The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
The finite-difference method(FDM)is an essential tool in exploration geophysics,particularly for simulating wave propagation in fluid-solid coupled media.Despite its widespread use,FDM faces significant challenges tha...The finite-difference method(FDM)is an essential tool in exploration geophysics,particularly for simulating wave propagation in fluid-solid coupled media.Despite its widespread use,FDM faces significant challenges that affect its accuracy and efficiency.Firstly,the implicit handling of fluid-solid boundary conditions through parameter averaging strategy often results in low simulation accuracy.Secondly,surface topography can introduce staircase diffraction noise when grid spacing is large.To address these issues,this paper presents a novel approach.We derive an implicit expression for fluidsolid boundary conditions based on average medium theory,translating explicit boundary conditions into model parameter modification.This enables implicit handling of fluid-solid boundaries by modifying the parameters near the boundary.Furthermore,to mitigate staircase diffraction noise,we employ multiple interface discretization based on the superposition method.This effectively suppresses staircase diffraction noise without requiring grid refinement.The efficacy of our method in accurately modeling wave propagation phenomena in fluid-solid coupled media is demonstrated by numerical examples.Results align well with those obtained using the spectral element method(SEM),with significant reduction in staircase diffraction noise.展开更多
The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationsh...The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation展开更多
In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules ca...In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules can accumulate at the interface and form one of two states according to the ratio of gas molecules number to square of graphite surface from our simulation results: gas films (pancake-like) for a larger ratio and nanobubbles for a smaller ratio. In addition, we discuss the stabilities of nanobubbles at different environment temperatures. Surprisingly, it is found that the density of both kinds of gas states can be greatly increased, even comparable with that of the liquid N2 and liquid H2. The present results are expected to be helpful for the understanding of the stable existence of gas film (pancake-like) and nanobubbles.展开更多
In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed throu...In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed through the water/silicone oil interface. Motion parameters of the bubbles and droplets were obtained using particle kinematic analysis software, and the entrainment rate of the droplets was calculated. It was found that the entrainment rate decreased from 29.5% to 0 when the viscosity of the silicone oil was increased from 60 mPa.s to 820 mPa.s in the case of bubbles with a 5 mm equivalent diameter passing through the water/silicone oil interface. The results indicate that in- creasing the viscosity of the silicone oil is conducive to reducing the entrainment rate. The entrainment rate increased from 0 to 136.3% in the case of silicone oil with a viscosity of 60 mPa.s when the equivalent diameter of the bubbles was increased from 3 mm to 7 ram. We there- fore conclude that small bubbles are also conductive to reducing the entrainment rate. The force analysis results for the water colmnn indicate that the entrainment rate of droplets is affected by the velocity of the bubble passing through the water/silicone oil interface and that the en- trainment rate decreases with the bubble velocity.展开更多
Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered t...Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered to improve the design, as the CDI must provide enough SA for the pilot to maintain the flight safety. In order to study the SA in the pilot-aircraft system, a cockpit flight simulation environment is built up, which includes a virtual instrument panel, a flight visual display and the corresponding control system. Based on the simulation environment, a human-in-the-loop experiment is designed to measure the SA by the situation awareness global assessment technique (SAGAT). Through the experiment, the SA degrees and heart rate (HR) data of the subjects are obtained, and the SA levels under different CDI designs are analyzed. The results show that analyzing the SA can serve as an objective way to evaluate the design of CDI, which could be proved from the consistent HR data. With this method, evaluations of the CDI design are performed in the experimental flight simulation environment, and optimizations could be guided through the analysis.展开更多
In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fund...In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fundamental mechanism underlying interfacial transport remains incompletely understood given the complexity of heterogeneous interfacial molecular interactions and the high nonideality of the fluid involved. Thus, understanding the effects of interface-induced fluid microstructures on flow resistance is the first step in further understanding interfacial transport. Molecular simulation has become an indispensable method for the investigation of fluid microstructure and flow resistance. Here, we reviewed the recent research progress of our group and the latest relevant works to elucidate the contribution of interface-induced fluid microstructures to flow resistance.We specifically focused on water, ionic aqueous solutions, and alcohol–water mixtures given the ubiquity of these fluid systems in modern chemical engineering processes. We discussed the effects of the interfaceinduced hydrogen bond networks of water molecules, the ionic hydration of ionic aqueous solutions, and the spatial distributions of alcohol and alcohol–water mixtures on flow resistance on the basis of the distinctive characteristics of different fluid systems.展开更多
The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the elect...The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the electromagnetic force,flow field,temperature field,and Joule heat in front of the solid-liquid interface in directional solidification with the pulsed magnetic field are simulated.The calculation results show that the largest electromagnetic force in the melt appears near the solid-liquid interface,and the electromagnetic force is distributed in a gradient.There are intensive electromagnetic vibrations in front of the solid-liquid interface.The forced melt convection is mainly concentrated in front of the solid-liquid interface,accompanied by a larger flow velocity.The simulation results indicate that the grain refinement is attributed to that the electromagnetic vibration and forced convection increase the nucleation rate and the probability of dendrite fragments survival,for making dendrite easily fragmented,homogenizing the melt temperature,and increasing the undercooling in front of the solid-liquid interface.展开更多
Optimization of the intermetallic layer thickness and the suppression of interfacial defects are key elements to improve the load bearing capacity of dissimilar joints. However, till date we do not have a systematic t...Optimization of the intermetallic layer thickness and the suppression of interfacial defects are key elements to improve the load bearing capacity of dissimilar joints. However, till date we do not have a systematic tool to investigate the dissimilar joints and the intermetallic properties produced by a welding condition. Friction Melt Bonding (FMB) is a recently developed technique for joining dissimilar metals that also does not exempt to these challenges. The FMB of DP980 and A16061-T6 was investigated using a new physical simulation tool, based on Gleeble thermo-mechanical simulator, to understand the effect of individual parameter on the intermetallic formation. The proposed method demonstrates its capability in reproducing the intermetallic characteristics, including the thickness of intermetallic bonding layer, the morphology and texture of its constituents (Fe2AU and Fe4Ali3), as well as their nanohardness and reduced modulus. The advantages of physical simulation tool can enable novel developing routes for the development of dissimilar metal joining processes and facilitate to reach the requiring load bearing capacity of the joints.展开更多
The object of this study was to find the optimum conditions for the production of a sandwich composite from the sheets of brass-steel-brass. The experimental data obtained during the production process were used to va...The object of this study was to find the optimum conditions for the production of a sandwich composite from the sheets of brass-steel-brass. The experimental data obtained during the production process were used to validate the simulation program, which was written to establish the relation between the interface morphology and the thickness reduction amount of the composite. For this purpose, two surfaces of a steel sheet were first prepared by scratching brushing before inserting it between two brass sheets with smooth surfaces. Three sheets were then subjected to a cold rolling process for producing a tri-layer composite with various thick- nesses. The sheet interface after rolling was studied by different techniques, and the bonding strength for each rolling condition was determined by peeling test. Moreover, a relation between interfacial bonding strength and thickness reduction was found. The simulation results were compared with the experimental data and the available theoretical models to modify the original simulation program with high application efficiency used for predicting the behavior of the interface under different pressures.展开更多
The sediment distributed and insolated under lake was collected for experiments. The nutrient layer distribution conditions of sampled sediment and its physical and chemical characteristics were analyzed to simulate a...The sediment distributed and insolated under lake was collected for experiments. The nutrient layer distribution conditions of sampled sediment and its physical and chemical characteristics were analyzed to simulate and assess the influence degree to lake water quality. Based on the dynamic water exchanging experiments the nutrient release process in sediment and influence mechanism to substance exchanging on water-sediment interface was studied, and the correlation between the changing content of total phosphors and total nitrogen in sediment and covered water were analyzed for setting up a simulation model. At the same time the influence degree is explained in detail. The experimental results indicated that even if clean water without nutrient contents was used for water exchangement so as to decrease pollution or prevent eutrophication, however owing to the vertical nutrient distribution in lake sediment, it will lead to the increasing release amount greatly especially when the organic nutrient contained in sediment turns into inorganic status because of isolation. Besides the release process of total phosphate (TP) and total nitrogen (TN) were modeled and each nutrient's exchanging equation at interface caused by covered water nutrient concentration changing was set up. According to the simulating prediction, TP and TN content of cover water will also sustain a steady higher level in a long period. The nutrient release amount of sediment is not only affected by the covered water concentration but also connects with accumulative time. The experiments provide the fundamental theoretical and practical basis for taking ecological restoration project. And research is helpful to prevent or restore lake eutrophication.展开更多
The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations....The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations.The TIP3P potential is used for water and the EPM2 model is for CO2.The water phase and SC-CO2 phase form a distinct immiscible liquid-liquid interface.The two chelating molecules show interfacial preference.Comparatively,the AA molecules show somewhat more preference for interfacial region,whereas the HFA molecules are preferably near the Sc-CO2 phase.The orientational distribution of the β-diketone molecules and the radial distribution functions between β-diketones and solvents are obtained in order to study the microscopic structural properties of the β-diketones at the water-SC-CO2 interface.It is found that the translational diffusion and rotational diffusion of HFA and AA are obviously anisotropic and decrease as the β-diketone molecules approach the interface.The anisotropic dynamic behavior for the solute molecules is related to the corresponding structural properties.展开更多
A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this mode...A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this model, the oil-water interface is fixed, And amphiphile molecules will be enriched at the oil-water interface. The interfacial concentration of amphiphile calculated by Monte Carlo method shows that it is easier for the hydrophilic-hydrophobic balanced amphiphile to stay at the interface. And the adsorption of amphiphile increases with the increase of amphiphile concentration and the decrease with temperature.展开更多
The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibriu...The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibrium state,equilibrium concentration distribution,MSD of layer and different groups,and interaction energy of two interface models,the influencing mechanism on the interface properties of adding organosiloxane into coating system was studied at the atomic scale.It shows that the temperature and energy of interface oscillated in a small range and it was exited in a state of dynamic equilibrium within the initial simulation stage(t<20 ps).It can be seen from the multiple peak states of concentration distribution that the iron substrate,organo-siloxane and zinc silicate are distributed in the form of a concentration gradient in the real environment.The rapid diffusion of free zinc powder in zinc silicate coating was the essential reason that affected the comprehensive properties of coating.The interface thickness decreased from 7.45 to 6.82Å,the MSD of free zinc powder was effectively reduced,and the interfacial energy was increased from 104.667 to 347.158 kcal/mol after being modified by organo-siloxane.展开更多
As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportional...As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportionalintegral-derivative) with additional FFC (feed-forward controller) is proposed, and the hardware-in-the-loop simulation results are also given. Based on the description of 3-DOF flight simulator, a novel nonlinear PID theory is well introduced. Then a nonlinear PID controller with additional FFC is designed. Subsequently, the loop structure of 3-DOF flight simulator is also designed. Finally, a series of hardware-in-the-loop simulation experiments are undertaken to verify the feasibility and effectiveness of the proposed nonlinear PID controller with additional FFC for 3-DOF flight simulator.展开更多
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ...A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.展开更多
A ground-based hardware-in-the-loop (HIL) simulation system with hydraulically driven Stewart platform for spacecraft docking simulation is presented. The system is used for simulating docking process of the on-orbi...A ground-based hardware-in-the-loop (HIL) simulation system with hydraulically driven Stewart platform for spacecraft docking simulation is presented. The system is used for simulating docking process of the on-orbit spacecraft. Principle and structure of the six-degree-of-freedom simulation system are introduced. The docking process dynamic of the vehicles is modeled. Experiment results and mathematical simulation data are compared to validating the simulation system. The comparisons of the results prove that the simulation system proposed can effectively simulate the on-orbit docking process of the spacecraft.展开更多
Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to subs...Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided.展开更多
A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated b...A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.展开更多
In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging proc...In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging process,the paper designs a hardware-in-loop simulation of twin-screw extruder experiment system which is closer to scene,low cost and high safety.The system through the establishment of twin-screw extruder’s mathematical model on computer to simulate the realistic system and there is hardware practicality in the computer simulation loop.The hardware based on C8051F020 can operate in the simulation loop in real time.In computer software design, we desigh man-machine interface that is intuitive and easy to operate,can reflect twin-screw extruder main operation information vividly.Finally,twin-screw extruder’s 3 heater temperature mathematical model and PID incremental control algorithm are presented.展开更多
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金supported by the National Natural Science Foundation of China(Nos.42404134,U24B2031,42174160)the China Postdoctoral Science Foundation(No.2024M753204)the National Key R&D Program of China(Nos.2021YFA0716901,2022YFB3904601)。
文摘The finite-difference method(FDM)is an essential tool in exploration geophysics,particularly for simulating wave propagation in fluid-solid coupled media.Despite its widespread use,FDM faces significant challenges that affect its accuracy and efficiency.Firstly,the implicit handling of fluid-solid boundary conditions through parameter averaging strategy often results in low simulation accuracy.Secondly,surface topography can introduce staircase diffraction noise when grid spacing is large.To address these issues,this paper presents a novel approach.We derive an implicit expression for fluidsolid boundary conditions based on average medium theory,translating explicit boundary conditions into model parameter modification.This enables implicit handling of fluid-solid boundaries by modifying the parameters near the boundary.Furthermore,to mitigate staircase diffraction noise,we employ multiple interface discretization based on the superposition method.This effectively suppresses staircase diffraction noise without requiring grid refinement.The efficacy of our method in accurately modeling wave propagation phenomena in fluid-solid coupled media is demonstrated by numerical examples.Results align well with those obtained using the spectral element method(SEM),with significant reduction in staircase diffraction noise.
基金Project (2012CB722805) supported by the National Basic Research Program of ChinaProjects (50974083, 51174131) supported by the National Natural Science Foundation of China+1 种基金Project (50774112) supported by the Joint Fund of NSFC and Baosteel, ChinaProject(07QA4021) supported by the Shanghai "Phosphor" Science Foundation, China
文摘The accelerating factor (AF) method is a simple and appropriate way to investigate the atomic long-time deep diffusion at solid-solid interface. In the framework of AF hyperdynamics (HD) simulation, the relationship between the diffusion coefficient along the direction of z-axis which is normal to the Mg/Zn interface and temperature was investigated, and the AF's impact on the diffusion constant (D0) and activation energy (Q^*) was studied. Then, two steps were taken to simulate the atomic diffusion process and the formation of new phases: one for acceleration and the other for equilibration. The results show that: the Arrhenius equation works well for the description of Dz with different accelerating factors; the AF has no effect on the diffusion constant Do in the case of no phase transition; and the relationship between Q* and Q conforms to Q^*=Q/A. Then, the new Arrhenius equation for AFHD is successfully constructed as Dz=Doexp[-Q/(ART)]. Meanwhile, the authentic equilibrium conformations at any dynamic moment can only be reproduced by the equilibration simulation of the HD-simulated configurations. Key words: accelerating factor method; Arrhenius equation; two-steps scheme; Mg/Zn interface; hyperdynamic simulation
基金supported in part by National Natural Science Foundation of China (Grant Nos 10474109 and 10674146)supported is part by the Shanghai Supercomputer Center of China
文摘In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules can accumulate at the interface and form one of two states according to the ratio of gas molecules number to square of graphite surface from our simulation results: gas films (pancake-like) for a larger ratio and nanobubbles for a smaller ratio. In addition, we discuss the stabilities of nanobubbles at different environment temperatures. Surprisingly, it is found that the density of both kinds of gas states can be greatly increased, even comparable with that of the liquid N2 and liquid H2. The present results are expected to be helpful for the understanding of the stable existence of gas film (pancake-like) and nanobubbles.
基金financially supported by the China Postdoctoral Science Foundation (Nos. 2015T80039 and 2014M560890)
文摘In this study, a water/silicone oil interface was used to simulate the steel/slag interface in a converter. A high-speed camera was used to record the entrainment process of droplets when air bubbles were passed through the water/silicone oil interface. Motion parameters of the bubbles and droplets were obtained using particle kinematic analysis software, and the entrainment rate of the droplets was calculated. It was found that the entrainment rate decreased from 29.5% to 0 when the viscosity of the silicone oil was increased from 60 mPa.s to 820 mPa.s in the case of bubbles with a 5 mm equivalent diameter passing through the water/silicone oil interface. The results indicate that in- creasing the viscosity of the silicone oil is conducive to reducing the entrainment rate. The entrainment rate increased from 0 to 136.3% in the case of silicone oil with a viscosity of 60 mPa.s when the equivalent diameter of the bubbles was increased from 3 mm to 7 ram. We there- fore conclude that small bubbles are also conductive to reducing the entrainment rate. The force analysis results for the water colmnn indicate that the entrainment rate of droplets is affected by the velocity of the bubble passing through the water/silicone oil interface and that the en- trainment rate decreases with the bubble velocity.
基金supported by National Basic Research Program of China(No.2010CB734104)
文摘Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving. During the process of aircraft design, situation awareness (SA) is frequently considered to improve the design, as the CDI must provide enough SA for the pilot to maintain the flight safety. In order to study the SA in the pilot-aircraft system, a cockpit flight simulation environment is built up, which includes a virtual instrument panel, a flight visual display and the corresponding control system. Based on the simulation environment, a human-in-the-loop experiment is designed to measure the SA by the situation awareness global assessment technique (SAGAT). Through the experiment, the SA degrees and heart rate (HR) data of the subjects are obtained, and the SA levels under different CDI designs are analyzed. The results show that analyzing the SA can serve as an objective way to evaluate the design of CDI, which could be proved from the consistent HR data. With this method, evaluations of the CDI design are performed in the experimental flight simulation environment, and optimizations could be guided through the analysis.
基金Supported by the National Natural Science Foundation of China(21878144,21576130,21490584 and 21838004)Project of Jiangsu Natural Science Foundation of China(BK20171464)+2 种基金Qing Lan ProjectJiangsu Overseas Visiting Scholar Program for University Prominent Young&Middle-aged Teachers and Presidentsthe Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fundamental mechanism underlying interfacial transport remains incompletely understood given the complexity of heterogeneous interfacial molecular interactions and the high nonideality of the fluid involved. Thus, understanding the effects of interface-induced fluid microstructures on flow resistance is the first step in further understanding interfacial transport. Molecular simulation has become an indispensable method for the investigation of fluid microstructure and flow resistance. Here, we reviewed the recent research progress of our group and the latest relevant works to elucidate the contribution of interface-induced fluid microstructures to flow resistance.We specifically focused on water, ionic aqueous solutions, and alcohol–water mixtures given the ubiquity of these fluid systems in modern chemical engineering processes. We discussed the effects of the interfaceinduced hydrogen bond networks of water molecules, the ionic hydration of ionic aqueous solutions, and the spatial distributions of alcohol and alcohol–water mixtures on flow resistance on the basis of the distinctive characteristics of different fluid systems.
基金financially supported by the National Natural Science Foundation of China (No. 51674236)the Key Research and Development Program of Liaoning Province (No.2019JH2/10100009)+1 种基金the National Science and Technology Major Project (No.2017-Ⅵ-0003-0073)the National Key Research and Development Program (No.2018Y-FA0702900)。
文摘The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification.In the presence of the solid-liquid interface condition,the distributions of the electromagnetic force,flow field,temperature field,and Joule heat in front of the solid-liquid interface in directional solidification with the pulsed magnetic field are simulated.The calculation results show that the largest electromagnetic force in the melt appears near the solid-liquid interface,and the electromagnetic force is distributed in a gradient.There are intensive electromagnetic vibrations in front of the solid-liquid interface.The forced melt convection is mainly concentrated in front of the solid-liquid interface,accompanied by a larger flow velocity.The simulation results indicate that the grain refinement is attributed to that the electromagnetic vibration and forced convection increase the nucleation rate and the probability of dendrite fragments survival,for making dendrite easily fragmented,homogenizing the melt temperature,and increasing the undercooling in front of the solid-liquid interface.
基金financial support of FRIAfinancial support of the European Research Council for a starting grant under grant No. 716678Chinese Scientific Council for financial support (No. 201606890031)
文摘Optimization of the intermetallic layer thickness and the suppression of interfacial defects are key elements to improve the load bearing capacity of dissimilar joints. However, till date we do not have a systematic tool to investigate the dissimilar joints and the intermetallic properties produced by a welding condition. Friction Melt Bonding (FMB) is a recently developed technique for joining dissimilar metals that also does not exempt to these challenges. The FMB of DP980 and A16061-T6 was investigated using a new physical simulation tool, based on Gleeble thermo-mechanical simulator, to understand the effect of individual parameter on the intermetallic formation. The proposed method demonstrates its capability in reproducing the intermetallic characteristics, including the thickness of intermetallic bonding layer, the morphology and texture of its constituents (Fe2AU and Fe4Ali3), as well as their nanohardness and reduced modulus. The advantages of physical simulation tool can enable novel developing routes for the development of dissimilar metal joining processes and facilitate to reach the requiring load bearing capacity of the joints.
文摘The object of this study was to find the optimum conditions for the production of a sandwich composite from the sheets of brass-steel-brass. The experimental data obtained during the production process were used to validate the simulation program, which was written to establish the relation between the interface morphology and the thickness reduction amount of the composite. For this purpose, two surfaces of a steel sheet were first prepared by scratching brushing before inserting it between two brass sheets with smooth surfaces. Three sheets were then subjected to a cold rolling process for producing a tri-layer composite with various thick- nesses. The sheet interface after rolling was studied by different techniques, and the bonding strength for each rolling condition was determined by peeling test. Moreover, a relation between interfacial bonding strength and thickness reduction was found. The simulation results were compared with the experimental data and the available theoretical models to modify the original simulation program with high application efficiency used for predicting the behavior of the interface under different pressures.
基金The National Natural Science Foundation of China (No. 50239030) and the State Key Laboratory of Hydrology-Water Resources andHydraulic Engineering of Hohai University (No. 2003400519)
文摘The sediment distributed and insolated under lake was collected for experiments. The nutrient layer distribution conditions of sampled sediment and its physical and chemical characteristics were analyzed to simulate and assess the influence degree to lake water quality. Based on the dynamic water exchanging experiments the nutrient release process in sediment and influence mechanism to substance exchanging on water-sediment interface was studied, and the correlation between the changing content of total phosphors and total nitrogen in sediment and covered water were analyzed for setting up a simulation model. At the same time the influence degree is explained in detail. The experimental results indicated that even if clean water without nutrient contents was used for water exchangement so as to decrease pollution or prevent eutrophication, however owing to the vertical nutrient distribution in lake sediment, it will lead to the increasing release amount greatly especially when the organic nutrient contained in sediment turns into inorganic status because of isolation. Besides the release process of total phosphate (TP) and total nitrogen (TN) were modeled and each nutrient's exchanging equation at interface caused by covered water nutrient concentration changing was set up. According to the simulating prediction, TP and TN content of cover water will also sustain a steady higher level in a long period. The nutrient release amount of sediment is not only affected by the covered water concentration but also connects with accumulative time. The experiments provide the fundamental theoretical and practical basis for taking ecological restoration project. And research is helpful to prevent or restore lake eutrophication.
基金Supported by the National Natural Science Foundation of China (20776066, 20476044) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060291002).
文摘The structural and dynamical properties of hexafluoroacetylacetone(HFA) and acetylacetone(AA) at the water/supercritical CO2(Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations.The TIP3P potential is used for water and the EPM2 model is for CO2.The water phase and SC-CO2 phase form a distinct immiscible liquid-liquid interface.The two chelating molecules show interfacial preference.Comparatively,the AA molecules show somewhat more preference for interfacial region,whereas the HFA molecules are preferably near the Sc-CO2 phase.The orientational distribution of the β-diketone molecules and the radial distribution functions between β-diketones and solvents are obtained in order to study the microscopic structural properties of the β-diketones at the water-SC-CO2 interface.It is found that the translational diffusion and rotational diffusion of HFA and AA are obviously anisotropic and decrease as the β-diketone molecules approach the interface.The anisotropic dynamic behavior for the solute molecules is related to the corresponding structural properties.
基金Supported by the National Natural Science Foundation of China (No. 29736170)and the Natural Science Foundation of Zhejiang Province(No. RC01051).
文摘A novel simple two-dimensional square-lattice model of amphiphile at oil-water interface is developed,in which oil and water act as solvent and occupy empty sites and amphiphile occupies chains of sites. In this model, the oil-water interface is fixed, And amphiphile molecules will be enriched at the oil-water interface. The interfacial concentration of amphiphile calculated by Monte Carlo method shows that it is easier for the hydrophilic-hydrophobic balanced amphiphile to stay at the interface. And the adsorption of amphiphile increases with the increase of amphiphile concentration and the decrease with temperature.
基金supported by the National Science Fundation of China(No.U1937601),and the National Natural Science Foundation of China(Grant No.NSFC51905471).
文摘The interface properties of Fe(101)/zinc silicate modified by organo-siloxane(KH-570)was studied by using the method of molecular dynamics simulation.By calculating the temperature and energy fluctuation of equilibrium state,equilibrium concentration distribution,MSD of layer and different groups,and interaction energy of two interface models,the influencing mechanism on the interface properties of adding organosiloxane into coating system was studied at the atomic scale.It shows that the temperature and energy of interface oscillated in a small range and it was exited in a state of dynamic equilibrium within the initial simulation stage(t<20 ps).It can be seen from the multiple peak states of concentration distribution that the iron substrate,organo-siloxane and zinc silicate are distributed in the form of a concentration gradient in the real environment.The rapid diffusion of free zinc powder in zinc silicate coating was the essential reason that affected the comprehensive properties of coating.The interface thickness decreased from 7.45 to 6.82Å,the MSD of free zinc powder was effectively reduced,and the interfacial energy was increased from 104.667 to 347.158 kcal/mol after being modified by organo-siloxane.
基金the National Natural Science Foundation of China (60604009)Aeronautical Science Foundationof China(2006ZC51039)Beijing NOVA Program (2007A017).
文摘As friction, intrinsic steady-state nonlinearity poses a challenging dilemma to the control system of 3-DOF (three degree of freedom) flight simulator, a novel hybrid control strategy of nonlinear PID (proportionalintegral-derivative) with additional FFC (feed-forward controller) is proposed, and the hardware-in-the-loop simulation results are also given. Based on the description of 3-DOF flight simulator, a novel nonlinear PID theory is well introduced. Then a nonlinear PID controller with additional FFC is designed. Subsequently, the loop structure of 3-DOF flight simulator is also designed. Finally, a series of hardware-in-the-loop simulation experiments are undertaken to verify the feasibility and effectiveness of the proposed nonlinear PID controller with additional FFC for 3-DOF flight simulator.
基金Project supported by the National Natural Science Foundation of China(Nos.91752118,11672305,11232011,and 11572331)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSWSYS002)
文摘A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.
文摘A ground-based hardware-in-the-loop (HIL) simulation system with hydraulically driven Stewart platform for spacecraft docking simulation is presented. The system is used for simulating docking process of the on-orbit spacecraft. Principle and structure of the six-degree-of-freedom simulation system are introduced. The docking process dynamic of the vehicles is modeled. Experiment results and mathematical simulation data are compared to validating the simulation system. The comparisons of the results prove that the simulation system proposed can effectively simulate the on-orbit docking process of the spacecraft.
基金supported by National Natural Science Foundation of China(Grant No.50908008)National Hi-tech Research and Development Program of China(863Program,Grant No.2009AA11Z216)
文摘Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided.
基金Project(20050214001) supported by Doctor Foundation of Education Ministry of ChinaProject(GC05A512) and supported by the Program of Heilongjiang Province Science and Technology, ChinaProject(zjg0702-01) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.
文摘In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging process,the paper designs a hardware-in-loop simulation of twin-screw extruder experiment system which is closer to scene,low cost and high safety.The system through the establishment of twin-screw extruder’s mathematical model on computer to simulate the realistic system and there is hardware practicality in the computer simulation loop.The hardware based on C8051F020 can operate in the simulation loop in real time.In computer software design, we desigh man-machine interface that is intuitive and easy to operate,can reflect twin-screw extruder main operation information vividly.Finally,twin-screw extruder’s 3 heater temperature mathematical model and PID incremental control algorithm are presented.