期刊文献+
共找到1,124篇文章
< 1 2 57 >
每页显示 20 50 100
Dynamic temperature control of dividing wall batch distillation with middle vessel based on neural network soft-sensor and fuzzy control
1
作者 Xiaoyu Zhou Erwei Song +1 位作者 Mingmei Wang Erqiang Wang 《Chinese Journal of Chemical Engineering》 2025年第3期200-211,共12页
Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of ... Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of DWBDM process is challenging,since inherently dynamic and highly nonlinear,which make it difficult to give the controller reasonable set value or optimal temperature profile for temperature control scheme.To overcome this obstacle,this study proposes a new strategy to develop temperature control scheme for DWBDM combining neural network soft-sensor with fuzzy control.Dynamic model of DWBDM was firstly developed and numerically solved by Python,with three control schemes:composition control by PID and fuzzy control respectively,and temperature control by fuzzy control with neural network soft-sensor.For dynamic process,the neural networks with memory functions,such as RNN,LSTM and GRU,are used to handle with time-series data.The results from a case example show that the new control scheme can perform a good temperature control of DWBDM with the same or even better product purities as traditional PID or fuzzy control,and fuzzy control could reduce the effect of prediction error from neural network,indicating that it is a highly feasible and effective control approach for DWBDM,and could even be extended to other dynamic processes. 展开更多
关键词 Dividing wall batch distillation column Middle-vessel Temperature control Neural network soft-sensor Fuzzy control
在线阅读 下载PDF
Component Content Soft-sensor Based on Neural Networks in Rare-earth Countercurrent Extraction Process 被引量:13
2
作者 YANG Hui CHAI Tian-You 《自动化学报》 EI CSCD 北大核心 2006年第4期489-495,共7页
Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the err... Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness. 展开更多
关键词 RARE-EARTH countercurrent extraction soft-sensor equilibrium calculation model neural networks
在线阅读 下载PDF
Melt Index Prediction by Neural Soft-Sensor Based on Multi-Scale Analysis and Principal Component Analysis 被引量:11
3
作者 施健 刘兴高 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第6期849-852,共4页
Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model ... Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model with principal component analysis (PCA), radial basis function (RBF) networks, and multi-scale analysis (MSA) is proposed to infer the MI of manufactured products from real process variables, where PCA is carried out to select the most relevant process features and to eliminate the correlations of the input variables, MSA is introduced to a^quire much more information and to reduce the uncertainty of the system, and RBF networks are used to characterize the nonlinearity of the process. The research results show that the proposed method provides promising prediction reliability and accuracy, and supposed to have extensive application prospects in propylene polymerization processes. 展开更多
关键词 propylene polymerization neural soft-sensor principal component analysis multi-scale analysis
在线阅读 下载PDF
MIMO Soft-sensor Model of Nutrient Content for Compound Fertil- izer Based on Hybrid Modeling Technique 被引量:6
4
作者 傅永峰 苏宏业 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第4期554-559,共6页
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s... In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process. 展开更多
关键词 multi-inputs multi-outputs soft-sensor limited memory partial least squares simplified first principle model nutrient content of compound fertilizer
在线阅读 下载PDF
Component Content Soft-Sensor Based on Hybrid Models in Countercurrent Rare Earth Extraction Process 被引量:3
5
作者 杨辉 王欣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期86-91,共6页
In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth co... In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth component content. The hybrid models were composed of the extraction equilibrium calculation model and the Radial Basis Function (RBF) Neural Network (NN) error compensation model; the parameters of compensation model were optimized by the hierarchical genetic algorithms (HGA). In addition, application experiment research of this proposed method was carried out in the rare earth separation production process of a corporation. The result shows that this method is effective and can realize online measurement for the component content of rare earth in the countercurrent extraction. 展开更多
关键词 countercurrent extraction soft-sensor equilibrium calculation model RBF neural networks hierarchical genetic algorithms rare earths
在线阅读 下载PDF
Neural Networks Based Component Content Soft-Sensor in Countercurrent Rare-Earth Extraction 被引量:2
6
作者 杨辉 谭明皓 柴天佑 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第6期691-696,共6页
The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rar... The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rare earth (extraction) production. Simulation experiments with industrial operation data prove the effectiveness of the hybrid soft-(sensor). 展开更多
关键词 countercurrent extraction first principle model soft-sensor model neural networks rare earths
在线阅读 下载PDF
A data-derived soft-sensor method for monitoring effluent total phosphorus 被引量:5
7
作者 Shuguang Zhu Honggui Han +1 位作者 Min Guo Junfei Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1791-1797,共7页
The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to ob... The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to obtain the reliable values of ETP online. First, a partial least square(PLS) method is introduced to select the related secondary variables of ETP based on the experimental data. Second, a radial basis function neural network(RBFNN) is developed to identify the relationship between the related secondary variables and ETP. This RBFNN easily optimizes the model parameters to improve the generalization ability of the soft-sensor. Finally, a monitoring system, based on the above PLS and RBFNN, named PLS-RBFNN-based soft-sensor system, is developed and tested in a real WWTP. Experimental results show that the proposed monitoring system can obtain the values of ETP online and own better predicting performance than some existing methods. 展开更多
关键词 Data-derived soft-sensor Effluent total phosphorus Wastewater treatment process Radial basis function neural network Partial least square method
在线阅读 下载PDF
Method of Soft-Sensor Modeling for Fermentation Process Based on Geometric Support Vector Regression 被引量:1
8
作者 吴佳欢 王晓琨 +2 位作者 王建林 赵利强 于涛 《Journal of Donghua University(English Edition)》 EI CAS 2013年第1期1-6,共6页
The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow conve... The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome these problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls (CHs) or reduced convex hulls (RCHs) in geometry. Then a geometric algorithm is adopted to generate soft-sensor models of fermentation process efficiently. Furthermore, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor modeling for a penicillin fermentation process. The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency. 展开更多
关键词 fermentation process soft-sensor modeling geometric SVR swarm energy conservation particle swarm optimization (SEC-PSO)
在线阅读 下载PDF
Forward heuristic breadth-first reasoning based on rule match for biomass hybrid soft-sensor modeling in fermentation process
9
作者 安莉 王建林 《Journal of Beijing Institute of Technology》 EI CAS 2012年第1期128-133,共6页
Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good metho... Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process. 展开更多
关键词 fermentation process BIOMASS soft-sensor modeling rule match
在线阅读 下载PDF
基于改进随机配置网络的工业软测量建模实验
10
作者 邓晓刚 张静 王平 《实验室研究与探索》 北大核心 2025年第5期32-36,53,共6页
针对传统随机配置网络方法在变工况工业场景下难以建立准确软测量模型的问题,提出一种改进的随机配置网络(SCN)软测量建模方法,即多源迁移随机配置网络。以典型工业装置连续搅拌反应釜为例,通过实验研究验证了该方法的有效性。该方法将... 针对传统随机配置网络方法在变工况工业场景下难以建立准确软测量模型的问题,提出一种改进的随机配置网络(SCN)软测量建模方法,即多源迁移随机配置网络。以典型工业装置连续搅拌反应釜为例,通过实验研究验证了该方法的有效性。该方法将历史工况数据作为源域,将新工况数据作为目标域,采用K-means聚类算法将源域划分为多个子源域。针对每个子源域与目标域,分别建立SCN模型,并引入最大均值差异准则对多个迁移SCN模型进行加权集成。实验结果表明,所提出的多源迁移随机配置网络模型能够准确预测目标域的新样本,其建模性能优于传统的SCN模型。 展开更多
关键词 软测量 随机配置网络 迁移学习 多源域 最大均值差异
在线阅读 下载PDF
软测量技术及其在铝电解工业过程中的应用
11
作者 崔家瑞 史育彧 +4 位作者 黄若愚 陈晚晴 王明刚 杨旭 李擎 《智能感知工程》 2025年第2期70-81,共12页
铝电解工业过程机理复杂、生产环境恶劣,当前的槽控系统主要依赖电压在线检测与有限的离线方法,信息获取不全面且不及时,难以支撑工艺参数优化,更难以实现智能化管理升级。软测量技术能够提升信息感知能力,具有良好预测能力与实用性,对... 铝电解工业过程机理复杂、生产环境恶劣,当前的槽控系统主要依赖电压在线检测与有限的离线方法,信息获取不全面且不及时,难以支撑工艺参数优化,更难以实现智能化管理升级。软测量技术能够提升信息感知能力,具有良好预测能力与实用性,对提高铝电解行业信息检测水平、推动行业智能化转型具有重要意义。基于此,综述软测量技术发展现状及其在铝电解工业过程中的典型应用。首先,阐述软测量技术的基本原理与建模流程;其次,论述三类主要建模方法,即机理建模、数据驱动建模及混合建模;再次,梳理软测量技术在铝电解工业过程中的具体应用,如氧化铝浓度预测、阳极效应预警、过热度估算等;最后,探讨软测量技术在复杂工业环境下的发展方向。 展开更多
关键词 铝电解工业过程 软测量技术 氧化铝浓度 阳极效应 过热度
在线阅读 下载PDF
基于PSO-GBDT的燃煤电厂SCR入口NOx浓度软测量
12
作者 赵艳平 姜子运 《兰州交通大学学报》 2025年第3期90-95,共6页
为了保证燃煤电厂SCR系统入口氮氧化物(NOx)预测精度、降低预测时间,提出了一种基于粒子群优化(PSO)梯度提升决策树(GBDT)超参数的软测量模型。首先,综合模型预测精度和运行时间设计了目标函数;其次,利用皮尔逊相关系数法从初始参量中选... 为了保证燃煤电厂SCR系统入口氮氧化物(NOx)预测精度、降低预测时间,提出了一种基于粒子群优化(PSO)梯度提升决策树(GBDT)超参数的软测量模型。首先,综合模型预测精度和运行时间设计了目标函数;其次,利用皮尔逊相关系数法从初始参量中选择5个重要的特征作为模型输入,对降维后的数据进行标准化处理,将其切分为训练数据集和测试数据集;再次,构建了GBDT软测量模型,并利用目标函数对模型参数进行优化;最后,为了降低模型优化时间使用PSO算法优化模型超参数,实现了SCR入口NOx浓度软测量。仿真结果表明PSO-GBDT模型的泛化误差平均值小于5%,且相对GBDT模型来说具有结构简单、运行时间少的优点。 展开更多
关键词 燃煤电厂 NOx浓度 软测量 梯度提升决策树 PSO
在线阅读 下载PDF
一种基于改进梯度裁剪与门控循环单元的软测量算法
13
作者 高超 孙凯 《齐鲁工业大学学报》 2025年第4期61-69,共9页
在现代工业过程中,由于系统的非线性、时延问题以及异常值的存在,使用基础的数据驱动模型对关键性能指标的准确预测显得较为困难。提出了一种鲁棒的混合网络软测量算法,该混合网络模型以神经常微分方程网络为核心,辅以门控循环单元的结... 在现代工业过程中,由于系统的非线性、时延问题以及异常值的存在,使用基础的数据驱动模型对关键性能指标的准确预测显得较为困难。提出了一种鲁棒的混合网络软测量算法,该混合网络模型以神经常微分方程网络为核心,辅以门控循环单元的结构,以强化对连续数据的动态建模能力和提高对时序数据的分析精度。首先,使用基于常微分方程的门控循环单元作为处理非线性数据的基础模型。其次,设计了一种动态的梯度裁剪方法,将其与权重裁剪相结合引入到模型的训练过程中,以保证模型训练的稳定性和收敛性。此后,使用一种截断的Huber损失函数,并将其与弹性正则化相结合以处理异常值。最后,利用数值仿真和工业数据集对所提算法进行验证。结果表明,该算法可以有效的提高模型的预测精度和模型的稳定性。 展开更多
关键词 软测量 门控循环单元 梯度裁剪 鲁棒损失函数 弹性正则化
在线阅读 下载PDF
基于时差的多输出tri-training异构软测量建模 被引量:1
14
作者 王大芬 唐莉丽 +3 位作者 张鑫焱 聂春雨 李明珠 吴菁 《化工学报》 北大核心 2025年第3期1143-1155,共13页
软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一... 软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一种基于时差的多输出tri-training异构软测量方法。通过构建一种新的tri-training框架,采用多输出的高斯过程回归(multi-output Gaussian process regression,MGPR)、相关向量机(multi-output relevance vector machine,MRVM)、最小二乘支持向量机(multi-output least squares support vector machine,MLSSVM)三种模型作为基线监督回归器,使用标记数据进行训练和迭代;同时,引入时间差分(time difference,TD)改进模型的动态特性,并通过卡尔曼滤波(Kalman filtering,KF)优化模型的参数,提高其预测性能;最后通过模拟污水处理平台(benchmark simulation model 1,BSM1)和实际污水处理厂对该模型进行了验证。结果表明,与传统的软测量建模方法相比,该模型能显著提高数据分布不平衡下软测量模型的自适应性和预测性能。 展开更多
关键词 TRI-TRAINING 软测量 时间差分 协同训练 集成 预测 过程控制
在线阅读 下载PDF
基于自适应稀疏宽度学习系统的软测量建模 被引量:1
15
作者 杜康萍 隋璘 熊伟丽 《系统仿真学报》 北大核心 2025年第6期1449-1461,共13页
针对复杂工业过程具有非线性、变量多特征耦合的特性,导致模型复杂度增加及性能降低等问题,提出一种基于自适应稀疏宽度学习系统的软测量建模方法。在特征横向增强传递的基础上,采用迹LASSO(least absolute shrinkage and selection ope... 针对复杂工业过程具有非线性、变量多特征耦合的特性,导致模型复杂度增加及性能降低等问题,提出一种基于自适应稀疏宽度学习系统的软测量建模方法。在特征横向增强传递的基础上,采用迹LASSO(least absolute shrinkage and selection operator)对网络特征权重进行优化,根据不同变量间的相关性自适应调整惩罚强度,提高模型特征提取能力;在增强节点部分引入Dropout机制,利用LASSO求解输出权重,对模型整体进行稀疏优化,剔除过量节点,减少计算过程中的冗余数据。实验结果表明:该方法能有效简化模型结构,提高其预测性能。 展开更多
关键词 软测量 宽度学习系统 迹LASSO(least absolute shrinkage and selection operator) 正则化 稀疏模型
原文传递
面向多采样率数据的TTPA-LSTM软测量建模 被引量:1
16
作者 王法正 隋璘 熊伟丽 《化工学报》 北大核心 2025年第4期1635-1646,共12页
实际工业生产中,过程变量间存在的时滞和采样率差异会降低建模质量,使得许多软测量模型无法适用。因此,提出一种基于时间感知模式注意力(time-aware temporal pattern attention,TTPA)机制和长短时记忆网络的软测量建模方法。首先,将高... 实际工业生产中,过程变量间存在的时滞和采样率差异会降低建模质量,使得许多软测量模型无法适用。因此,提出一种基于时间感知模式注意力(time-aware temporal pattern attention,TTPA)机制和长短时记忆网络的软测量建模方法。首先,将高、低采样率对应的数据分别重构为短期和长期信息,采用时间感知模块将输入信息分解并考虑时间间隔特性,针对质量相关信息占比低的问题,设计非递增启发式衰减函数对短期信息进行加权,组合后获得长短期信息集成特征,降低因多采样率产生的数据缺失影响。其次,引入特征优化模块实现特征二维滤波,跨时间步解析多元时间序列中的时滞信息,获取更有效的质量相关特征。最后,搭建了基于TTPA的长短期记忆网络软测量模型。通过工业青霉素发酵过程和脱丁烷塔过程的应用仿真,验证了所提模型的有效性和优越性。 展开更多
关键词 多采样率 时间感知模式注意力 长短时记忆网络 软测量 神经网络 过程控制 动态建模
在线阅读 下载PDF
基于集成深度学习的造纸废水出水指标预测模型研究
17
作者 王金咏 王新元 +6 位作者 魏文光 张凤山 黄鹏 周景蓬 万兵 牛国强 刘鸿斌 《中国造纸学报》 北大核心 2025年第2期173-182,共10页
为克服单一模型的局限性、提高模型鲁棒性,针对小型造纸厂单一工段的废水处理数据集,首先利用核主成分分析(KPCA)降维技术,有效提取数据关键特征,再采用装袋集成(Bagging)算法集成多个可有效建模废水时间序列特征的长短期记忆网络(LSTM... 为克服单一模型的局限性、提高模型鲁棒性,针对小型造纸厂单一工段的废水处理数据集,首先利用核主成分分析(KPCA)降维技术,有效提取数据关键特征,再采用装袋集成(Bagging)算法集成多个可有效建模废水时间序列特征的长短期记忆网络(LSTM)学习器,建立KPCA-Bagging-LSTM造纸废水出水指标预测模型。结果表明,KPCA-Bagging-LSTM模型的决定系数(R2)达0.76,显著优于其他方法;均方根误差(RMSE)和平均绝对百分比误差(MAPE)分别为3.55 mg/L和4.01%,表明该模型具有更低的预测误差和更高的精度。本研究通过特征降维和集成学习提升了KPCA-Bagging-LSTM模型的性能,为造纸废水COD等出水指标预测提供了有效的解决方案。 展开更多
关键词 造纸废水过程处理 数据降维 长短期记忆网络 集成学习 软测量模型
在线阅读 下载PDF
基于分布式非线性映射和并行输入的BiLSTM软测量建模方法
18
作者 刘翌晗 王艳 +2 位作者 马浩 王团结 戴翠红 《化工学报》 北大核心 2025年第7期3373-3387,共15页
实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and para... 实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and parallel input bidirectional long short-term memory,DNMPI-BiLSTM)软测量模型。在所提策略中,首先为了阐述过程变量与质量变量之间的关联性,采用互信息以及最大相关最小冗余方法对输入数据集进行分类。随后,为了充分挖掘工业过程内部所包含的高度复杂的非线性关系,利用深度极限学习机的隐藏层对子过程变量空间进行非线性映射到高维空间。最后,将三类数据的非线性映射结果并行,建立了基于分布式非线性映射和并行输入的DNMPI-BiLSTM软测量模型,以提升模型对复杂工业过程质量变量的预测能力。通过三个工业案例验证所提方法的有效性,仿真结果表明,所提出的基于分布式非线性映射和并行输入的BiLSTM软测量建模方法的预测精度优于其他先进模型。 展开更多
关键词 双向长短期记忆 软测量 深度极限学习机 分布式输入 非线性映射
在线阅读 下载PDF
一种改进OSELM算法在片烟复烤过程水分在线检测中的应用
19
作者 张雷 马永帅 +5 位作者 洪斌斌 熊开胜 徐大勇 堵劲松 李银华 邹泉 《轻工学报》 北大核心 2025年第3期95-103,共9页
针对片烟复烤过程中关键质量指标出口烟叶含水率难以直接在线检测,且离线化验滞后严重的问题,提出一种改进在线序列极限学习机(Online Sequential Extreme Learning Machine,OSELM)的复烤干燥过程自适应建模方法,实时在线检测干燥区出... 针对片烟复烤过程中关键质量指标出口烟叶含水率难以直接在线检测,且离线化验滞后严重的问题,提出一种改进在线序列极限学习机(Online Sequential Extreme Learning Machine,OSELM)的复烤干燥过程自适应建模方法,实时在线检测干燥区出口烟叶的含水率。首先,采用专家知识与互信息方法选择与烟叶含水率相关性最强的辅助变量,增强模型的泛化能力并降低复杂度。然后,针对复烤过程的强非线性和显著时变特性,提出一种基于自适应遗忘因子的OSELM建模方法,设计的自适应遗忘因子策略能够根据复烤工况的变化动态迭代更新,以此增强软测量模型对复杂工况的在线跟踪能力。最后,基于某复烤厂的实际生产数据进行实验,结果表明,相较于传统软测量建模方法,本文方法具有较高的在线检测精度和响应速度,证明了该算法的有效性和优越性。 展开更多
关键词 片烟 烟叶含水率 复烤机 互信息 软测量 在线序列极限学习机 在线检测
在线阅读 下载PDF
Water quality soft-sensor prediction in anaerobic process using deep neural network optimized by Tree-structured Parzen Estimator 被引量:3
20
作者 Junlang Li Zhenguo Chen +7 位作者 Xiaoyong Li Xiaohui Yi Yingzhong Zhao Xinzhong He Zehua Huang Mohamed A.Hassaan Ahmed El Nemr Mingzhi Huang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第6期23-35,共13页
Anaerobic process is regarded as a green and sustainable process due to low carbon emission and minimal energy consumption in wastewater treatment plants(WWTPs).However,some water quality metrics are not measurable in... Anaerobic process is regarded as a green and sustainable process due to low carbon emission and minimal energy consumption in wastewater treatment plants(WWTPs).However,some water quality metrics are not measurable in real time,thus influencing the judgment of the operators and may increase energy consumption and carbon emission.One of the solutions is using a soft-sensor prediction technique.This article introduces a water quality soft-sensor prediction method based on Bidirectional Gated Recurrent Unit(BiGRU)combined with Gaussian Progress Regression(GPR)optimized by Tree-structured Parzen Estimator(TPE).TPE automatically optimizes the hyperparameters of BiGRU,and BiGRU is trained to obtain the point prediction with GPR for the interval prediction.Then,a case study applying this prediction method for an actual anaerobic process(2500 m^(3)/d)is carried out.Results show that TPE effectively optimizes the hyperparameters of BiGRU.For point prediction of CODeff and biogas yield,R^(2)values of BiGRU,which are 0.973 and 0.939,respectively,are increased by 1.03%–7.61%and 1.28%–10.33%,compared with those of other models,and the valid prediction interval can be obtained.Besides,the proposed model is assessed as a reliable model for anaerobic process through the probability prediction and reliable evaluation.It is expected to provide high accuracy and reliable water quality prediction to offer basis for operators in WWTPs to control the reactor and minimize carbon emission and energy consumption. 展开更多
关键词 Water quality prediction soft-sensor Anaerobic process Tree-structured Parzen Estimator
原文传递
上一页 1 2 57 下一页 到第
使用帮助 返回顶部