A series of SO 2- 4/TiO 2 SiO 2 catalysts with different mass fractions of SiO 2 were prepared by sol gel method. The effect of adding SiO 2 on the crystal structure, specific surface area, oxygen adsorption, and acid...A series of SO 2- 4/TiO 2 SiO 2 catalysts with different mass fractions of SiO 2 were prepared by sol gel method. The effect of adding SiO 2 on the crystal structure, specific surface area, oxygen adsorption, and acidity of SO 2- 4/TiO 2 catalyst and its photocatalytic property for degradation of bromomethane was studied. The results showed that the specific surface area and amount of oxygen adsorption of catalyst were increased by addition of SiO 2, leading to the obvious increase on photocatalytic activity of SO 2- 4/TiO 2 SiO 2 catalysts and mineralization ratio of bromomethane. Comparing with SO 2- 4/TiO 2, the acidic strength and anti moisture ability of SO 2- 4/TiO 2 SiO 2 catalyst were decreased.展开更多
The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface wit...The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface within 3 s and its dynamic contact angles can be expressed by a power law θ d= k(t+a) -n with the n value 0.98. Less than 50%(molar fraction) SiO 2 addition can accelerate the dynamic water spreading rate on the TiO 2 SiO 2 films and the optimum molar fraction of SiO 2 amount corresponding to as annealed, air plasma, and UV irradiation treatment process is 15%, 10% and 20%, respectively.展开更多
TiO2-SnO2-SiO2 nanocomposite photocatalysts were prepared with Na2SiO3·9H2O, SnCl4·5H2O and TiCl4 as precursors by chemistry coating processes and supercritical fluid drying (SCFD) method. Characterizations ...TiO2-SnO2-SiO2 nanocomposite photocatalysts were prepared with Na2SiO3·9H2O, SnCl4·5H2O and TiCl4 as precursors by chemistry coating processes and supercritical fluid drying (SCFD) method. Characterizations with XRD, TEM, NMR and FTIR showed that in addition to anatase type TiO2, a new active phase(Ti,Sn)O2 was also formed in the range of the studied doping concentration, The catalytic activity was evaluated by photocatalytic degradation of phenol as model reaction. SiO2 remained amphorous at all samples. It could prevent from growth of the size of nanopaticle and transformation from anatase to rutile. Compared with pure TiO2, or TiO2-SnO2 catalyst prepared by Sol-gel method, Nano-composite photo-catalyst showed significant improvement in catalytic activity, the photo-catalytic degradation rate of phenol in 7 h reached 88.7%. Application of the composite catalysts for the photocatalytic decomposition of phenol not only gave the same activity relative to pure ultrafine TiO2, but also reduced cost. The experimental results also proved that the thermal stability of TiO2 was greatly enhanced after mixing with small amount of SiO2. The optimized doping of SiO2 was 20.3%. The photo-catalyst prepared by SCFD combination technology was characterized with smaller particle size, larger surface area and higher activity.展开更多
文摘A series of SO 2- 4/TiO 2 SiO 2 catalysts with different mass fractions of SiO 2 were prepared by sol gel method. The effect of adding SiO 2 on the crystal structure, specific surface area, oxygen adsorption, and acidity of SO 2- 4/TiO 2 catalyst and its photocatalytic property for degradation of bromomethane was studied. The results showed that the specific surface area and amount of oxygen adsorption of catalyst were increased by addition of SiO 2, leading to the obvious increase on photocatalytic activity of SO 2- 4/TiO 2 SiO 2 catalysts and mineralization ratio of bromomethane. Comparing with SO 2- 4/TiO 2, the acidic strength and anti moisture ability of SO 2- 4/TiO 2 SiO 2 catalyst were decreased.
文摘The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface within 3 s and its dynamic contact angles can be expressed by a power law θ d= k(t+a) -n with the n value 0.98. Less than 50%(molar fraction) SiO 2 addition can accelerate the dynamic water spreading rate on the TiO 2 SiO 2 films and the optimum molar fraction of SiO 2 amount corresponding to as annealed, air plasma, and UV irradiation treatment process is 15%, 10% and 20%, respectively.
文摘TiO2-SnO2-SiO2 nanocomposite photocatalysts were prepared with Na2SiO3·9H2O, SnCl4·5H2O and TiCl4 as precursors by chemistry coating processes and supercritical fluid drying (SCFD) method. Characterizations with XRD, TEM, NMR and FTIR showed that in addition to anatase type TiO2, a new active phase(Ti,Sn)O2 was also formed in the range of the studied doping concentration, The catalytic activity was evaluated by photocatalytic degradation of phenol as model reaction. SiO2 remained amphorous at all samples. It could prevent from growth of the size of nanopaticle and transformation from anatase to rutile. Compared with pure TiO2, or TiO2-SnO2 catalyst prepared by Sol-gel method, Nano-composite photo-catalyst showed significant improvement in catalytic activity, the photo-catalytic degradation rate of phenol in 7 h reached 88.7%. Application of the composite catalysts for the photocatalytic decomposition of phenol not only gave the same activity relative to pure ultrafine TiO2, but also reduced cost. The experimental results also proved that the thermal stability of TiO2 was greatly enhanced after mixing with small amount of SiO2. The optimized doping of SiO2 was 20.3%. The photo-catalyst prepared by SCFD combination technology was characterized with smaller particle size, larger surface area and higher activity.
文摘利用溶胶 凝胶技术,控制钛酸四丁酯(TBOT)与硅酸乙酯(TEOS)的水解速度,使其共同水解成溶胶、凝胶,以乙醇为溶剂进行超临界干燥,经过一定温度热处理后,得到暗黄色透明的块体材料·进行了透射电镜观察和X衍射分析,表明锐钛矿结构的纳米TiO2均匀地分散于无定形SiO2基质中·FT IR光谱分析发现纳米TiO2与SiO2基质之间存在着Ti O Si键·在对罗丹明B水溶液的光催化降解中,此块体材料显示较好的光催化活性,在1h内催化降解86%的罗丹明B·此材料克服了粉状TiO2在实际水污染治理应用中的局限性,有着广泛的应用前景·