In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly...In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly(effectively imposing a wavelet-spectrum weighting,often akin to an amplitude-squared bias).This redundancy degrades structural fidelity and amplitude balance yet is frequently overlooked.We(i)formalize the mechanism by which cross-correlation duplicates the source-wavelet amplitude effect in both migration and demigration,and(ii)introduce a source-equalized operator that removes the redundancy by deconvolving(or dividing by)the wavelet amplitude spectrum in the imaging condition and its demigration counterpart,while leaving phase/kinematics intact.Using a band-limited Ricker wavelet on a two-layer model and on Marmousi,we show that,if unmanaged,the redundant wavelet spectrum broadens main lobes,introduces ringing,and suppresses vertical resolution in migrated images,and inflates spectrum mismatches between demigrated and observed data even when peak times agree.With our correction,images recover observed-data-consistent bandwidth and sharpened interfaces,and demigrated data also exhibit improved spectrum conformity and reduced amplitude misfit.The results clarify when source amplitudes matter,why cross-correlation makes them redundantly matter,and how a lightweight spectral correction restores physically meaningful amplitude behavior in wave-equation migration/demigration.展开更多
Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tra...Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tracers.This study comprehensively investigates chemical composition of PM_(2.5),including both inorganic and organic compounds throughout haze and post-haze periods in 2019 at a rural site of Northern Thailand.Average PM_(2.5) concentrations during haze and post-haze period were 87±36 and 21±11μg/m^(3),respectively.Organic matter was the dominant contributor in PM_(2.5) mass,followed by water soluble inorganic ions and mineral dust.Molecular markers,including levoglucosan,dehydroabietic acid,and 4-nitrocatechol,and ions(Cl^(-),and K^(+)),were used to characterize low haze(PM_(2.5)<100μg/m^(3))and episodic haze(PM_(2.5)>100μg/m^(3)).Low haze is associated with local aerosols from agricultural waste burning,while episodic haze is linked to aged aerosols from mixed agricultural waste,softwood,and hardwood burning.Source apportionment incorporating these molecular markers in receptor modelling(Positive matrix factorization),identified three distinct biomass burning sources:mixed,local,and aged biomass burnings,contributing 31,19 and 13%of PM_(2.5) during haze period.During post-haze period,contributions shifted,with local biomass burning(32%)comparable to secondary sulfate(34%)and mixed dust and traffic sources(26%).These findings demonstrate that both regional and local sources con-tribute to severe haze,highlighting the need for integrated policies for cross-border cooperation as well as stricter regulations to reduce biomass burning in Northern Thailand and Southeast Asia.展开更多
Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China ...Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China in winter and spring of 2021.The results show that the average concentration of PM_(2.5) decreased by 47%from winter to spring,while volume-normalized and mass-normalized OP(i.e.,OP_(v) and OP_(m))increased by 6%and 69%,respectively.It suggests that the decline of PM_(2.5) may not necessarily decrease the health risks and the intrinsic toxicity of PM_(2.5).Variations of OP_(v) and OP_(m) among different periods were related to the different source contributions and environmental conditions.The positive matrix factorization model was used to identify the major sources of OP_(v).OP_(v) was mainly contributed by biomass burning/industrial emissions(29%),soil/road dust(20%),secondary sulfate(14%),and coal combustion(13%)in winter.Different major sources were resolved to be secondary sulfate(36%),biological sources(21%),and marine vessels(20%)in spring,presenting the substantial contribution of biological sources.The analysis shows strong associations between OP_(v) and both live and dead bacteria,further confirming the important contribution of bioaerosols to the enhancement of OP.This study highlights the importance of understanding OP in ambient PM_(2.5) in terms of public health impact and provides a new insight into the biological contribution to OP.展开更多
Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previo...Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previous research,providing a long-term perspective on carbonyl compound variations and their environmental implica-tions.Atmospheric observations were conducted at Beijing(BJ)and Xianghe(XH)during the summer and winter months of 2018,2019,and 2023 to study the sources and impacts of carbonyl compounds in typical urban areas and peri‑urban areas.Notably,concentrations in the summer of 2023 increased compared to 2018 and 2019.The predominant carbonyl compounds—formaldehyde,acetaldehyde,and acetone—accounted for over 60%of the total.The mean values of OFP in BJ ranged from 18.55 to 58.61μg/m3,lower than those in XH(29.82 to 65.48μg/m3),with formaldehyde and acetaldehyde contributing over 80%of the total.SOAP exhibited a similar pattern,with values in XH(69.21 to 508.55μg/m3)significantly exceeding those in BJ(34.47 to 159.78μg/m3).The PMF model highlighted vehicle exhaust,secondary pollution,and biomass combustion as major sources of carbonyl compounds,emphasizing differences in source contributions between the two regions.This study’s com-parative analysis over different years and locations provides new insights into the dynamic changes in carbonyl compounds and their environmental importance.These results not only reinforce the importance of carbonyl compounds regulation but also offer a valuable reference for evaluating and refining emission control strategies during this period.展开更多
We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),org...We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),organics(33%)constituted the largest fraction,followed by nitrate(30%),sulfate(18%),ammonium(15%),chloride(3%),and rBC(2%).Four organic aerosol(OA)subcomponents were identified,including two primary OA(POA)and two secondary OA(SOA).The less-oxidized SOA(LO-OOA)contributes the most to the total OA mass(59%).LO-OOA is tightly correlated with the tracer ion C_(2)H_(4)O_(2)^(+)from levoglucosan,and another aged biomass-burning derived species,K_(3)SO_(4)^(+),suggesting it was likely influenced by aged biomass-burning OA.Our study also revealed that fireworks during the Spring Festival have a detrimental impact on air quality,contributing to secondary formation and accumulation under static winter meteorological conditions,prolonging the pollution duration.Also,LO-OOA was found to have the strongest light-absorbing ability.Our results highlight that the light absorption of LO-OOA can mainly be attributed to the C_(x)H_(y)N^(+) family,increased with the double-bond equivalent value.The more-oxidized SOA(MO-OOA)exhibited a negligible light absorption and was strongly correlated with daytime photochemical processes,implying a light-bleaching effect.This study enhances our understanding of the regional contribution of biomass combustion and fireworks to PM_(1) pollution in Nanjing,a typical megacity in the Yangtze River Delta region,during winter,aiding in the development of strategies for long-term air quality improvement in the region.展开更多
We present the preparation and measurement of the radioactive isotope^(37)Ar,which was produced using thermal neutrons from a reactor,as a calibration source for liquid xenon time projection chambers.^(37)Ar is a low-...We present the preparation and measurement of the radioactive isotope^(37)Ar,which was produced using thermal neutrons from a reactor,as a calibration source for liquid xenon time projection chambers.^(37)Ar is a low-energy calibration source with a half-life of 35.01 days,making it suitable for calibration in the low-energy region of liquid xenon dark-matter experiments.Radioactive isotope^(37)Ar was produced by irradiating ^(36)Ar with thermal neutrons.It was subsequently measured in a gaseous xenon time projection chamber(GXe TPC)to validate its radioactivity.Our results demonstrate that^(37)Ar is an effective and viable calibration source that offers precise calibration capabilities in the low-energy domain of xenon-based detectors.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.T...To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.展开更多
Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in a...Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.展开更多
A new on-chip light source configuration has been proposed,which utilizes the interaction between a microwave or laser and a dielectric nanopillar array to generate a periodic electromagnetic near-field and applies pe...A new on-chip light source configuration has been proposed,which utilizes the interaction between a microwave or laser and a dielectric nanopillar array to generate a periodic electromagnetic near-field and applies periodic transverse acceleration to relativistic electrons to generate high-energy photon radiation.The dielectric nanopillar array interacting with the driving field acts as an electron undulator,in which the near-field drives electrons to oscillate.When an electron beam propagates through this nanopillar array in this light source configuration,it is subjected to a periodic transverse near-field force and will radiate X-ray or evenγ-ray high-energy photons after a relativistic frequency up-conversion.Compared with the undulator which is based on the interaction between strong lasers and nanostructures to generate a plasmonic near-field,this configuration is less prone to damage during operation.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa...The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.展开更多
Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regiona...Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.展开更多
Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were freque...Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were frequently observed during the heating season.Dispersion Normalized Positive Matrix Factorization was applied for the source apportionment of PM_(2.5) as minimize the dilution effects of meteorology and better reflect the source strengths in these two cities.Secondary nitrate had the highest contribution for Beijing(37.3%),and residential heating/biomass burning was the largest for Baoding(27.1%).Secondary nitrate,mobile,biomass burning,district heating,oil combustion,aged sea salt sources showed significant differences between the heating and non-heating seasons in Beijing for same period(2019.01.10–2019.08.22)(Mann-Whitney Rank Sum Test P<0.05).In case of Baoding,soil,residential heating/biomass burning,incinerator,coal combustion,oil combustion sources showed significant differences.The results of Pearson correlation analysis for the common sources between the two cities showed that long-range transported sources and some sources with seasonal patterns such as oil combustion and soil had high correlation coefficients.Conditional Bivariate Probability Function(CBPF)was used to identify the inflow directions for the sources,and joint-PSCF(Potential Source Contribution Function)was performed to determine the common potential source areas for sources affecting both cities.These models facilitated a more precise verification of city-specific influences on PM_(2.5) sources.The results of this study will aid in prioritizing air pollution mitigation strategies during the heating season and strengthening air quality management to reduce the impact of downwind neighboring cities.展开更多
Hopane separation and isotope determination were conducted on 11 source rock samples from various sedimentary environments.A schematic diagram of the carbon isotope distributions of hopane across different depositiona...Hopane separation and isotope determination were conducted on 11 source rock samples from various sedimentary environments.A schematic diagram of the carbon isotope distributions of hopane across different depositional environments was constructed.By integrating biomarker and organic petrology evidence,the geological significance of hopane carbon isotopes in oil source correlation and paleoclimate and paleoecology reconstruction was revealed.The results showed that the carbon isotopic compositions of hopanes vary considerably with depositional environment.展开更多
Analyzing the sources of nitrogen and phosphorus pollution in atmospheric deposition is crucial for protecting the surfacewater environment in vulnerable areas.This study focused on the Dahekou Reservoir,Shayuan Distr...Analyzing the sources of nitrogen and phosphorus pollution in atmospheric deposition is crucial for protecting the surfacewater environment in vulnerable areas.This study focused on the Dahekou Reservoir,Shayuan District,Xilin Gol League,Inner Mongolia,China.It established 12 monitoring sites,conducted one-year monitoring,and collected 144 samples.The concentrations of nitrogen,phosphorus,and water-soluble ions in atmospheric wet sedimentation were measured.This study identified atmospheric precipitation types,revealed seasonal variations in nitrogen and phosphorus concentrations,assessed the contribution of atmosphericwet sedimentation to reservoirwater quality.Utilizing the airmass backward trajectory(HYSPLIT)model and PMF model,themain pollution sources were analyzed.The results were as follows.1)During the observation period,the atmospheric precipitation types were nitric acid rain in spring,sulfuric acid rain in winter,and mixed acid rain in summer and autumn.2)The monthly concentrations of nitrogen and phosphorus of various forms varied significantly,with NH_(4)^(+)-N peaking in spring,NO_(3)^(-)-N and DOP in autumn,and DIP and DON in summer.Annual pollution loads of atmospheric nitrogen and phosphorus precipitation into the reservoir were 35.77 and 4.17 t/a,respectively,severely impacting reservoir water quality.3)Precipitation was negatively correlated with TN concentration,particularly with the NO_(3)^(-)-N/TN ratio,and positively correlated with TP and DIP concen-trations.4)The analysis of pollution sources indicated that the sources of atmospheric nitrogen and phosphorus wet deposition pollution in the study area included agricultural,anthropogenic,dust,and coal sources,with contribution rates of 32.4%,25.6%,21.0%,and 21.0%,respectively.展开更多
Water-soluble organic nitrogen(WSON)affects the formation,hygroscopicity,acidity of organic aerosols,and nitrogen biogeochemical cycles.However,qualitative and quantitative characterizations of WSON remain limited due...Water-soluble organic nitrogen(WSON)affects the formation,hygroscopicity,acidity of organic aerosols,and nitrogen biogeochemical cycles.However,qualitative and quantitative characterizations of WSON remain limited due to its chemical complexity.In the study,1-year field samples of particulate matter 2.5(PM_(2.5))were collected fromJune 2022 to May 2023 to analyze the WSON concentration in PM_(2.5),and correlation analysis,positive matrix factor(PMF),and potential source contribution function(PSCF)modelswere employed to elucidate WSON source apportionment and transport pathways.The results revealed that the mean WSON concentrations reached 1.98±2.64μg/m^(3) with a mean WSON to water-soluble total nitrogen(WSTN)ratio of 21%.Further,WSON concentration exhibited a seasonal variation trend,with higher values in winter and lower in summer.Five sources were identified as contributors to WSON in PM_(2.5) within the reservoir area through a comprehensive analysis including correlation analysis,PSCF and concentration weighted trajectory(CWT),and PMF analyses.These sources were agricultural,dust,combustion,traffic,and industrial sources,of which agricultural source emerged as the primary contributor(76.69%).The atmosphere in the reservoir area were primarily influenced by the transport of northeastern air masses,local agricultural activities,industrial cities along the trajectory,and coastal regions,exerting significant influences on the concentration of WSON in the reservoir area.The findings of this study addressed the research gap concerning organic nitrogen in PM_(2.5) within the reservoir area,thereby offering a theoretical foundation and data support in controlling nitrogen pollution in the Danjiangkou Reservoir area.展开更多
Based on the chemical composition data of a regional long-lasting haze event that occurred in the Yangtze River Delta(YRD)region from 17 December 2023 to 8 January 2024,the evolutionary characteristics of the chemical...Based on the chemical composition data of a regional long-lasting haze event that occurred in the Yangtze River Delta(YRD)region from 17 December 2023 to 8 January 2024,the evolutionary characteristics of the chemical components and sources of fine particulate matter(PM2.5)under different pollution levels were comparatively analyzed using PMF(Positive Matrix Factorization)and backward trajectory analysis.SNA(NO_(3)^(-),NH_(4)^(+),SO_(4)^(2-))was found to be the primary chemical component of PM2.5,making up 63.6%(clean days)to 69.7%(heavy pollution)of it.The NO_(3)^(-)concentration was 3.14(clean days)to 6.01(heavy pollution)times higher than that of SO_(4)^(2-).NO_(3)^(-),POC,Fe,Mn,Al concentrations increased,while SOC,EC,crustal elements(Ca,Si)and other water-soluble ions(WSIs)concentrations decreased as the pollution level increased.The contribution of secondary inorganics and biomass-burning emissions and industrial and ship emissions increased significantly as the pollution level increased,which accounted for 40.3%and 36.7%,respectively,in the heavy pollution stage.The contribution of traffic sources decreases gradually with increasing pollution levels,accounting for only 59.1%of the light pollution stage in the heavy pollution stage.PM_(2.5) and its main chemical components showed similar potential source distribution,located in the northwest(Fuyang,Huainan,Nanjing),south(Taizhou,Lishui,Jiande)and north(Taizhou,Yancheng).However,distinct transport routes were observed under the different air quality levels.During the heavy pollution period,the polluted air masses primarily came from the harbor regions,whereas during the light pollution period they were transported from the southeast(Taizhou)and the North China Plain.展开更多
Benefitting from UAVs’characteristics of flexible deployment and controllable movement in 3D space,odor source localization with multiple UAVs has been a hot research area in recent years.Considering the limited reso...Benefitting from UAVs’characteristics of flexible deployment and controllable movement in 3D space,odor source localization with multiple UAVs has been a hot research area in recent years.Considering the limited resources and insufficient battery capacities of UAVs,it is necessary to fast locate the odor source with low-complexity computation and minimal interaction under complicated environmental states.To this end,we propose a multi-UAV collaboration based odor source localization(MUC-OSL)method,where source estimation and UAV navigation are iteratively performed,aiming to accelerate the searching process and reduce the resource consumption of UAVs.Specifically,in the source estimation phase,we present a collaborative particle filter algorithm on the basis of UAVs’cognitive difference and collaborative information to improve source estimation accuracy.In the following navigation phase,an adaptive path planning algorithm is designed based on partially observable Markov decision process to distributedly determine the subsequent flying direction and moving steps of each UAV.The results of experiments conducted on two simulation platforms demonstrate that MUC-OSL outperforms existing efforts in terms of mean search time and success rate,and effectively reduces the resource consumption of UAVs.展开更多
基金supported by the National Natural Science Foundation of China(42430303)Strategy Priority Research Program(Category B)of the Chinese Academy of Sciences(XDB0710000)+2 种基金National Natural Science Foundation of China(42288201)the National Key R&D Program of China(2023YFF0803203)the IGGCAS start-up funding(Grant No.E251510101).
文摘In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly(effectively imposing a wavelet-spectrum weighting,often akin to an amplitude-squared bias).This redundancy degrades structural fidelity and amplitude balance yet is frequently overlooked.We(i)formalize the mechanism by which cross-correlation duplicates the source-wavelet amplitude effect in both migration and demigration,and(ii)introduce a source-equalized operator that removes the redundancy by deconvolving(or dividing by)the wavelet amplitude spectrum in the imaging condition and its demigration counterpart,while leaving phase/kinematics intact.Using a band-limited Ricker wavelet on a two-layer model and on Marmousi,we show that,if unmanaged,the redundant wavelet spectrum broadens main lobes,introduces ringing,and suppresses vertical resolution in migrated images,and inflates spectrum mismatches between demigrated and observed data even when peak times agree.With our correction,images recover observed-data-consistent bandwidth and sharpened interfaces,and demigrated data also exhibit improved spectrum conformity and reduced amplitude misfit.The results clarify when source amplitudes matter,why cross-correlation makes them redundantly matter,and how a lightweight spectral correction restores physically meaningful amplitude behavior in wave-equation migration/demigration.
文摘Annual haze in Northern Thailand has become increasingly severe,impacting health and the environment.How-ever,the sources of the haze remain poorly quantified due to limited observational data on aerosol molecular tracers.This study comprehensively investigates chemical composition of PM_(2.5),including both inorganic and organic compounds throughout haze and post-haze periods in 2019 at a rural site of Northern Thailand.Average PM_(2.5) concentrations during haze and post-haze period were 87±36 and 21±11μg/m^(3),respectively.Organic matter was the dominant contributor in PM_(2.5) mass,followed by water soluble inorganic ions and mineral dust.Molecular markers,including levoglucosan,dehydroabietic acid,and 4-nitrocatechol,and ions(Cl^(-),and K^(+)),were used to characterize low haze(PM_(2.5)<100μg/m^(3))and episodic haze(PM_(2.5)>100μg/m^(3)).Low haze is associated with local aerosols from agricultural waste burning,while episodic haze is linked to aged aerosols from mixed agricultural waste,softwood,and hardwood burning.Source apportionment incorporating these molecular markers in receptor modelling(Positive matrix factorization),identified three distinct biomass burning sources:mixed,local,and aged biomass burnings,contributing 31,19 and 13%of PM_(2.5) during haze period.During post-haze period,contributions shifted,with local biomass burning(32%)comparable to secondary sulfate(34%)and mixed dust and traffic sources(26%).These findings demonstrate that both regional and local sources con-tribute to severe haze,highlighting the need for integrated policies for cross-border cooperation as well as stricter regulations to reduce biomass burning in Northern Thailand and Southeast Asia.
基金supported by the National Natural Science Foundation of China(No.41975156)and the Fundamental Research Funds for the Central Universities.
文摘Oxidative potential(OP)can be used as an indicator of the health risks of particulate matter in the air.To study the variation and sources of OP,we conducted an observation of PM_(2.5) in a megacity in southern China in winter and spring of 2021.The results show that the average concentration of PM_(2.5) decreased by 47%from winter to spring,while volume-normalized and mass-normalized OP(i.e.,OP_(v) and OP_(m))increased by 6%and 69%,respectively.It suggests that the decline of PM_(2.5) may not necessarily decrease the health risks and the intrinsic toxicity of PM_(2.5).Variations of OP_(v) and OP_(m) among different periods were related to the different source contributions and environmental conditions.The positive matrix factorization model was used to identify the major sources of OP_(v).OP_(v) was mainly contributed by biomass burning/industrial emissions(29%),soil/road dust(20%),secondary sulfate(14%),and coal combustion(13%)in winter.Different major sources were resolved to be secondary sulfate(36%),biological sources(21%),and marine vessels(20%)in spring,presenting the substantial contribution of biological sources.The analysis shows strong associations between OP_(v) and both live and dead bacteria,further confirming the important contribution of bioaerosols to the enhancement of OP.This study highlights the importance of understanding OP in ambient PM_(2.5) in terms of public health impact and provides a new insight into the biological contribution to OP.
基金supported by the National Natural Science Foundation of China(Nos.41905108 and 42130704).
文摘Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previous research,providing a long-term perspective on carbonyl compound variations and their environmental implica-tions.Atmospheric observations were conducted at Beijing(BJ)and Xianghe(XH)during the summer and winter months of 2018,2019,and 2023 to study the sources and impacts of carbonyl compounds in typical urban areas and peri‑urban areas.Notably,concentrations in the summer of 2023 increased compared to 2018 and 2019.The predominant carbonyl compounds—formaldehyde,acetaldehyde,and acetone—accounted for over 60%of the total.The mean values of OFP in BJ ranged from 18.55 to 58.61μg/m3,lower than those in XH(29.82 to 65.48μg/m3),with formaldehyde and acetaldehyde contributing over 80%of the total.SOAP exhibited a similar pattern,with values in XH(69.21 to 508.55μg/m3)significantly exceeding those in BJ(34.47 to 159.78μg/m3).The PMF model highlighted vehicle exhaust,secondary pollution,and biomass combustion as major sources of carbonyl compounds,emphasizing differences in source contributions between the two regions.This study’s com-parative analysis over different years and locations provides new insights into the dynamic changes in carbonyl compounds and their environmental importance.These results not only reinforce the importance of carbonyl compounds regulation but also offer a valuable reference for evaluating and refining emission control strategies during this period.
基金support from the Natural Science Foundation of Jiangsu Province(Grant No.BK20240036)the National Natural Science Foundation of China(Grant Nos.U24A20515,22276099,and 22361162668)Guangxi Key Research and Development Program,China(Grant No.Guike AB24010074)。
文摘We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),organics(33%)constituted the largest fraction,followed by nitrate(30%),sulfate(18%),ammonium(15%),chloride(3%),and rBC(2%).Four organic aerosol(OA)subcomponents were identified,including two primary OA(POA)and two secondary OA(SOA).The less-oxidized SOA(LO-OOA)contributes the most to the total OA mass(59%).LO-OOA is tightly correlated with the tracer ion C_(2)H_(4)O_(2)^(+)from levoglucosan,and another aged biomass-burning derived species,K_(3)SO_(4)^(+),suggesting it was likely influenced by aged biomass-burning OA.Our study also revealed that fireworks during the Spring Festival have a detrimental impact on air quality,contributing to secondary formation and accumulation under static winter meteorological conditions,prolonging the pollution duration.Also,LO-OOA was found to have the strongest light-absorbing ability.Our results highlight that the light absorption of LO-OOA can mainly be attributed to the C_(x)H_(y)N^(+) family,increased with the double-bond equivalent value.The more-oxidized SOA(MO-OOA)exhibited a negligible light absorption and was strongly correlated with daytime photochemical processes,implying a light-bleaching effect.This study enhances our understanding of the regional contribution of biomass combustion and fireworks to PM_(1) pollution in Nanjing,a typical megacity in the Yangtze River Delta region,during winter,aiding in the development of strategies for long-term air quality improvement in the region.
基金supported by National Key R&D grant from the Ministry of Science and Technology of China(Nos.2021YFA1601600,2023YFA1606200)National Science Foundation of China(Nos.12090062,12105008)the Major State Basic Research Development Program of China.
文摘We present the preparation and measurement of the radioactive isotope^(37)Ar,which was produced using thermal neutrons from a reactor,as a calibration source for liquid xenon time projection chambers.^(37)Ar is a low-energy calibration source with a half-life of 35.01 days,making it suitable for calibration in the low-energy region of liquid xenon dark-matter experiments.Radioactive isotope^(37)Ar was produced by irradiating ^(36)Ar with thermal neutrons.It was subsequently measured in a gaseous xenon time projection chamber(GXe TPC)to validate its radioactivity.Our results demonstrate that^(37)Ar is an effective and viable calibration source that offers precise calibration capabilities in the low-energy domain of xenon-based detectors.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金supported by the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2024ZD0302502 for WZ)the National Natural Science Foundation of China(Grant No.92365210 for WZ)+1 种基金Tsinghua Initiative Scientific Research Program (for WZ)the project of Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT,for YH)。
文摘To fully utilize the resources provided by optical fiber networks,a cross-band quantum light source generating photon pairs,where one photon in a pair is at C band and the other is at O band,is proposed in this work.This source is based on spontaneous four-wave mixing(SFWM)in a piece of shallow-ridge silicon waveguide.Theoretical analysis shows that the waveguide dispersion could be tailored by adjusting the ridge width,enabling broadband photon pair generation by SFWM across C band and O band.The spontaneous Raman scattering(SpRS)in silicon waveguides is also investigated experimentally.It shows that there are two regions in the spectrum of generated photons from SpRS,which could be used to achieve cross-band photon pair generation.A chip of shallow-ridge silicon waveguide samples with different ridge widths has been fabricated,through which cross-band photon pair generation is demonstrated experimentally.The experimental results show that the source can be achieved using dispersion-optimized shallow-ridge silicon waveguides.This cross-band quantum light source provides a way to develop new fiber-based quantum communication functions utilizing both C band and O band and extends applications of quantum networks.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0208)the National Natural Science Foundation of China(Nos.42171148 and 42330512)the Key R&D Project from the Science and Technology Department of Tibet(No.XZ202501ZY0030).
文摘Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.
基金pported by the National Natural Science Foundation of China(Grant Nos.12325409,12388102,12074398,and U2267204)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-060)the Shanghai Pilot Program for Basic Research,Chinese Academy of Sciences Shanghai Branch。
文摘A new on-chip light source configuration has been proposed,which utilizes the interaction between a microwave or laser and a dielectric nanopillar array to generate a periodic electromagnetic near-field and applies periodic transverse acceleration to relativistic electrons to generate high-energy photon radiation.The dielectric nanopillar array interacting with the driving field acts as an electron undulator,in which the near-field drives electrons to oscillate.When an electron beam propagates through this nanopillar array in this light source configuration,it is subjected to a periodic transverse near-field force and will radiate X-ray or evenγ-ray high-energy photons after a relativistic frequency up-conversion.Compared with the undulator which is based on the interaction between strong lasers and nanostructures to generate a plasmonic near-field,this configuration is less prone to damage during operation.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金supported by the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan(2021DJ0101)the National Natural Science Foundation of China(U19B600302,41872148)。
文摘The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.
基金supported by the National Natural Science Foundation of China(42161007)the Innovation Foundation of Higher Education Institutions of Gansu Province(2021B-081)the Foundation for Distinguished Young Scholars of Gansu Province(20JR10RA112).
文摘Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.
基金supported by the National Institute of Environmental Research(NIER)funded by the Ministry of Environment(No.NIER-2019-04-02-039)supported by Particulate Matter Management Specialized Graduate Program through the Korea Environmental Industry&Technology Institute(KEITI)funded by the Ministry of Environment(MOE).
文摘Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were frequently observed during the heating season.Dispersion Normalized Positive Matrix Factorization was applied for the source apportionment of PM_(2.5) as minimize the dilution effects of meteorology and better reflect the source strengths in these two cities.Secondary nitrate had the highest contribution for Beijing(37.3%),and residential heating/biomass burning was the largest for Baoding(27.1%).Secondary nitrate,mobile,biomass burning,district heating,oil combustion,aged sea salt sources showed significant differences between the heating and non-heating seasons in Beijing for same period(2019.01.10–2019.08.22)(Mann-Whitney Rank Sum Test P<0.05).In case of Baoding,soil,residential heating/biomass burning,incinerator,coal combustion,oil combustion sources showed significant differences.The results of Pearson correlation analysis for the common sources between the two cities showed that long-range transported sources and some sources with seasonal patterns such as oil combustion and soil had high correlation coefficients.Conditional Bivariate Probability Function(CBPF)was used to identify the inflow directions for the sources,and joint-PSCF(Potential Source Contribution Function)was performed to determine the common potential source areas for sources affecting both cities.These models facilitated a more precise verification of city-specific influences on PM_(2.5) sources.The results of this study will aid in prioritizing air pollution mitigation strategies during the heating season and strengthening air quality management to reduce the impact of downwind neighboring cities.
基金funded by the Open Project of State Key Laboratory of Geological Process and Mineral Resources(GPMR−2022−07).
文摘Hopane separation and isotope determination were conducted on 11 source rock samples from various sedimentary environments.A schematic diagram of the carbon isotope distributions of hopane across different depositional environments was constructed.By integrating biomarker and organic petrology evidence,the geological significance of hopane carbon isotopes in oil source correlation and paleoclimate and paleoecology reconstruction was revealed.The results showed that the carbon isotopic compositions of hopanes vary considerably with depositional environment.
基金supported by Inner Mongolia Autonomous Region Department of Education Science and Technology Talent Project(No.NJYT22040)Inner Mongolia Agricultural University Young Teachers'Scientific Research Ability Promotion Project(No.BR220102)+4 种基金the National Natural Science Foundation of China(No.52260029)the National Key R&D Program(No.2019YFC0409204)Inner Mongolia Natural Science Foundation(No.2021MS04013)the Science and Technology Project of Inner Mongolia Autonomous Region(No.2023YFHH0060)Inner Mongolia AutonomousRegion Science and Technology Leading TalentTeam(No.2022LJRC0007).
文摘Analyzing the sources of nitrogen and phosphorus pollution in atmospheric deposition is crucial for protecting the surfacewater environment in vulnerable areas.This study focused on the Dahekou Reservoir,Shayuan District,Xilin Gol League,Inner Mongolia,China.It established 12 monitoring sites,conducted one-year monitoring,and collected 144 samples.The concentrations of nitrogen,phosphorus,and water-soluble ions in atmospheric wet sedimentation were measured.This study identified atmospheric precipitation types,revealed seasonal variations in nitrogen and phosphorus concentrations,assessed the contribution of atmosphericwet sedimentation to reservoirwater quality.Utilizing the airmass backward trajectory(HYSPLIT)model and PMF model,themain pollution sources were analyzed.The results were as follows.1)During the observation period,the atmospheric precipitation types were nitric acid rain in spring,sulfuric acid rain in winter,and mixed acid rain in summer and autumn.2)The monthly concentrations of nitrogen and phosphorus of various forms varied significantly,with NH_(4)^(+)-N peaking in spring,NO_(3)^(-)-N and DOP in autumn,and DIP and DON in summer.Annual pollution loads of atmospheric nitrogen and phosphorus precipitation into the reservoir were 35.77 and 4.17 t/a,respectively,severely impacting reservoir water quality.3)Precipitation was negatively correlated with TN concentration,particularly with the NO_(3)^(-)-N/TN ratio,and positively correlated with TP and DIP concen-trations.4)The analysis of pollution sources indicated that the sources of atmospheric nitrogen and phosphorus wet deposition pollution in the study area included agricultural,anthropogenic,dust,and coal sources,with contribution rates of 32.4%,25.6%,21.0%,and 21.0%,respectively.
基金supported by the National Natural Science Foundation of China(Nos.U23A2016,U1704241,and 42007175).
文摘Water-soluble organic nitrogen(WSON)affects the formation,hygroscopicity,acidity of organic aerosols,and nitrogen biogeochemical cycles.However,qualitative and quantitative characterizations of WSON remain limited due to its chemical complexity.In the study,1-year field samples of particulate matter 2.5(PM_(2.5))were collected fromJune 2022 to May 2023 to analyze the WSON concentration in PM_(2.5),and correlation analysis,positive matrix factor(PMF),and potential source contribution function(PSCF)modelswere employed to elucidate WSON source apportionment and transport pathways.The results revealed that the mean WSON concentrations reached 1.98±2.64μg/m^(3) with a mean WSON to water-soluble total nitrogen(WSTN)ratio of 21%.Further,WSON concentration exhibited a seasonal variation trend,with higher values in winter and lower in summer.Five sources were identified as contributors to WSON in PM_(2.5) within the reservoir area through a comprehensive analysis including correlation analysis,PSCF and concentration weighted trajectory(CWT),and PMF analyses.These sources were agricultural,dust,combustion,traffic,and industrial sources,of which agricultural source emerged as the primary contributor(76.69%).The atmosphere in the reservoir area were primarily influenced by the transport of northeastern air masses,local agricultural activities,industrial cities along the trajectory,and coastal regions,exerting significant influences on the concentration of WSON in the reservoir area.The findings of this study addressed the research gap concerning organic nitrogen in PM_(2.5) within the reservoir area,thereby offering a theoretical foundation and data support in controlling nitrogen pollution in the Danjiangkou Reservoir area.
基金supported by the National Key Research and Development Program of China(No.2022YFC3701204)the Natural Science Foundation of Jiangsu Province(No.BK20231300).
文摘Based on the chemical composition data of a regional long-lasting haze event that occurred in the Yangtze River Delta(YRD)region from 17 December 2023 to 8 January 2024,the evolutionary characteristics of the chemical components and sources of fine particulate matter(PM2.5)under different pollution levels were comparatively analyzed using PMF(Positive Matrix Factorization)and backward trajectory analysis.SNA(NO_(3)^(-),NH_(4)^(+),SO_(4)^(2-))was found to be the primary chemical component of PM2.5,making up 63.6%(clean days)to 69.7%(heavy pollution)of it.The NO_(3)^(-)concentration was 3.14(clean days)to 6.01(heavy pollution)times higher than that of SO_(4)^(2-).NO_(3)^(-),POC,Fe,Mn,Al concentrations increased,while SOC,EC,crustal elements(Ca,Si)and other water-soluble ions(WSIs)concentrations decreased as the pollution level increased.The contribution of secondary inorganics and biomass-burning emissions and industrial and ship emissions increased significantly as the pollution level increased,which accounted for 40.3%and 36.7%,respectively,in the heavy pollution stage.The contribution of traffic sources decreases gradually with increasing pollution levels,accounting for only 59.1%of the light pollution stage in the heavy pollution stage.PM_(2.5) and its main chemical components showed similar potential source distribution,located in the northwest(Fuyang,Huainan,Nanjing),south(Taizhou,Lishui,Jiande)and north(Taizhou,Yancheng).However,distinct transport routes were observed under the different air quality levels.During the heavy pollution period,the polluted air masses primarily came from the harbor regions,whereas during the light pollution period they were transported from the southeast(Taizhou)and the North China Plain.
基金supported by National Natural Science Foundation of China(No.62072436 and No.62202449)National Key Research and Development Program of China(2021YFB2900102).
文摘Benefitting from UAVs’characteristics of flexible deployment and controllable movement in 3D space,odor source localization with multiple UAVs has been a hot research area in recent years.Considering the limited resources and insufficient battery capacities of UAVs,it is necessary to fast locate the odor source with low-complexity computation and minimal interaction under complicated environmental states.To this end,we propose a multi-UAV collaboration based odor source localization(MUC-OSL)method,where source estimation and UAV navigation are iteratively performed,aiming to accelerate the searching process and reduce the resource consumption of UAVs.Specifically,in the source estimation phase,we present a collaborative particle filter algorithm on the basis of UAVs’cognitive difference and collaborative information to improve source estimation accuracy.In the following navigation phase,an adaptive path planning algorithm is designed based on partially observable Markov decision process to distributedly determine the subsequent flying direction and moving steps of each UAV.The results of experiments conducted on two simulation platforms demonstrate that MUC-OSL outperforms existing efforts in terms of mean search time and success rate,and effectively reduces the resource consumption of UAVs.