A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray ...A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray diffraction (XRD),field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM).The electrochemical performance was evaluated by galvanostatic charge-lischarge tests and alternating current (AC) impedance spectroscopy.The results show that the TiO2/GNS electrode exhibit higher electrochemical performance than that of TiO2 electrode regardless of the rate.Even at 500 mA/g,the capacity of TiO2/GNS is 120.3 mAh/g,which is higher than that of TiO2 61.6 mAh/g.The high performance is attributed to the addition of graphene to improve electrical conductivity and reduce polarization.展开更多
Cu2O@Cu sub-microspheres composites with a narrow particle size distribution from 300 to 500 nm was successfully fabricated by one-step synthesis through the direct thermal decomposition of copper nitrate (Cu(NO3)2...Cu2O@Cu sub-microspheres composites with a narrow particle size distribution from 300 to 500 nm was successfully fabricated by one-step synthesis through the direct thermal decomposition of copper nitrate (Cu(NO3)2) in octadecylamine (ODA) solvent. As anode materials for lithium ion batteries, the Cu2O@Cu composites obviously possess high specific capacity, excellent cyclic stability and rate capability. The coulombic efficiency is about 84% in the 1 st cycle and increases significantly up to 97.8% during successive cycles at various current densities. Even under a high current density of 500 mA g^-l, the discharge capacity of Cu2O@Cu composites remains up to 200 mAh g^-1. The excellent electrochemical properties are ascribed to the synergistic effect between high electronic conductivity and volume-buffering capacity of metallic copper composited with Cu2O.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co...This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.展开更多
Bismuth-based anode materials have been regarded as promising Li-ion batteries due to their high theoretical capacity.However,their low conductivity and associated volume expansion inhabited their commercialization.In...Bismuth-based anode materials have been regarded as promising Li-ion batteries due to their high theoretical capacity.However,their low conductivity and associated volume expansion inhabited their commercialization.In this work,Bi_(2)O_(2)CO_(3)@C composites were successfully synthesized by in situ anchoring of flower-like Bi_(2)O_(2)CO_(3) nanosheets on a carbon-based substrate via hydrothermal.The unique composited structure of Bi_2O_(2)-CO_(3)@C leads to a stable specific capacity of 547 mAh·g^(-1)after 100 cycles at a current density of 0.1 A·g^(-1).Notably,it demonstrates excellent rate capability with a specific capacity of 210 mAh·g^(-1)at 5 A·g^(-1).After 550 cycles at a current density of 0.5 A·g^(-1),a high reversible capacity of nearly 400 mAh·g^(-1)was observed.Additionally,in situ X-ray diffraction measurements clearly demonstrate the conversion between Bi and Li_(3)Bi during alloying/dealloying,confirming the good electrochemical reversibility of the materials for Li storage.The reaction kinetics of Bi_(2)O_(2)CO_(3)@C were further investigated using galvanostatic intermittent titration technique.Furthermore,Bi_2O_(2)-CO_(3)@C exhibited excellent long-term stability,maintaining its high reversible capacity for over 200 cycles at a current density of 0.5 A·g^(-1)in a full cell configuration using Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2) as the cathode material.This result further underscores its promising potential for lithium-ion batteries.This work may provide inspiration for the design of alloy-type negative electrode materials for high-performance rechargeable batteries.展开更多
A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating wit...A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating with pitch. Three samples with different pitch contents of 30%, 40% and 50% were synthesized. The composition and morphology of the composites were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM), respectively, and the properties were tested by electrochemical measurements. The results indicated that the composites showed obviously enhanced electrochemical performance compared with that without secondary carbon coating. The second discharge capacity of the composite was 773 m A·h/g at a current density of 100 m A/g, and still retained 669 m A·h/g after 60 cycles with a small capacity fade of less than 0.23%/cycle, while the content of secondary carbon source of pitch was set at 40%. Therefore, the cycle stability of the composite could be excellently improved by regulating carbon content of secondary coating.展开更多
Calcined kaolin/TiO2 composite particle material (CK/TCPM) was prepared with TiO2 coating on the surfaces of calcined kaolin particles by the mechano-chemical method. X-ray diffraction (XRD) and scanning electron ...Calcined kaolin/TiO2 composite particle material (CK/TCPM) was prepared with TiO2 coating on the surfaces of calcined kaolin particles by the mechano-chemical method. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to investigate the microstructures and morphologies, respectively. The mechanism of the mechano-chemical reaction between calcined kaolin and TiO2 was studied by infrared spectra (IR). The results show that TiO2 coats evenly on the surfaces of calcined kaolin particles by Si-O-Ti and Al-O-Ti bonds on their interfaces. The hiding power and whiteness of CK/TCPM are 17.12 g/m^2 and 95.7%, respectively, presenting its similarity to TiO2 in pigment properties.展开更多
Metal oxide anode material is one of promising candidates for the next-generation LIBs, due to its high theoretical capacity and low cost. The poor conductivity and huge volume change during charge/ discharge, however...Metal oxide anode material is one of promising candidates for the next-generation LIBs, due to its high theoretical capacity and low cost. The poor conductivity and huge volume change during charge/ discharge, however, restrict the commercialization of metal oxide anode material. In this work, we design a novel Cu-SnO2 composite derived from Cu6Sn5 alloy with three dimensional (3D) metal cluster conducting architecture. The novel Cu structure penetrates in the composite particles inducing high conductivity and space-confined SnO2, which restrict the pulverization of SnO2 during lithiation/ delithiation process. The optimized Cu-SnO2 composite anode delivers an initial discharge capacity of 933.7 mA h/g and retains a capacity of 536.1 mA h/g after 200 cycles, at 25℃ and a rate of 100 mA/g. Even at the high rate of 300 mA/g, the anode still exhibits a capacity of more than 29% of that tested at 50 mA/g. Combining with the phase and morphology analysis, the novel Cu-SnO2 composite not only has good electrical conductivity, but also possesses high theoretical capacity (995 mAh/g), which may pave a new way for the design and construction of next-generation metal oxide anode materials with high power and cycling stability.展开更多
TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) ...TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement, respectively. The effects of calcining temperature, molar ratio of K2O to TiO2 and calcining time on the characteristics of TiO2-B were investigated. The results show that the calcining time exerts a significant influence on the electrochemical performances of TiO2-B. The TiO2-B is obtained with good crystal structure and suitable size by using K2Ti4O9, which is prepared at 950 ℃for 24 h under the condition of x(K2O)/x(TiO2)=1:3.5. The TiO2-B delivers all initial discharge capacity of 231.6 mA.h/g. And the rate caoacitv is 73.2 mA-h/g at 1 675 mA/g, which suggests that TiO2-B is a promising anode material for the lithium ion batteries.展开更多
Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite m...Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite materials due to the unique thermoelectric properties.In this work,Bi2Se3/TiO2 composites were prepared by hot pressing the plate-like Bi2Se3 powders coated in situ with hydrolyzed hytetabutyl-n-butyl titanate(TNBT),and therefore numerous TiO2 in micrometer size could be formed on the interface of Bi2Se3 grains.The carrier concentration in Bi2Se3 matrix is optimized subject to the addition of n-type semiconductor TiO2,contributing to a significant improved power factor.In the meantime,the lattice thermal conductivity is also suppressed due to the enhanced phonon scattering at Bi2Se3/TiO2 interface and amorphous TiO2 particles.As a consequence,a peak figure of merit(zT)of 0.41 is obtained at 525 K in Bi2Se3/15 mol%TiO2 composites,nearly 50%augment over the pristine Bi2Se3 binary compound.展开更多
Titanium oxide(TiO2),with excellent cycling stability and low volume expansion,is a promising anode material for lithium-ion battery(LIB),which suffers from low electrical conductivity and poor rate capability.Combini...Titanium oxide(TiO2),with excellent cycling stability and low volume expansion,is a promising anode material for lithium-ion battery(LIB),which suffers from low electrical conductivity and poor rate capability.Combining nano-sized TiO2 with conductive materials is proved an efficient method to improve its electrochemical properties.Here,rutile TiO2/carbon nanosheet was obtained by calcinating MAX(Ti3AlC2)and Na2C03 together and water-bathing with HC1.The lamellar carbon atoms in MAX are converted to 2D carbon nanosheets with urchin-like rutile TiO2 anchored on.The unique architecture can offer plentiful active sites,shorten the ion diffusion distance and improve the conductivity.The composite exhibits a high reversible capacity of 247 mA h g^-1,excellent rate performance(38 mA h g^-1 at 50 C)and stable cycling performance(0.014%decay per cycle during 2000 cycles)for lithium storage.展开更多
Silicon(Si) materials as anode materials for applications in lithium-ion batteries(LIBs) have received increasing attention.Among the Si materials,the electrochemical properties of SiOx-based(0<x≤2)composites are ...Silicon(Si) materials as anode materials for applications in lithium-ion batteries(LIBs) have received increasing attention.Among the Si materials,the electrochemical properties of SiOx-based(0<x≤2)composites are the most prominent.However,due to the cycling stability of SiOx being far from practical,there are some problems,such as Iow initial coulombic efficiency(ICE),obvious volume expansion and poor conductivity.Researchers in various countries have optimized the electrochemical properties of SiOx-based composites by means of pore formation,surface modification,and the choice of constituents.In this review,SiOx-based composites are classified into three categories based on the valency of Si(SiO2 composites,SiO composites and SiOx(0<x<2) composites).The synthesis,morphologies and electrochemical properties of the SiOx-based composites that are applied in LIB are discussed.Finally,the prope rties of several common SiOx-based composites are briefly compared and the challenges faced by SiOx-based composites are highlight.展开更多
Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Her...Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field(90–180V) anodization method to grow highly ordered TiO_2 NTAs on Si substrate,and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO_2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO_2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields(40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte.展开更多
Chemical reduction method was employed to prepare nano-sized Sn2SbNi alloy composites used as anode material for rechargeable lithium ion batteries.This strategy was adopted to combine the virtues of both active/inact...Chemical reduction method was employed to prepare nano-sized Sn2SbNi alloy composites used as anode material for rechargeable lithium ion batteries.This strategy was adopted to combine the virtues of both active/inactive and active/active alloys to fabricate a Sn2SbNi alloy powder with two active components and one inactive component.The two active components can realize the high capacity feature of electrode and can make the volume change of electrode take place in a stepwise manner due to the different lithiation potentials of two active components,leading to a stable cycling performance.Sn2SbNi alloy provides a reversible specific capacity over 640 mA·h/g with an excellent cyclic ability.The Sn-Sb-Ni alloy composite material shows to be a good candidate anode material for the lithium ion batteries.展开更多
The design of electrode material nanostructures including reducing material sizes and designing appropriate heterostructures,has great potential in improving charge storage dynamics and enhancing practical performance...The design of electrode material nanostructures including reducing material sizes and designing appropriate heterostructures,has great potential in improving charge storage dynamics and enhancing practical performance.In this study,we present the innovative synthesis of SnO_(2)-SnS_(2)/graphene heterojunction composite materials via a controlled vulcanization reaction process.The unique structure endows the composite with high electronic conductivity,rapid ion diffusion rates,elevated electrochemical activity,excellent structural stability,and abundant reaction sites,making it a highly efficient anode material for sodium-ion batteries(SIBs).Half-cell tests demonstrate that the SnO_(2)-SnS_(2)/r-G composite achieves a first Coulombic efficiency of 77.3%at a high current density of 5 A/g,showing remarkable cycling stability.Remarkably,the composite retains a reversible capacity of 330 mA,h/g after 1000 cycles,with a capacity retention rate of 77.5%.Moreover,we elucidate the specific sodium storage mechanisms of the heterojunction composite electrode via in-situ and ex-situ characterization methods.Furthermore,a full battery utilizing Na_(0.53)MnO_(2)as the cathode and SnO_(2)-SnS_(2)/r-G composite as the anode exhibits outstanding rate performance and long-term cycling stability.This method of heterostructure design and fabrication,coupled with the exceptional performance metrics,suggests that the SnO_(2)-SnS_(2)/r-G heterostructure is a promising candidate for advanced anode materials in SIBs applications.展开更多
基金Project(Y4110230)supported by Natural Science Foundation of Zhejiang Province,ChinaProject(51204146,51101140)supported by the National Natural Science Foundation of ChinaProject(2012M521197)supported by Postdoctoral Science Foundation of China
文摘A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray diffraction (XRD),field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM).The electrochemical performance was evaluated by galvanostatic charge-lischarge tests and alternating current (AC) impedance spectroscopy.The results show that the TiO2/GNS electrode exhibit higher electrochemical performance than that of TiO2 electrode regardless of the rate.Even at 500 mA/g,the capacity of TiO2/GNS is 120.3 mAh/g,which is higher than that of TiO2 61.6 mAh/g.The high performance is attributed to the addition of graphene to improve electrical conductivity and reduce polarization.
基金financially supported by the National Program on Key Basic Research Project (2014CB643403)National Key Research and Development Program of China (2017YFB0102900)the Shanghai Pujiang Program (17PJD016)
文摘Cu2O@Cu sub-microspheres composites with a narrow particle size distribution from 300 to 500 nm was successfully fabricated by one-step synthesis through the direct thermal decomposition of copper nitrate (Cu(NO3)2) in octadecylamine (ODA) solvent. As anode materials for lithium ion batteries, the Cu2O@Cu composites obviously possess high specific capacity, excellent cyclic stability and rate capability. The coulombic efficiency is about 84% in the 1 st cycle and increases significantly up to 97.8% during successive cycles at various current densities. Even under a high current density of 500 mA g^-l, the discharge capacity of Cu2O@Cu composites remains up to 200 mAh g^-1. The excellent electrochemical properties are ascribed to the synergistic effect between high electronic conductivity and volume-buffering capacity of metallic copper composited with Cu2O.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
文摘This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.
基金financially supported by Yunnan Fundamental Research Projects(Nos.202401AU070164 and 202101AU070157)the National Natural Science Foundation of China(No.52064028)Yunnan Provincial Major Science and Technology Special Plan Projects(No.202202AF080002)。
文摘Bismuth-based anode materials have been regarded as promising Li-ion batteries due to their high theoretical capacity.However,their low conductivity and associated volume expansion inhabited their commercialization.In this work,Bi_(2)O_(2)CO_(3)@C composites were successfully synthesized by in situ anchoring of flower-like Bi_(2)O_(2)CO_(3) nanosheets on a carbon-based substrate via hydrothermal.The unique composited structure of Bi_2O_(2)-CO_(3)@C leads to a stable specific capacity of 547 mAh·g^(-1)after 100 cycles at a current density of 0.1 A·g^(-1).Notably,it demonstrates excellent rate capability with a specific capacity of 210 mAh·g^(-1)at 5 A·g^(-1).After 550 cycles at a current density of 0.5 A·g^(-1),a high reversible capacity of nearly 400 mAh·g^(-1)was observed.Additionally,in situ X-ray diffraction measurements clearly demonstrate the conversion between Bi and Li_(3)Bi during alloying/dealloying,confirming the good electrochemical reversibility of the materials for Li storage.The reaction kinetics of Bi_(2)O_(2)CO_(3)@C were further investigated using galvanostatic intermittent titration technique.Furthermore,Bi_2O_(2)-CO_(3)@C exhibited excellent long-term stability,maintaining its high reversible capacity for over 200 cycles at a current density of 0.5 A·g^(-1)in a full cell configuration using Li_(1.20)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2) as the cathode material.This result further underscores its promising potential for lithium-ion batteries.This work may provide inspiration for the design of alloy-type negative electrode materials for high-performance rechargeable batteries.
基金Project(11204090)supported by the National Natural Science Foundation of ChinaProject(2013KJCX0050)supported by the Department of Education of Guangdong Province+6 种基金ChinaProjects(2014B0404040672014A0404010052015A0404040432015A090905003201508030033)supported by the Scientific and Technological Plan of Guangdong Province and Guangzhou CityChina
文摘A porous coral-structured Si/C composite as an anode material was fabricated by coating Si nanoparticles with a carbon layer from polyvinyl alcohol(PVA), erosion of hydrofluoric(HF) acid, and secondary coating with pitch. Three samples with different pitch contents of 30%, 40% and 50% were synthesized. The composition and morphology of the composites were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM), respectively, and the properties were tested by electrochemical measurements. The results indicated that the composites showed obviously enhanced electrochemical performance compared with that without secondary carbon coating. The second discharge capacity of the composite was 773 m A·h/g at a current density of 100 m A/g, and still retained 669 m A·h/g after 60 cycles with a small capacity fade of less than 0.23%/cycle, while the content of secondary carbon source of pitch was set at 40%. Therefore, the cycle stability of the composite could be excellently improved by regulating carbon content of secondary coating.
基金Funded by the National Key Technology R&D Program of China(No.2008BAE60B06)Beijing Municipal Science&Technology Commission (No.Z080003032208015)
文摘Calcined kaolin/TiO2 composite particle material (CK/TCPM) was prepared with TiO2 coating on the surfaces of calcined kaolin particles by the mechano-chemical method. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to investigate the microstructures and morphologies, respectively. The mechanism of the mechano-chemical reaction between calcined kaolin and TiO2 was studied by infrared spectra (IR). The results show that TiO2 coats evenly on the surfaces of calcined kaolin particles by Si-O-Ti and Al-O-Ti bonds on their interfaces. The hiding power and whiteness of CK/TCPM are 17.12 g/m^2 and 95.7%, respectively, presenting its similarity to TiO2 in pigment properties.
基金financial supports for this research from the Natural Science Foundation of Tianjin (No. 16JCYBJC41700)Tianjin Major Program of New Materials Science and Technology (Nos. 16ZXCLGX00070, 16ZXCLGX00110)+2 种基金Tianjin Municipal Education Committee Scientific Research Projects (No. 2017KJ075)the National Nature Science Foundation of China (No. 21676200)Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education (Tianjin University)
文摘Metal oxide anode material is one of promising candidates for the next-generation LIBs, due to its high theoretical capacity and low cost. The poor conductivity and huge volume change during charge/ discharge, however, restrict the commercialization of metal oxide anode material. In this work, we design a novel Cu-SnO2 composite derived from Cu6Sn5 alloy with three dimensional (3D) metal cluster conducting architecture. The novel Cu structure penetrates in the composite particles inducing high conductivity and space-confined SnO2, which restrict the pulverization of SnO2 during lithiation/ delithiation process. The optimized Cu-SnO2 composite anode delivers an initial discharge capacity of 933.7 mA h/g and retains a capacity of 536.1 mA h/g after 200 cycles, at 25℃ and a rate of 100 mA/g. Even at the high rate of 300 mA/g, the anode still exhibits a capacity of more than 29% of that tested at 50 mA/g. Combining with the phase and morphology analysis, the novel Cu-SnO2 composite not only has good electrical conductivity, but also possesses high theoretical capacity (995 mAh/g), which may pave a new way for the design and construction of next-generation metal oxide anode materials with high power and cycling stability.
基金Project(2007BAE12B01) supported by the National Key Technology R&D Program of China
文摘TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement, respectively. The effects of calcining temperature, molar ratio of K2O to TiO2 and calcining time on the characteristics of TiO2-B were investigated. The results show that the calcining time exerts a significant influence on the electrochemical performances of TiO2-B. The TiO2-B is obtained with good crystal structure and suitable size by using K2Ti4O9, which is prepared at 950 ℃for 24 h under the condition of x(K2O)/x(TiO2)=1:3.5. The TiO2-B delivers all initial discharge capacity of 231.6 mA.h/g. And the rate caoacitv is 73.2 mA-h/g at 1 675 mA/g, which suggests that TiO2-B is a promising anode material for the lithium ion batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.51871199 and 61534001)。
文摘Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite materials due to the unique thermoelectric properties.In this work,Bi2Se3/TiO2 composites were prepared by hot pressing the plate-like Bi2Se3 powders coated in situ with hydrolyzed hytetabutyl-n-butyl titanate(TNBT),and therefore numerous TiO2 in micrometer size could be formed on the interface of Bi2Se3 grains.The carrier concentration in Bi2Se3 matrix is optimized subject to the addition of n-type semiconductor TiO2,contributing to a significant improved power factor.In the meantime,the lattice thermal conductivity is also suppressed due to the enhanced phonon scattering at Bi2Se3/TiO2 interface and amorphous TiO2 particles.As a consequence,a peak figure of merit(zT)of 0.41 is obtained at 525 K in Bi2Se3/15 mol%TiO2 composites,nearly 50%augment over the pristine Bi2Se3 binary compound.
基金supported by the National Natural Science Foundation of China (NSFC, No. 51572011)the National Key Research and Development Program of China (No. 2017YFB0102004)the Fundamental Research Funds for the Central Universities (No. ZY1802)
文摘Titanium oxide(TiO2),with excellent cycling stability and low volume expansion,is a promising anode material for lithium-ion battery(LIB),which suffers from low electrical conductivity and poor rate capability.Combining nano-sized TiO2 with conductive materials is proved an efficient method to improve its electrochemical properties.Here,rutile TiO2/carbon nanosheet was obtained by calcinating MAX(Ti3AlC2)and Na2C03 together and water-bathing with HC1.The lamellar carbon atoms in MAX are converted to 2D carbon nanosheets with urchin-like rutile TiO2 anchored on.The unique architecture can offer plentiful active sites,shorten the ion diffusion distance and improve the conductivity.The composite exhibits a high reversible capacity of 247 mA h g^-1,excellent rate performance(38 mA h g^-1 at 50 C)and stable cycling performance(0.014%decay per cycle during 2000 cycles)for lithium storage.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.21671170,21673203, 21201010)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)+2 种基金Program for New Century Excellent Talents of the University in China(NCET,No.13-0645)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.XSJCX17-015)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Silicon(Si) materials as anode materials for applications in lithium-ion batteries(LIBs) have received increasing attention.Among the Si materials,the electrochemical properties of SiOx-based(0<x≤2)composites are the most prominent.However,due to the cycling stability of SiOx being far from practical,there are some problems,such as Iow initial coulombic efficiency(ICE),obvious volume expansion and poor conductivity.Researchers in various countries have optimized the electrochemical properties of SiOx-based composites by means of pore formation,surface modification,and the choice of constituents.In this review,SiOx-based composites are classified into three categories based on the valency of Si(SiO2 composites,SiO composites and SiOx(0<x<2) composites).The synthesis,morphologies and electrochemical properties of the SiOx-based composites that are applied in LIB are discussed.Finally,the prope rties of several common SiOx-based composites are briefly compared and the challenges faced by SiOx-based composites are highlight.
基金supported by National 863 Program 2011AA050518the Natural Science Foundation of China(Grant Nos.11174197,11574203,and 61234005)
文摘Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field(90–180V) anodization method to grow highly ordered TiO_2 NTAs on Si substrate,and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO_2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO_2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields(40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte.
基金Project(2008cd148)supported by the Social Development Plan of Yunnan Province,ChinaProject(2010)supported by Key Science and Technology Fund of Education Department,China
文摘Chemical reduction method was employed to prepare nano-sized Sn2SbNi alloy composites used as anode material for rechargeable lithium ion batteries.This strategy was adopted to combine the virtues of both active/inactive and active/active alloys to fabricate a Sn2SbNi alloy powder with two active components and one inactive component.The two active components can realize the high capacity feature of electrode and can make the volume change of electrode take place in a stepwise manner due to the different lithiation potentials of two active components,leading to a stable cycling performance.Sn2SbNi alloy provides a reversible specific capacity over 640 mA·h/g with an excellent cyclic ability.The Sn-Sb-Ni alloy composite material shows to be a good candidate anode material for the lithium ion batteries.
基金sponsored by the National Natural Science Foundation of China(No.51802276)Natural Science Foundation of Jiangsu Province(BK20241972)+1 种基金Production and research projects(No.2022090101 and 2022090102)Qing Lan Project of Jiangsu University.
文摘The design of electrode material nanostructures including reducing material sizes and designing appropriate heterostructures,has great potential in improving charge storage dynamics and enhancing practical performance.In this study,we present the innovative synthesis of SnO_(2)-SnS_(2)/graphene heterojunction composite materials via a controlled vulcanization reaction process.The unique structure endows the composite with high electronic conductivity,rapid ion diffusion rates,elevated electrochemical activity,excellent structural stability,and abundant reaction sites,making it a highly efficient anode material for sodium-ion batteries(SIBs).Half-cell tests demonstrate that the SnO_(2)-SnS_(2)/r-G composite achieves a first Coulombic efficiency of 77.3%at a high current density of 5 A/g,showing remarkable cycling stability.Remarkably,the composite retains a reversible capacity of 330 mA,h/g after 1000 cycles,with a capacity retention rate of 77.5%.Moreover,we elucidate the specific sodium storage mechanisms of the heterojunction composite electrode via in-situ and ex-situ characterization methods.Furthermore,a full battery utilizing Na_(0.53)MnO_(2)as the cathode and SnO_(2)-SnS_(2)/r-G composite as the anode exhibits outstanding rate performance and long-term cycling stability.This method of heterostructure design and fabrication,coupled with the exceptional performance metrics,suggests that the SnO_(2)-SnS_(2)/r-G heterostructure is a promising candidate for advanced anode materials in SIBs applications.