期刊文献+
共找到284篇文章
< 1 2 15 >
每页显示 20 50 100
Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest:A Case Study in Henan Province,China 被引量:1
1
作者 SHI Xiaoliang CHEN Jiajun +2 位作者 DING Hao YANG Yuanqi ZHANG Yan 《Chinese Geographical Science》 SCIE CSCD 2024年第2期342-356,共15页
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r... Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield. 展开更多
关键词 winter wheat yield estimation sparrow search algorithm combined with random forest(SSA-RF) machine learning multi-source indicator optimal lead time Henan Province China
在线阅读 下载PDF
Optimized quantum random-walk search algorithm for multi-solution search 被引量:1
2
作者 张宇超 鲍皖苏 +1 位作者 汪翔 付向群 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期133-139,共7页
This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the se... This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value. 展开更多
关键词 quantum search algorithm quantum random walk multi-solution abstract search algorithm
原文传递
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
3
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring random Trees*(QRRT*)
在线阅读 下载PDF
AN ANALYSIS ABOUT BEHAVIOR OF EVOLUTIONARY ALGORITHMS:A KIND OF THEORETICAL DESCRIPTION BASED ON GLOBAL RANDOM SEARCH METHODS 被引量:1
4
作者 Ding Lixin Kang Lishan +1 位作者 Chen Yupin Zhou Shaoquan 《Wuhan University Journal of Natural Sciences》 CAS 1998年第1期31-31,共1页
Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstructio... Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured. 展开更多
关键词 global random search evolutionary algorithms weak convergence genetic algorithms
在线阅读 下载PDF
Decoherence in optimized quantum random-walk search algorithm 被引量:1
5
作者 张宇超 鲍皖苏 +1 位作者 汪翔 付向群 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期197-202,共6页
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the opt... This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. 展开更多
关键词 quantum search algorithm quantum random walk DECOHERENCE
原文传递
Effects of systematic phase errors on optimized quantum random-walk search algorithm
6
作者 张宇超 鲍皖苏 +1 位作者 汪翔 付向群 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期155-163,共9页
This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this ... This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm. 展开更多
关键词 quantum search algorithm quantum random walk phase errors ROBUSTNESS
原文传递
Random Search Algorithm for the Generalized Weber Problem
7
作者 Lev Kazakovtsev 《Journal of Software Engineering and Applications》 2012年第12期59-65,共7页
In this paper, we consider the planar multi-facility Weber problem with restricted zones and non-Euclidean distances, propose an algorithm based on the probability changing method (special kind of genetic algorithms) ... In this paper, we consider the planar multi-facility Weber problem with restricted zones and non-Euclidean distances, propose an algorithm based on the probability changing method (special kind of genetic algorithms) and prove its efficiency for approximate solving this problem by replacing the continuous coordinate values by discrete ones. Version of the algorithm for multiprocessor systems is proposed. Experimental results for a high-performance cluster are given. 展开更多
关键词 DISCRETE Optimization WEBER Problem random search GENETIC algorithms Parallel algorithm
在线阅读 下载PDF
基于Solis-Wets随机搜索算法的变截面板簧优化设计
8
作者 李东月 方宗德 +1 位作者 古玉锋 高度 《机械科学与技术》 CSCD 北大核心 2010年第12期1735-1738,共4页
变截面钢板弹簧以片数少、自重轻、吸收振动载荷能力强、疲劳寿命高等优点正逐步取代等截面钢板弹簧。但由于变截面钢板弹簧存在几何非线性、状态非线性等问题,常规的设计方法很难得到一个合适的设计方案。笔者利用APDL语言建立参数化... 变截面钢板弹簧以片数少、自重轻、吸收振动载荷能力强、疲劳寿命高等优点正逐步取代等截面钢板弹簧。但由于变截面钢板弹簧存在几何非线性、状态非线性等问题,常规的设计方法很难得到一个合适的设计方案。笔者利用APDL语言建立参数化的变截面钢板弹簧有限元模型,计算其应力和刚度。利用DAKOTA优化工具包使用Solis-Wets随机搜索算法结合ANSYS有限元分析进行结构参数优化。获得了同时满足许用应力要求和适合刚度约束的质量最轻设计方案。 展开更多
关键词 变截面钢板弹簧 有限元分析 solis-wets随机搜索算法 刚度特性
在线阅读 下载PDF
Detection of micro-water in transformer oil based on ultrasonic pulse-echo method and sparrow search algorithm-random forest
9
作者 Ziwen Huang Lufen Jia +2 位作者 Wenwen Gu Weigen Chen Qu Zhou 《High Voltage》 2025年第4期917-929,共13页
This study proposes a novel transformer oil micro-water detection method based on the ultrasonic pulse-echo technique,optimised by a sparrow search algorithm(SSA)to enhance the prediction performance of a random fores... This study proposes a novel transformer oil micro-water detection method based on the ultrasonic pulse-echo technique,optimised by a sparrow search algorithm(SSA)to enhance the prediction performance of a random forest(RF)model.Initially,finite element simulations were conducted to select optimal ultrasonic frequencies of 2 and 2.5 MHz.An accelerated thermal ageing experiment was performed using#25 Karamay oil samples,and ultrasonic pulse-echo signals were collected via a custom-built detection platform.Variational mode decomposition was employed to extract effective echoes from the raw pulse-echo signals.Temporal and frequency domain analyses yielded 162 dimensional features,which were subsequently filtered to 88 key parameters using the maximum information coefficient method.A transformer oil micro-water detection model was then developed by integrating the SSA with RF and trained using K-fold cross-validation.The model achieved an impressive average prediction accuracy of 97.34%over 10 cross-validation runs.The testing set demonstrated a prediction accuracy of 96.40%,a remarkable improvement of 16.53%compared to the unoptimised RF model.The findings provide a solid foundation for the rapid detection of micro-water content in transformer oil using the ultrasonic pulse-echo method. 展开更多
关键词 element simulations ultrasonic pulse echo Sparrow search algorithm random Forest enhance prediction performance Micro water detection Transformer oil sparrow search algorithm ssa
在线阅读 下载PDF
Improvement of Pure Random Search in Global Optimization 被引量:1
10
作者 Jian-ping1 Peng Ding-hua Shi 《Advances in Manufacturing》 2000年第2期92-95,共4页
In this paper, the improvement of pure random search is studied. By taking some information of the function to be minimized into consideration, the authors propose two stochastic global optimization algorithms. Some n... In this paper, the improvement of pure random search is studied. By taking some information of the function to be minimized into consideration, the authors propose two stochastic global optimization algorithms. Some numerical experiments for the new stochastic global optimization algorithms are presented for a class of test problems. 展开更多
关键词 random search global optimization stochastic global optimization algorithm
在线阅读 下载PDF
Analytical Comparison of Resource Search Algorithms in Non-DHT Mobile Peer-to-Peer Networks 被引量:1
11
作者 Ajay Arunachalam Vinayakumar Ravi +2 位作者 Moez Krichen Roobaea Alroobaea Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2021年第7期983-1001,共19页
One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying que... One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying question?Broadcasting is a basic technique in the Mobile Ad-hoc Networks(MANETs),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received packet is retransmitted once by every node.The naive ooding technique oods the network with query messages,while the random walk scheme operates by contacting subsets of each node’s neighbors at every step,thereby restricting the search space.Many earlier works have mainly focused on the simulation-based analysis of ooding technique,and its variants,in a wired network scenario.Although,there have been some empirical studies in peer-to-peer(P2P)networks,the analytical results are still lacking,especially in the context of mobile P2P networks.In this article,we mathematically model different widely used existing search techniques,and compare with the proposed improved random walk method,a simple lightweight approach suitable for the non-DHT architecture.We provide analytical expressions to measure the performance of the different ooding-based search techniques,and our proposed technique.We analytically derive 3 relevant key performance measures,i.e.,the avg.number of steps needed to nd a resource,the probability of locating a resource,and the avg.number of messages generated during the entire search process. 展开更多
关键词 Mathematical model MANET P2P networks P2P MANET UNSTRUCTURED search algorithms Peer-to-Peer AD-HOC ooding random walk resource discovery content discovery mobile peer-to-peer broadcast PEER
在线阅读 下载PDF
Investigation Effects of Selection Mechanisms for Gravitational Search Algorithm
12
作者 Oguz Findik Mustafa Servet Kiran Ismail Babaoglu 《Journal of Computer and Communications》 2014年第4期117-126,共10页
The gravitational search algorithm (GSA) is a population-based heuristic optimization technique and has been proposed for solving continuous optimization problems. The GSA tries to obtain optimum or near optimum solut... The gravitational search algorithm (GSA) is a population-based heuristic optimization technique and has been proposed for solving continuous optimization problems. The GSA tries to obtain optimum or near optimum solution for the optimization problems by using interaction in all agents or masses in the population. This paper proposes and analyzes fitness-based proportional (rou- lette-wheel), tournament, rank-based and random selection mechanisms for choosing agents which they act masses in the GSA. The proposed methods are applied to solve 23 numerical benchmark functions, and obtained results are compared with the basic GSA algorithm. Experimental results show that the proposed methods are better than the basic GSA in terms of solution quality. 展开更多
关键词 Gravitational search algorithm Roulette-Wheel Selection Tournament Selection Rank-Based Selection random Selection Continuous Optimization
在线阅读 下载PDF
动态环境下改进BIT^(*)算法的机器人路径规划 被引量:1
13
作者 王晓军 崔锡杰 李晓航 《计算机工程与应用》 北大核心 2025年第7期361-369,共9页
针对批量通知树算法在小样本中搜索路径成功率低、大样本中规划效率低、路径冗余节点多以及无法躲避未知障碍物的问题,提出动态环境批量通知树算法。利用改进批量采样点策略将样本点均匀等间距处理,并改进批量采样点数量以及偏置采样点... 针对批量通知树算法在小样本中搜索路径成功率低、大样本中规划效率低、路径冗余节点多以及无法躲避未知障碍物的问题,提出动态环境批量通知树算法。利用改进批量采样点策略将样本点均匀等间距处理,并改进批量采样点数量以及偏置采样点位置,弥补搜索路径成功率低的缺点;加入惩罚项改进启发式函数,弥补路径规划效率低的缺点;再引入路径拉伸优化减少路径长度以及冗余节点,缩小采样范围。面对未知障碍物,利用反向生长搜索树先验信息提出临时目标点选取策略,并结合改进随机点、转向角以及新节点的快速扩展随机树(RRT)算法,避免重规划路径过分偏离以及不能及时躲避。与其他算法进行对比,结果表明:动态环境批量通知树算法规划路径成功率和效率更高,路径长度和拐点数更少,躲避未知障碍物性能更高,重规划路径更接近全局路径。 展开更多
关键词 批量通知树算法 反向生长搜索树 批量采样点策略 启发式函数 快速扩展随机树(RRT)算法 路径重规划
在线阅读 下载PDF
改进麻雀搜索算法在注汽锅炉配汽优化的应用
14
作者 倪红梅 刘永建 李盼池 《绥化学院学报》 2025年第8期144-147,共4页
针对蒸汽驱注汽锅炉配汽效果差的现状,提出了一种改进麻雀搜索算法的蒸汽驱注汽锅炉配汽优化方法。该方法首先建立蒸汽驱注汽锅炉配汽数学模型,然后采用改进麻雀搜索算法对此模型进行了求解,最后得到蒸汽驱注汽锅炉配汽优化最优方案。... 针对蒸汽驱注汽锅炉配汽效果差的现状,提出了一种改进麻雀搜索算法的蒸汽驱注汽锅炉配汽优化方法。该方法首先建立蒸汽驱注汽锅炉配汽数学模型,然后采用改进麻雀搜索算法对此模型进行了求解,最后得到蒸汽驱注汽锅炉配汽优化最优方案。该算法应用Sine混沌映射产生更好的初始解,对精英解进行随机扰动,进一步提高了种群的可进化能力。实验结果表明:所建立模型准确,优化算法有效。 展开更多
关键词 麻雀搜索算法 蒸汽驱 注汽锅炉 混沌映射 随机扰动
在线阅读 下载PDF
基于SCSSA-RF算法的室内可见光定位算法
15
作者 陈耀 张烈平 +1 位作者 高小淋 张翠 《光通信技术》 北大核心 2025年第1期1-5,共5页
针对随机森林(RF)算法用于室内可见光定位时定位精度低,存在过拟合风险的问题,提出了一种基于正弦人口映射(SPM)与柯西分布的麻雀搜索算法(SSA)优化RF算法的室内可见光定位算法(简称SCSSA-RF算法)。首先,该算法使用采集到的接收信号强... 针对随机森林(RF)算法用于室内可见光定位时定位精度低,存在过拟合风险的问题,提出了一种基于正弦人口映射(SPM)与柯西分布的麻雀搜索算法(SSA)优化RF算法的室内可见光定位算法(简称SCSSA-RF算法)。首先,该算法使用采集到的接收信号强度值与位置坐标建立指纹数据库。然后,使用SCSSA的全局搜索能力对RF算法的关键参数进行优化,将数据输入最佳模型中进行训练。最后,将决策树的预测结果取平均值,得到待定位点的预测值。实验结果表明:SCSSA-RF算法比未改进的SSA-RF算法收敛速度更快;SCSSA-RF算法的平均定位误差为0.08 m,且误差主要集中在0.05~0.1 m内;在定位误差为0.2 m时,SCSSA-RF算法的预测准确率达到了93%。 展开更多
关键词 可见光定位 正弦人口映射 柯西分布 麻雀搜索算法 随机森林
在线阅读 下载PDF
群智能算法优化改进随机森林算法的井漏预测
16
作者 白凯 戴升升 +1 位作者 张照硕 金思怡 《现代电子技术》 北大核心 2025年第14期159-168,共10页
井漏预测一直是钻井中堵漏防治研究的热点和难点课题,传统方法依赖专家经验,技术可复制性差,在特征参数选择上缺乏与井漏的相关性分析,导致预测精度低,且模型存在一定的局限性。为此,提出一种基于M5模型树的改进随机森林(IRF)算法,并采... 井漏预测一直是钻井中堵漏防治研究的热点和难点课题,传统方法依赖专家经验,技术可复制性差,在特征参数选择上缺乏与井漏的相关性分析,导致预测精度低,且模型存在一定的局限性。为此,提出一种基于M5模型树的改进随机森林(IRF)算法,并采用基于Sobol序列的初始化策略,引入自适应螺旋变化策略更新发现者位置,同时利用Lévy飞行策略来更新跟随者位置的改进麻雀搜索算法(ISSA)对IRF参数进行优化,进而建立一种ISSA-IRF井漏预测模型。该模型整合了来自地质、钻井泥浆和钻井作业相关的18个参数,利用Pearson相关性分析、递归特征消除和梯度提升树确定了11个关键参数。实验结果表明,与原模型相比,ISSA-IRF模型在井漏预测上的准确率提升了7.7%,且模型的性能显著优于经典的井漏预测模型(如LSTM、BP和SVM等)。改进后的模型可用于现场堵漏控制,为防漏堵漏作业提供科学指导。 展开更多
关键词 井漏预测 随机森林算法 M5模型树 Sobol序列 自适应螺旋变化 Lévy飞行策略 麻雀搜索算法
在线阅读 下载PDF
基于迁移学习的燃气管网泄漏定位方法 被引量:1
17
作者 陈岑 纪育博 +2 位作者 王欢 聂荣山 梁晓瑜 《中国安全科学学报》 北大核心 2025年第3期212-220,共9页
为增强燃气管网运行的可靠性与安全性,提高燃气管网泄漏故障的诊断能力,解决真实燃气管网泄漏数据样本稀缺及工况差异影响问题,提出基于迁移学习的燃气管网泄漏定位方法。首先,采用随机森林特征重要性排序方法,选取出TGNET仿真管网的5... 为增强燃气管网运行的可靠性与安全性,提高燃气管网泄漏故障的诊断能力,解决真实燃气管网泄漏数据样本稀缺及工况差异影响问题,提出基于迁移学习的燃气管网泄漏定位方法。首先,采用随机森林特征重要性排序方法,选取出TGNET仿真管网的5个压力监测点;然后,将3种不同压力工况下的压力监测点数据分别作为源域和目标域,输入特征,改进迁移学习传统联合概率分布适应(JDA)方法,以减小源域与目标域特征距离;最后,采用布谷鸟搜索(CS)算法,优化改进迁移学习算法的参数(映射后维度d'和学习率λ),实现无标签目标域泄漏管段的诊断。结果表明:所提复杂燃气管网泄漏定位方法可以有效提高无标签燃气管网泄漏识别效果,相比传统联合概率分布适应有更高的准确率。 展开更多
关键词 迁移学习 燃气管网 泄漏定位 随机森林 布谷鸟搜索(CS)算法 联合分布自适应(JDA)
原文传递
基于随机搜索两阶段规划模型算法的未知海域水下全覆盖路径规划研究
18
作者 王兆杰 茆明 +6 位作者 李丁山 孙牧 熊进辉 高峰 翟桥柱 张赫 刘浩 《中国舰船研究》 北大核心 2025年第4期286-294,共9页
[目的]针对水下航行器在目标海域执行先期驱潜、阵地游猎等搜索任务的典型应用场景,探讨在无先验信息且受探测能力约束的条件下,实现未知海域高效无死角覆盖搜索的方法。[方法]通过建立未知海域搜索路径规划数学模型,并针对随机搜索策... [目的]针对水下航行器在目标海域执行先期驱潜、阵地游猎等搜索任务的典型应用场景,探讨在无先验信息且受探测能力约束的条件下,实现未知海域高效无死角覆盖搜索的方法。[方法]通过建立未知海域搜索路径规划数学模型,并针对随机搜索策略设计基于两阶段规划的启发式求解方法,得出不同形状海域中各类搜索策略的效率结果。[结果]矩形海域中,平行搜索或螺旋搜索效率最高,之字搜索策略效率最低;圆形海域中,螺旋搜索效率最高;不规则海域中,平行搜索、之字搜索和螺旋搜索均无法直接应用,随机搜索可不经海域近似处理找到近优解。[结论]所建立的数学模型满足“全面覆盖未知海域”及“最短时间完成搜索”等条件,设计的随机搜索两阶段规划模型算法,能在不离散化战场物理空间、约束条件和决策变量的前提下,为任意不规则连通海域规划出满足全覆盖要求的随机搜索航路。 展开更多
关键词 水下航行器 运动规划 全覆盖搜索 随机搜索策略 路径规划 两阶段规划模型算法
在线阅读 下载PDF
基于改进随机森林的电机轴承故障诊断研究
19
作者 沙盟 陈高华 +1 位作者 郭燕飞 张春美 《太原科技大学学报》 2025年第4期346-351,共6页
根据传统随机森林算法在故障诊断中的诊断过程复杂和过拟合的现状,提出了一种改善随机森林算法的电机轴承故障诊断方法。首先,通过麻雀搜索算法(SSA)优化了随机树林中的最大树木数量以及最小叶子节点数量,建立一个基于改进随机森林算法... 根据传统随机森林算法在故障诊断中的诊断过程复杂和过拟合的现状,提出了一种改善随机森林算法的电机轴承故障诊断方法。首先,通过麻雀搜索算法(SSA)优化了随机树林中的最大树木数量以及最小叶子节点数量,建立一个基于改进随机森林算法的故障诊断模型。然后,采用聚合经验模态分解法(EEMD)提取故障特征,选取相关系数较高的前五个本征模态分量(IMF)并构建特征向量。最后,将特征向量输入故障诊断模型,并进行故障判别。结果显示,与传统随机森林算法和其他两种优化算法比较,经过改进的随机森林算法针对各种故障类型检测的精确度分别提高了8%,6%,4%,证实了所提方案的有效性。 展开更多
关键词 电机轴承 故障诊断 麻雀搜索算法 随机森林算法
在线阅读 下载PDF
改进的多策略麻雀搜索算法 被引量:2
20
作者 要会娟 张晓宇 +1 位作者 刘成刚 相洪涛 《机械设计与制造工程》 2025年第2期87-92,共6页
针对麻雀搜索算法初始种群多样性低、易陷入局部最优等问题,提出了一种改进的多策略麻雀搜索算法。首先采用反向学习策略取代麻雀搜索算法中随机生成种群的方法,保证了种群的多样性和高质量;其次在发现者中加入自适应权重策略,提高算法... 针对麻雀搜索算法初始种群多样性低、易陷入局部最优等问题,提出了一种改进的多策略麻雀搜索算法。首先采用反向学习策略取代麻雀搜索算法中随机生成种群的方法,保证了种群的多样性和高质量;其次在发现者中加入自适应权重策略,提高算法的收敛速度和精度;然后在警戒者中加入Lévy飞行策略,减小算法陷入局部最优的概率;最后利用随机游走的特性对处在最优位置的麻雀进行扰动,加大跳出局部最优的概率。对改进算法和其他6个对比算法在8个基准函数上进行测试,并进行Wilcoxon秩和检验,结果表明,该算法初始种群多样性增加,跳出局部最优的能力有较大提高。 展开更多
关键词 麻雀搜索算法 反向学习 自适应权重 Lévy飞行 随机游走
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部