In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar perce...In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.展开更多
Background:The development of materials for cardiovascular surgery that would improve the effectiveness of surgical interventions remains an important task.Surgical intervention during the implantation of vascular pro...Background:The development of materials for cardiovascular surgery that would improve the effectiveness of surgical interventions remains an important task.Surgical intervention during the implantation of vascular prostheses and stents,and the body’s reaction to artificial materials,could lead to chronic inflammation,a local increase in the concentration of proinflammatory factors,and stimulation of unwanted tissue growth.The introduction of nonsteroidal anti-inflammatory drugs into implantable devices could be used to obtain vascular implants that do not induce inflammation and do not induce neointimal tissue outgrowth.Methods:The scaffolds were made by electrospinning from mixtures of polyurethane(PU)with diclofenac(DF).The kinetics of DF release from the scaffolds composed of 3%PU/10%HSA/3%DMSO/DF and 3%PU/DF were studied.The biocompatibility and anti-inflammatory effects of the obtained scaffolds on human gingival fibroblasts and umbilical vein endothelial cells were studied.Results:Both types of scaffolds are characterized by fast DF release.The viability of cells cultured on scaffolds is 2 times worse than that of cells cultured on plastic.The level of the proinflammatory cytokine IL-6 in the culture medium of cells cultured on DF-containing scaffolds was lower than that of cells cultured on scaffolds without DF.Conclusion:The introduction of DF into scaffolds minimizes the inflammation caused by cell reactions to an artificial material.展开更多
Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development...Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development of mechanization,wide-row spacing substrate cultivation became an optimize mode of the greenhouse cucumber cultivation,aligning with the trend of intelligent agriculture.To determine the optimal nutrient solution supply amount(NS)and supply frequency(SF)for promoting the integrated growth of cucumber under wide-row spacing substrate cultivation,we explored the effects of substrate supply amount(SS),NS,and SF on cucumber yield,quality,and element utilization efficiency.A five-level quadratic orthogonal rotation combination design with three experimental factors(NS,SF,and SS)was implemented for 23 coupling treatments over three growing seasons,including spring(2022S and 2023S)and autumn(2022A).The technique for order preference by similarity to ideal solution(TOPSIS)combining weights based on game theory was applied to construct cucumber comprehensive growth evaluation model.Single and two experimental factors analyses revealed significant effects of single factors and the coupling of NS-SS,NS-SF and SS-SF on the integrated growth of cucumber for all three growing seasons.For the NS-SF-SS combination,the optimal parameters for comprehensive cucumber growth were determined as follows:levels of^(-1).68 for NS,-0.7 for SF,and^(-1).682 for SS in 2022A;-0.43 for NS,-0.06 for SF,and 0.34 for SS in 2022S;0.3 for NS,-0.02 for SF,and 0.04 for SS in 2023S.Furthermore,for SS ranges of 2.00-3.01,3.01-4.50,4.50-5.99,5.99-7.00(L·plant^(-1)),the corresponding NS and SF intervals maximizing cucumber integrated growth in spring were:0.28-0.30(L·plant^(-1))and 6(times·d^(-1)),0.26-0.30(L·plant^(-1))and 6(times·d^(-1)),0.25-0.30(L·plant^(-1))and 6(times·d^(-1)),0.23-0.30(L·plant^(-1))and 6(times·d^(-1)),respectively.With the same SS,the corresponding NS and SF intervals that maximized cucumber integrated growth in autumn were:0.10(L·plant^(-1))and 8(times·d^(-1)),0.18(L·plant^(-1))and 7(times·d^(-1)),0.30(L·plant^(-1))and 6(times·d^(-1)),0.49(L·plant^(-1))and 5(times·d^(-1)),respectively.The results provide a theoretical basis for solution management,and further in-depth research on cucumber cultivation.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
Novel amino (-NH2) functionalized mesoporous polyvinyl pyrrolidone (PVP)/SiO2 composite nanofiber membranes were fabricated by a one-step electrospinning method using poly (vinyl alcohol) and tetraethyl orthosil...Novel amino (-NH2) functionalized mesoporous polyvinyl pyrrolidone (PVP)/SiO2 composite nanofiber membranes were fabricated by a one-step electrospinning method using poly (vinyl alcohol) and tetraethyl orthosilicate (TEOS) mixed with cationic surfactant, cety|trimethyl ammonium bromide (CTAB) as the structure directing agent. Ureidopropyltriethoxysilane was used for functionalization of the internal pore surfaces. The membranes were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), element analyzer and Nz adsorption-desorption isotherms, The nanofiber diameters, average pore diameters and surface areas were 100-700 nm, 2.86 nm and 873,62 m2/g, respectively. These mesoporous membranes functionalized with -NH2 groups exhibited very high adsorptions properties based on the adsorption of Cr3+ from an aqueous solution. Equilibrium adsorption was achieved after approximately 20 rain and more than 97% of chronium ions in the solution were removed. The membrane could be regenerated through acidification.展开更多
Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure ...Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure and rheology of the solutions. We studied the structure and rheology of polyethylene oxide (PEO) and zein in 80% ethanol aqueous solutions and the resulted EFM. In solutions, zein with rod-like conformation tends to aggregate and form oligomer, the number of proteins in the oligomer spans from 2.5 to 55.2, while PEO always behaves like Gaussian chain in good solvent. Zein preferred to distribute along PEO chains in their mixed solutions, and the structures decomposed from small angle X-ray scattering have consistent relaxation spatial-temporal characteristics with rheological behaviors.Further, the aging of zein solutions enhanced shear thinning and resulted thicker fibers in EFM, which are attributed to the rod-like growth of zein aggregates. Aggregates in viscous media with long enough relaxation time are probably crucial for the formation of continuous electrospun fibers or ribbons. This study provides a clear correlation of the structure, rheology of solutions with the morphologies of EFM made up of proteins and polymers.展开更多
The relationship between the rheological properties of nylon-6,6 solutions and the morphology of their electrospun nanofibers was established. The viscosity of nylon-6,6 in formic acid (90%) was measured in the conc...The relationship between the rheological properties of nylon-6,6 solutions and the morphology of their electrospun nanofibers was established. The viscosity of nylon-6,6 in formic acid (90%) was measured in the concentration range of 5 wt%-25 wt% using a programmable viscometer. Electrospinning of nylon-6,6 solutions was carried out under controlled parameters. The chemical structure, morphology and thermal properties of the obtained nanofibers were investigated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively, Entanglement concentration (ce) was found to be 15 wt% and a power law relationship between specific viscosity and solution concentration was observed with exponents of 2.0 and 3.3 for semi-dilute unentangled (c 〈 ce) and semi-dilute entangled (c 〉 ce) regimes, respectively. The diameter and uniformity of the nanofibers were found to be dependent on the viscosity. Moreover, the average diameter of electrospun nanofibers was found to be dependent on zero shear rate viscosity and normalized concentration (c/ce) in a power law relationship with exponents of 0.298 and 0.816, respectively. For nylon-6,6 solutions, the entanglement concentration (ce = 15 wt%) provides the threshold viscosity required for the formation of a stable polymeric jet during electrospinning and producing uniform beadless fibers. For concentrations less than ce, beaded fibers with some irregularities are formed. DSC analysis showed an increase in crystallinity of all electrospun samples compared to original polymer. Furthermore; Based on FTIR spectroscopy, α phase is dominant in electrospun nanofibers and minor amount offland ),phases is also available.展开更多
Poly(vinyl alcohol)/collagen (PVA/COL) micro-nanofibers were successfully prepared by electrospinning process. Water, green, and non-toxic was used as the solvent. The electrospun mats consisted of micro-nanoscale...Poly(vinyl alcohol)/collagen (PVA/COL) micro-nanofibers were successfully prepared by electrospinning process. Water, green, and non-toxic was used as the solvent. The electrospun mats consisted of micro-nanoscale fibers with mean diameter ranging from approximately 363 nm to 179 nm. It was observed that the mean diameters of PVA/COL electrospun fibers decreased with increasing collagen content. The effects of PVA/COL blending ratio on the rheological behavior of PVA/COL blended solutions were investigated by rotate rheometer. It was found that PVA/COL blended solutions behaved as Non-Newtonian fluids. With increasing collagen content, the Non-Newtonian index (n) of PVA/COL blended solutions decreased. Meanwhile, a linear relationship was found between the Non-Newtonian index (n) and the mean diameters of the PVA/COL micro- nanofibers. The chemical structures of PVA/COL electrospun fibers were also characterized by FTIR.展开更多
A study was conducted regarding the effect of concentration of poly (vinylidene fluoride) (PVDF)/N,N-dimethylformamide (DMF) and PVDF/DMF/acetone solutions on the transition between electrospray and electrospinning an...A study was conducted regarding the effect of concentration of poly (vinylidene fluoride) (PVDF)/N,N-dimethylformamide (DMF) and PVDF/DMF/acetone solutions on the transition between electrospray and electrospinning and on the formation of the ? and ? crystalline phases of PVDF. The crystalline phases present in the samples, crystallinity and morphology were determined by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. Low concentration solutions resulted in films consisting of small droplets (electrospray) containing predominantly the ? phase. High concentration solutions resulted in a non-woven mesh of nano-to-micron diameter fibers (electrospinning) containing exclusively the ? phase. These results showed that, the formation of this phase in the electrospinning is related mainly to the solvent evaporation rate, and not to drawing experienced by the polymer during the process. Solvent type affected the amount of crystalline phase present, the boundary concentration between the two processes and the average diameter of fibers. Meshes processed by electrospinning display a degree of crystallinity higher than the films obtained by electrospray.展开更多
In this paper,the theoretical analysis proves that the relationship between radius r of jet and the axial distance z from the onset of whipping instability follows an allometric law in the form r∝z-1/4 whatever surfa...In this paper,the theoretical analysis proves that the relationship between radius r of jet and the axial distance z from the onset of whipping instability follows an allometric law in the form r∝z-1/4 whatever surface charge parameter α is.Polyvinylalcohol(PVA)was used to study the effect of surface charge on the variation of jet diameter with axial coordinate after the onset of whipping instability during electrospinning by adding LiCl.The experiment shows that the relationship between radius r of jet and the axial distance z from the onset of whipping instability also follows the law in the form r∝z-1/4 when the content of LiCl is from 0.2 wt% to 4 wt%.That is,the law does not depend upon the content of salt,and the theoretical prediction agrees quite well with the experimental data.展开更多
A new method of preparing silk fibroin (SF) solution used in the decterospinning was introduced in this paper. According to the method, SF was dissolved in the LiBr/CH2O2 solution directly at room temperature. The m...A new method of preparing silk fibroin (SF) solution used in the decterospinning was introduced in this paper. According to the method, SF was dissolved in the LiBr/CH2O2 solution directly at room temperature. The method was compared with the traditional method--SF was dissolved in CaCl2 ternary solution. The structure of SF films and the morphology of SF nanofibers were examined by attenuated total reflectance fourier transform intrared (ATR- FTIR) spectroscopy, Scanning electron microscope (SEM) and optical polarizing microscope. The result of this study shows that the new method is a faster, more convenient and high cfficieat way to get the SF solution and the characteristics of SF fiber made by the new metbod is much better.展开更多
The rheological properties in question are influenced by many factors, ranging from the characteristics of the given polymer or solvent to the flowing conditions. The primary focus of this study is to analyse the rheo...The rheological properties in question are influenced by many factors, ranging from the characteristics of the given polymer or solvent to the flowing conditions. The primary focus of this study is to analyse the rheological behaviour of poly(vinyl butyral)—Mowital B 60 H—(PVB) solutions dissolved in methanol and a blend of these with fumed silica nanoparticles. The preparation of the nanofibrous web and the quality of nanofibres were correlated with the rheology of the polymer solution. It was discerned that drastically intensifying shear viscosity and the elasticity of the solution exerted a negligible effect on the formation of fibres, a finding which has rarely been discussed in the literature. The morphologies and structures of the PVB/silica nanofibrous membranes were investigated by scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy.展开更多
BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD....BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.展开更多
Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIB...Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIBs,which are foldable and have high energy densities,are be-coming increasingly important as power sources for wear-able devices,flexible electronics,and mobile energy applica-tions.Carbon materials,especially carbon nanofibers,are pivotal in improving the performance of FLIBs by increas-ing electrical conductivity,chemical stability,and surface area,as well as reducing costs.These materials also play a significant role in establishing conducting networks and im-proving structural integrity,which are essential for extend-ing the cycle life and enhancing the safety of the batteries.This review considers the role of electrospinning in the fabrication of critical FLIB components,with a particular emphasis on the integration of carbon materials.It explores strategies to optimize FLIB performance by fine-tuning the electrospinning para-meters,such as electric field strength,spinning rate,solution concentration,and carbonization process.Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending.It also highlights the latest research findings in carbon-based electrode materials,high-performance electrolytes,and separator structures,discussing the practical challenges and opportunities these materials present.It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies.展开更多
Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method mor...Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.展开更多
Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has...Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.展开更多
Colorectal cancer(CRC)is a prevalent malignancy worldwide,posing a significant public health concern.Mounting evidence has confirmed that timely early screening facilitates the detection of incipient CRC,thereby enhan...Colorectal cancer(CRC)is a prevalent malignancy worldwide,posing a significant public health concern.Mounting evidence has confirmed that timely early screening facilitates the detection of incipient CRC,thereby enhancing patient prognosis.Obviously,non-participation of asymptomatic individuals in screening programs hampers early diagnosis and may adversely affect long-term outcomes for CRC patients.In this letter,we provide a comprehensive overview of the current status of early screening practices,while also thoroughly examine the dilemmas and potential solutions associated with early screening for CRC.In response to these issues,we proffer a set of recommendations directed at governmental authorities and the general public,which focus on augmenting financial investment,establishing standardized screening protocols,advancing technological capabilities,and bolstering public awareness campaigns.The importance of collaborative efforts from various stakeholders cannot be overstated in the quest to enhance early detection rates and alleviate the societal burden of CRC.展开更多
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ...With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.展开更多
The performance of Mg alloys is significantly influenced by the concentrations and solid solution behavior of the alloying elements.In this work,the solid solution behavior of 20 alloying elements in 190 ternary Mg al...The performance of Mg alloys is significantly influenced by the concentrations and solid solution behavior of the alloying elements.In this work,the solid solution behavior of 20 alloying elements in 190 ternary Mg alloy systems at 500℃are systematically investigated.The solid solution behavior of a set of two different alloying elements in Mg alloy systems are suggested to be classified into three categories:inclusivity,exclusivity and proportionality.Inclusivity classification indicates that the two alloying elements are inclusive inα-Mg,increasing the joint solubility of both elements.Exclusivity classification suggests that the two alloying elements have a low joint solid solubility inα-Mg,since they prefer to form stable second phases.For the proportionality classification,the solubility curve of the ternary Mg alloy systems is a straight line connecting the solubility points of the two sub-binary systems.The proposed classification theory was validated by key experiments and the calculation of formation energies.The interaction effects between alloying elements and the preference of formation of second phases are the main factors determining the solid solution behavior classifications.Based on the observed solid solution features of multi-component Mg alloys,principles for alloy design of different types of high-performance Mg alloys were proposed in this work.展开更多
Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the t...Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.展开更多
基金Supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+1 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi ProvinceIntelligent Optoelectronic Sensing Application Technology Innovation Center and Shanxi Province Optoelectronic Information Science and TechnologyLaboratory,Yuncheng University.
文摘In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.
基金supported by the Russian state-funded project for ICBFM SB RAS(grant number 125012300656-5)。
文摘Background:The development of materials for cardiovascular surgery that would improve the effectiveness of surgical interventions remains an important task.Surgical intervention during the implantation of vascular prostheses and stents,and the body’s reaction to artificial materials,could lead to chronic inflammation,a local increase in the concentration of proinflammatory factors,and stimulation of unwanted tissue growth.The introduction of nonsteroidal anti-inflammatory drugs into implantable devices could be used to obtain vascular implants that do not induce inflammation and do not induce neointimal tissue outgrowth.Methods:The scaffolds were made by electrospinning from mixtures of polyurethane(PU)with diclofenac(DF).The kinetics of DF release from the scaffolds composed of 3%PU/10%HSA/3%DMSO/DF and 3%PU/DF were studied.The biocompatibility and anti-inflammatory effects of the obtained scaffolds on human gingival fibroblasts and umbilical vein endothelial cells were studied.Results:Both types of scaffolds are characterized by fast DF release.The viability of cells cultured on scaffolds is 2 times worse than that of cells cultured on plastic.The level of the proinflammatory cytokine IL-6 in the culture medium of cells cultured on DF-containing scaffolds was lower than that of cells cultured on scaffolds without DF.Conclusion:The introduction of DF into scaffolds minimizes the inflammation caused by cell reactions to an artificial material.
基金supported by the China Agriculture Research System(Grant No.CARS-23-D06)the Key Research and Development Program of Shaanxi Province(Grant Nos.2024NC2-GJHX-29 and 2024NC-ZDCYL-05-08)Shaanxi Agricultural Collaborative Innovation and Extension Alliance Project(Grant No.LMZD202202).
文摘Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development of mechanization,wide-row spacing substrate cultivation became an optimize mode of the greenhouse cucumber cultivation,aligning with the trend of intelligent agriculture.To determine the optimal nutrient solution supply amount(NS)and supply frequency(SF)for promoting the integrated growth of cucumber under wide-row spacing substrate cultivation,we explored the effects of substrate supply amount(SS),NS,and SF on cucumber yield,quality,and element utilization efficiency.A five-level quadratic orthogonal rotation combination design with three experimental factors(NS,SF,and SS)was implemented for 23 coupling treatments over three growing seasons,including spring(2022S and 2023S)and autumn(2022A).The technique for order preference by similarity to ideal solution(TOPSIS)combining weights based on game theory was applied to construct cucumber comprehensive growth evaluation model.Single and two experimental factors analyses revealed significant effects of single factors and the coupling of NS-SS,NS-SF and SS-SF on the integrated growth of cucumber for all three growing seasons.For the NS-SF-SS combination,the optimal parameters for comprehensive cucumber growth were determined as follows:levels of^(-1).68 for NS,-0.7 for SF,and^(-1).682 for SS in 2022A;-0.43 for NS,-0.06 for SF,and 0.34 for SS in 2022S;0.3 for NS,-0.02 for SF,and 0.04 for SS in 2023S.Furthermore,for SS ranges of 2.00-3.01,3.01-4.50,4.50-5.99,5.99-7.00(L·plant^(-1)),the corresponding NS and SF intervals maximizing cucumber integrated growth in spring were:0.28-0.30(L·plant^(-1))and 6(times·d^(-1)),0.26-0.30(L·plant^(-1))and 6(times·d^(-1)),0.25-0.30(L·plant^(-1))and 6(times·d^(-1)),0.23-0.30(L·plant^(-1))and 6(times·d^(-1)),respectively.With the same SS,the corresponding NS and SF intervals that maximized cucumber integrated growth in autumn were:0.10(L·plant^(-1))and 8(times·d^(-1)),0.18(L·plant^(-1))and 7(times·d^(-1)),0.30(L·plant^(-1))and 6(times·d^(-1)),0.49(L·plant^(-1))and 5(times·d^(-1)),respectively.The results provide a theoretical basis for solution management,and further in-depth research on cucumber cultivation.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
基金supported by China-USA cooperation for 10+10 program (No. 2009DFA90740),Ministry of Science and Technologysponsored by Science & Technology Commission,Shanghai
文摘Novel amino (-NH2) functionalized mesoporous polyvinyl pyrrolidone (PVP)/SiO2 composite nanofiber membranes were fabricated by a one-step electrospinning method using poly (vinyl alcohol) and tetraethyl orthosilicate (TEOS) mixed with cationic surfactant, cety|trimethyl ammonium bromide (CTAB) as the structure directing agent. Ureidopropyltriethoxysilane was used for functionalization of the internal pore surfaces. The membranes were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), element analyzer and Nz adsorption-desorption isotherms, The nanofiber diameters, average pore diameters and surface areas were 100-700 nm, 2.86 nm and 873,62 m2/g, respectively. These mesoporous membranes functionalized with -NH2 groups exhibited very high adsorptions properties based on the adsorption of Cr3+ from an aqueous solution. Equilibrium adsorption was achieved after approximately 20 rain and more than 97% of chronium ions in the solution were removed. The membrane could be regenerated through acidification.
基金supported by the National Natural Science Foundation of China(Nos. 21374117 and 21774128)Major State Basic Research Development Program(No.2015CB655302)+1 种基金Key Research Program of Frontier Sciences (No. QYZDY-SSW-SLH027)One Hundred Person Project of the Chinese Academy of Sciences
文摘Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure and rheology of the solutions. We studied the structure and rheology of polyethylene oxide (PEO) and zein in 80% ethanol aqueous solutions and the resulted EFM. In solutions, zein with rod-like conformation tends to aggregate and form oligomer, the number of proteins in the oligomer spans from 2.5 to 55.2, while PEO always behaves like Gaussian chain in good solvent. Zein preferred to distribute along PEO chains in their mixed solutions, and the structures decomposed from small angle X-ray scattering have consistent relaxation spatial-temporal characteristics with rheological behaviors.Further, the aging of zein solutions enhanced shear thinning and resulted thicker fibers in EFM, which are attributed to the rod-like growth of zein aggregates. Aggregates in viscous media with long enough relaxation time are probably crucial for the formation of continuous electrospun fibers or ribbons. This study provides a clear correlation of the structure, rheology of solutions with the morphologies of EFM made up of proteins and polymers.
基金financially supported by the Universiti Teknologi Malaysia,(UTM) for providing IDF
文摘The relationship between the rheological properties of nylon-6,6 solutions and the morphology of their electrospun nanofibers was established. The viscosity of nylon-6,6 in formic acid (90%) was measured in the concentration range of 5 wt%-25 wt% using a programmable viscometer. Electrospinning of nylon-6,6 solutions was carried out under controlled parameters. The chemical structure, morphology and thermal properties of the obtained nanofibers were investigated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively, Entanglement concentration (ce) was found to be 15 wt% and a power law relationship between specific viscosity and solution concentration was observed with exponents of 2.0 and 3.3 for semi-dilute unentangled (c 〈 ce) and semi-dilute entangled (c 〉 ce) regimes, respectively. The diameter and uniformity of the nanofibers were found to be dependent on the viscosity. Moreover, the average diameter of electrospun nanofibers was found to be dependent on zero shear rate viscosity and normalized concentration (c/ce) in a power law relationship with exponents of 0.298 and 0.816, respectively. For nylon-6,6 solutions, the entanglement concentration (ce = 15 wt%) provides the threshold viscosity required for the formation of a stable polymeric jet during electrospinning and producing uniform beadless fibers. For concentrations less than ce, beaded fibers with some irregularities are formed. DSC analysis showed an increase in crystallinity of all electrospun samples compared to original polymer. Furthermore; Based on FTIR spectroscopy, α phase is dominant in electrospun nanofibers and minor amount offland ),phases is also available.
基金Funded by the National Natural Science Foundation of China(Nos.21076199,51373158)the Department of Science and Technology of Henan Province(No.124300510)
文摘Poly(vinyl alcohol)/collagen (PVA/COL) micro-nanofibers were successfully prepared by electrospinning process. Water, green, and non-toxic was used as the solvent. The electrospun mats consisted of micro-nanoscale fibers with mean diameter ranging from approximately 363 nm to 179 nm. It was observed that the mean diameters of PVA/COL electrospun fibers decreased with increasing collagen content. The effects of PVA/COL blending ratio on the rheological behavior of PVA/COL blended solutions were investigated by rotate rheometer. It was found that PVA/COL blended solutions behaved as Non-Newtonian fluids. With increasing collagen content, the Non-Newtonian index (n) of PVA/COL blended solutions decreased. Meanwhile, a linear relationship was found between the Non-Newtonian index (n) and the mean diameters of the PVA/COL micro- nanofibers. The chemical structures of PVA/COL electrospun fibers were also characterized by FTIR.
文摘A study was conducted regarding the effect of concentration of poly (vinylidene fluoride) (PVDF)/N,N-dimethylformamide (DMF) and PVDF/DMF/acetone solutions on the transition between electrospray and electrospinning and on the formation of the ? and ? crystalline phases of PVDF. The crystalline phases present in the samples, crystallinity and morphology were determined by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. Low concentration solutions resulted in films consisting of small droplets (electrospray) containing predominantly the ? phase. High concentration solutions resulted in a non-woven mesh of nano-to-micron diameter fibers (electrospinning) containing exclusively the ? phase. These results showed that, the formation of this phase in the electrospinning is related mainly to the solvent evaporation rate, and not to drawing experienced by the polymer during the process. Solvent type affected the amount of crystalline phase present, the boundary concentration between the two processes and the average diameter of fibers. Meshes processed by electrospinning display a degree of crystallinity higher than the films obtained by electrospray.
基金National Natural Science Foundations of China(No.50973014,No.10902099)the Author of National Excellent Doctoral Dissertation of P.R.China(No.200961)+2 种基金Shanghai Rising-Star Program(No.10QA1400100)Fok Ying Tong Education Foundation(No.121071)the Fundamental Research Funds for the Central Universities,China(No.9D10117)
文摘In this paper,the theoretical analysis proves that the relationship between radius r of jet and the axial distance z from the onset of whipping instability follows an allometric law in the form r∝z-1/4 whatever surface charge parameter α is.Polyvinylalcohol(PVA)was used to study the effect of surface charge on the variation of jet diameter with axial coordinate after the onset of whipping instability during electrospinning by adding LiCl.The experiment shows that the relationship between radius r of jet and the axial distance z from the onset of whipping instability also follows the law in the form r∝z-1/4 when the content of LiCl is from 0.2 wt% to 4 wt%.That is,the law does not depend upon the content of salt,and the theoretical prediction agrees quite well with the experimental data.
基金National Natural Science Foundation (No.10602014)
文摘A new method of preparing silk fibroin (SF) solution used in the decterospinning was introduced in this paper. According to the method, SF was dissolved in the LiBr/CH2O2 solution directly at room temperature. The method was compared with the traditional method--SF was dissolved in CaCl2 ternary solution. The structure of SF films and the morphology of SF nanofibers were examined by attenuated total reflectance fourier transform intrared (ATR- FTIR) spectroscopy, Scanning electron microscope (SEM) and optical polarizing microscope. The result of this study shows that the new method is a faster, more convenient and high cfficieat way to get the SF solution and the characteristics of SF fiber made by the new metbod is much better.
基金the Grant Agency CR for the financial support of Grant Project(No.17-26808S)the support of the Ministry of Education,Youth and Sports of the Czech Republic-Programme NPU I(No.LO1504)
文摘The rheological properties in question are influenced by many factors, ranging from the characteristics of the given polymer or solvent to the flowing conditions. The primary focus of this study is to analyse the rheological behaviour of poly(vinyl butyral)—Mowital B 60 H—(PVB) solutions dissolved in methanol and a blend of these with fumed silica nanoparticles. The preparation of the nanofibrous web and the quality of nanofibres were correlated with the rheology of the polymer solution. It was discerned that drastically intensifying shear viscosity and the elasticity of the solution exerted a negligible effect on the formation of fibres, a finding which has rarely been discussed in the literature. The morphologies and structures of the PVB/silica nanofibrous membranes were investigated by scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy.
基金Supported by Science and Technology Department of Sichuan Province,No.2020YFS0376National Natural Science Foundation of China,No.81900599Science and Technology Program of Hospital of TCM,Southwest Medical University,No.2022-CXTD-01.
文摘BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.
文摘Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIBs,which are foldable and have high energy densities,are be-coming increasingly important as power sources for wear-able devices,flexible electronics,and mobile energy applica-tions.Carbon materials,especially carbon nanofibers,are pivotal in improving the performance of FLIBs by increas-ing electrical conductivity,chemical stability,and surface area,as well as reducing costs.These materials also play a significant role in establishing conducting networks and im-proving structural integrity,which are essential for extend-ing the cycle life and enhancing the safety of the batteries.This review considers the role of electrospinning in the fabrication of critical FLIB components,with a particular emphasis on the integration of carbon materials.It explores strategies to optimize FLIB performance by fine-tuning the electrospinning para-meters,such as electric field strength,spinning rate,solution concentration,and carbonization process.Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending.It also highlights the latest research findings in carbon-based electrode materials,high-performance electrolytes,and separator structures,discussing the practical challenges and opportunities these materials present.It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies.
基金supported by the National Natural Science Foun-dation of China(Nos.52025028,52332008,52372214,52202273,and U22A20137)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.
基金supported by the National Natural Science Foundation of China(Nos.22379019,52172184)Sichuan Science and Technology Program(No.2024YFHZ0313)S&T Special Program of Huzhou(No.2023GZ03)。
文摘Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.
文摘Colorectal cancer(CRC)is a prevalent malignancy worldwide,posing a significant public health concern.Mounting evidence has confirmed that timely early screening facilitates the detection of incipient CRC,thereby enhancing patient prognosis.Obviously,non-participation of asymptomatic individuals in screening programs hampers early diagnosis and may adversely affect long-term outcomes for CRC patients.In this letter,we provide a comprehensive overview of the current status of early screening practices,while also thoroughly examine the dilemmas and potential solutions associated with early screening for CRC.In response to these issues,we proffer a set of recommendations directed at governmental authorities and the general public,which focus on augmenting financial investment,establishing standardized screening protocols,advancing technological capabilities,and bolstering public awareness campaigns.The importance of collaborative efforts from various stakeholders cannot be overstated in the quest to enhance early detection rates and alleviate the societal burden of CRC.
基金supported by the National Natural Science Foundation of China(Nos.52373093 and 12072325)the Outstanding Youth Fund of Henan Province(No.242300421062)+1 种基金National Key R&D Program of China(No.2019YFA0706802)the 111 project(No.D18023).
文摘With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.
基金financially supported by National Natural Science Foundation of China(grant numbers:52171100,U20A20234)National Key R&D Program of China(grant number:2021YFB3701100)。
文摘The performance of Mg alloys is significantly influenced by the concentrations and solid solution behavior of the alloying elements.In this work,the solid solution behavior of 20 alloying elements in 190 ternary Mg alloy systems at 500℃are systematically investigated.The solid solution behavior of a set of two different alloying elements in Mg alloy systems are suggested to be classified into three categories:inclusivity,exclusivity and proportionality.Inclusivity classification indicates that the two alloying elements are inclusive inα-Mg,increasing the joint solubility of both elements.Exclusivity classification suggests that the two alloying elements have a low joint solid solubility inα-Mg,since they prefer to form stable second phases.For the proportionality classification,the solubility curve of the ternary Mg alloy systems is a straight line connecting the solubility points of the two sub-binary systems.The proposed classification theory was validated by key experiments and the calculation of formation energies.The interaction effects between alloying elements and the preference of formation of second phases are the main factors determining the solid solution behavior classifications.Based on the observed solid solution features of multi-component Mg alloys,principles for alloy design of different types of high-performance Mg alloys were proposed in this work.
文摘Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.