Purpose: To present a method for systematically mapping diversity of publication patterns at the author level in the social sciences and humanities in terms of publication type, publication language and co-authorship....Purpose: To present a method for systematically mapping diversity of publication patterns at the author level in the social sciences and humanities in terms of publication type, publication language and co-authorship.Design/methodology/approach: In a follow-up to the hard partitioning clustering by Verleysen and Weeren in 2016, we now propose the complementary use of fuzzy cluster analysis, making use of a membership coefficient to study gradual differences between publication styles among authors within a scholarly discipline. The analysis of the probability density function of the membership coefficient allows to assess the distribution of publication styles within and between disciplines.Findings: As an illustration we analyze 1,828 productive authors affiliated in Flanders, Belgium. Whereas a hard partitioning previously identified two broad publication styles, an international one vs. a domestic one, fuzzy analysis now shows gradual differences among authors. Internal diversity also varies across disciplines and can be explained by researchers’ specialization and dissemination strategies.Research limitations: The dataset used is limited to one country for the years 2000–2011; a cognitive classification of authors may yield a different result from the affiliation-based classification used here.Practical implications: Our method is applicable to other bibliometric and research evaluation contexts, especially for the social sciences and humanities in non-Anglophone countries.Originality/value: The method proposed is a novel application of cluster analysis to the field of bibliometrics. Applied to publication patterns at the author level in the social sciences and humanities, for the first time it systematically documents intra-disciplinary diversity.展开更多
It is possible to obtain vast amounts of spatiotemporal data related to human activities to support the study of human behavior and social evolution.In this context,geography,with the human-nature relationship as its ...It is possible to obtain vast amounts of spatiotemporal data related to human activities to support the study of human behavior and social evolution.In this context,geography,with the human-nature relationship as its core,is undergoing a transition from strictly earth observations to the observation of human activities.Geocomputation for social science is one manifestation thereof.Geocomputation for social science is an interdisciplinary approach combining remote sensing techniques,social science,and big data computation.Driven by the availability of spatially and temporally expansive big data,geocomputation for social science uses spatiotemporal statistical analyses to detect and analyze the interactions between human behavior,the natural environment,and social activities;Remote sensing(RS)observations are used as primary data.Geocomputation for social science can be used to investigate major social issues and to assess the impact of major natural and societal events,and will surely be an area of focused development in geography in the near future.We briefly review the background of geocomputation in the social sciences,discuss its definition and disciplinary characteristics,and highlight the main research foci.Several key technologies and applications are also illustrated with relevant case studies of the Syrian Civil War,typhoon transits,and traffic patterns.展开更多
As the basic part of the society,family has experienced great changes during the development of the society.This paper mainly talks about the evolution of American family system from the colonial period to modern time...As the basic part of the society,family has experienced great changes during the development of the society.This paper mainly talks about the evolution of American family system from the colonial period to modern times,focuses on studying the feature of the new family patterns and explores the factors that result in the changing of the American family patterns.And in the last part of this paper,the author research the future tendency development of American family.展开更多
This article introduces a novel low rank approximation (LRA)-based model to detect the functional regions with the data from about 15 million social media check-in records during a year-long period in Shanghai, China....This article introduces a novel low rank approximation (LRA)-based model to detect the functional regions with the data from about 15 million social media check-in records during a year-long period in Shanghai, China. We identified a series of latent structures, named latent spatio-temporal activity structures. While interpreting these structures, we can obtain a series of underlying associations between the spatial and temporal activity patterns. Moreover, we can not only reproduce the observed data with a lower dimensional representative, but also project spatio-temporal activity patterns in the same coordinate system. With the K-means clustering algorithm, five significant types of clusters that are directly annotated with a combination of temporal activities can be obtained, providing a clear picture of the correlation between the groups of regions and different activities at different times during a day. Besides the commercial and transportation dominant areas, we also detected two kinds of residential areas, the developed residential areas and the developing residential areas.We further interpret the spatial distribution of these clusters using urban form analytics. The results are highly consistent with the government planning in the same periods, indicating that our model is applicable to infer the functional regions from social media check-in data and can benefit a wide range of fields, such as urban planning, public services, and location-based recommender systems.展开更多
文摘Purpose: To present a method for systematically mapping diversity of publication patterns at the author level in the social sciences and humanities in terms of publication type, publication language and co-authorship.Design/methodology/approach: In a follow-up to the hard partitioning clustering by Verleysen and Weeren in 2016, we now propose the complementary use of fuzzy cluster analysis, making use of a membership coefficient to study gradual differences between publication styles among authors within a scholarly discipline. The analysis of the probability density function of the membership coefficient allows to assess the distribution of publication styles within and between disciplines.Findings: As an illustration we analyze 1,828 productive authors affiliated in Flanders, Belgium. Whereas a hard partitioning previously identified two broad publication styles, an international one vs. a domestic one, fuzzy analysis now shows gradual differences among authors. Internal diversity also varies across disciplines and can be explained by researchers’ specialization and dissemination strategies.Research limitations: The dataset used is limited to one country for the years 2000–2011; a cognitive classification of authors may yield a different result from the affiliation-based classification used here.Practical implications: Our method is applicable to other bibliometric and research evaluation contexts, especially for the social sciences and humanities in non-Anglophone countries.Originality/value: The method proposed is a novel application of cluster analysis to the field of bibliometrics. Applied to publication patterns at the author level in the social sciences and humanities, for the first time it systematically documents intra-disciplinary diversity.
文摘It is possible to obtain vast amounts of spatiotemporal data related to human activities to support the study of human behavior and social evolution.In this context,geography,with the human-nature relationship as its core,is undergoing a transition from strictly earth observations to the observation of human activities.Geocomputation for social science is one manifestation thereof.Geocomputation for social science is an interdisciplinary approach combining remote sensing techniques,social science,and big data computation.Driven by the availability of spatially and temporally expansive big data,geocomputation for social science uses spatiotemporal statistical analyses to detect and analyze the interactions between human behavior,the natural environment,and social activities;Remote sensing(RS)observations are used as primary data.Geocomputation for social science can be used to investigate major social issues and to assess the impact of major natural and societal events,and will surely be an area of focused development in geography in the near future.We briefly review the background of geocomputation in the social sciences,discuss its definition and disciplinary characteristics,and highlight the main research foci.Several key technologies and applications are also illustrated with relevant case studies of the Syrian Civil War,typhoon transits,and traffic patterns.
文摘As the basic part of the society,family has experienced great changes during the development of the society.This paper mainly talks about the evolution of American family system from the colonial period to modern times,focuses on studying the feature of the new family patterns and explores the factors that result in the changing of the American family patterns.And in the last part of this paper,the author research the future tendency development of American family.
基金the Open Research Fund Program of Shenzhen Key Laboratory of Spatial Smart Sensing and Services%sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry(grant number 50-20150618)%National Natural Science Foundation of China (grant numbers 41001220, 51378512, 41571397, and 41501442)This work was also supported by the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund
文摘This article introduces a novel low rank approximation (LRA)-based model to detect the functional regions with the data from about 15 million social media check-in records during a year-long period in Shanghai, China. We identified a series of latent structures, named latent spatio-temporal activity structures. While interpreting these structures, we can obtain a series of underlying associations between the spatial and temporal activity patterns. Moreover, we can not only reproduce the observed data with a lower dimensional representative, but also project spatio-temporal activity patterns in the same coordinate system. With the K-means clustering algorithm, five significant types of clusters that are directly annotated with a combination of temporal activities can be obtained, providing a clear picture of the correlation between the groups of regions and different activities at different times during a day. Besides the commercial and transportation dominant areas, we also detected two kinds of residential areas, the developed residential areas and the developing residential areas.We further interpret the spatial distribution of these clusters using urban form analytics. The results are highly consistent with the government planning in the same periods, indicating that our model is applicable to infer the functional regions from social media check-in data and can benefit a wide range of fields, such as urban planning, public services, and location-based recommender systems.