioning accident.By augmenting the safety margin,this approach proves to be adeptly suited for the criticality safety analysis of nuclear fuel transport containers.
基金supported by the National Natural Science Foundation of China(No.22176200)the Industrial Innovation Entrepreneurial Team Project of Ordos 2021.
文摘Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management.
文摘Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.